Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update
Abstract
:1. Introduction
2. Polyunsaturated Fatty Acids
2.1. Omega-3 Polyunsaturated Fatty Acids
2.2. Omega-6 Polyunsaturated Fatty Acids
3. Saturated Fatty Acids
4. Monounsaturated Fatty Acids
Trans-Fatty Acids
Fatty Acids | Chemical Structure of Typical Fatty Acids | TRL apoB-48 | VLDL apoB-100 | IDL apoB-100 | LDL apoB-100 | HDL apoA-I | Ref No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(corresponding name) | Pool size | PR | FCR | Pool size | PR | FCR | Pool size | PR | FCR | Pool size | PR | FCR | Pool size | PR | FCR | ||
SFA | CH3(CH2)16COOH (stearic acid) | ↓ | ↑ | [16,17] | |||||||||||||
MCT | CH3(CH2)10COOH (lauric acid) | ≈ | ≈ | ≈ | ≈ | ≈ | ≈ | [19] | |||||||||
MUFA | CH3(CH2)7CH=CH(CH2)7COOH (oleic acid) | ↓ | ↓ | ↑ | ↑ | ≈ | ≈ | ≈ | ≈ | ≈ | ≈ | [20] | |||||
TFA | CH3(CH2)7CH=CH(CH2)7COOH (elaidic acid) | ≈ | ≈ | ≈ | ≈ | ≈ | ≈ | ↑ | ≈ | ↓ | ↓ | ≈ | ↑ | [22] | |||
n-3 PUFA | CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH (eicosapentaenoic acid) | ↓ | ↓ | ↓ | ↓ | ↓ | ↑ | ↓ | ↑ | ↑ | ↓ | ↓ | ≈ | [6,8] | |||
n-6 PUFA | CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)2COOH (docosahexaenoic acid) | ↓ | ≈ | ↑ | [15] |
5. Dietary Fatty Acids and APOE Genotype Interaction
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millen, B.E.; Wolongevicz, D.M.; de Jesus, J.M.; Nonas, C.A.; Lichtenstein, A.H. 2013 American Heart Association/American College of Cardiology Guideline on lifestyle management to reduce cardiovascular risk: Practice opportunities for registered dietitian nutritionists. J. Acad. Nutr. Diet. 2014, 114, 1723–1729. [Google Scholar] [CrossRef]
- Harris, W.S. Are n-3 fatty acids still cardioprotective? Curr. Opin. Clin. Nutr. Metab Care 2013, 16, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.A. Dietary n-3 PUFA and CVD: A review of the evidence. Proc. Nutr. Soc. 2014, 73, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, J.M.; Gayet, C.; Ota, T.; Hernandez-Ono, A.; Conlon, D.M.; Jiang, H.; Fisher, E.A.; Ginsberg, H.N. Different fatty acids inhibit apoB100 secretion by different pathways: Unique roles for ER stress, ceramide, and autophagy. J. Lipid Res. 2011, 52, 1636–1651. [Google Scholar] [CrossRef] [PubMed]
- Ooi, E.M.; Lichtenstein, A.H.; Millar, J.S.; Diffenderfer, M.R.; Lamon-Fava, S.; Rasmussen, H.; Welty, F.K.; Barrett, P.H.; Schaefer, E.J. Effects of Therapeutic Lifestyle Change diets high and low in dietary fish-derived FAs on lipoprotein metabolism in middle-aged and elderly subjects. J. Lipid Res. 2012, 53, 1958–1967. [Google Scholar] [CrossRef] [PubMed]
- Levy, E.; Spahis, S.; Ziv, E.; Marette, A.; Elchebly, M.; Lambert, M.; Delvin, E. Overproduction of intestinal lipoprotein containing apolipoprotein B-48 in Psammomys obesus: Impact of dietary n-3 fatty acids. Diabetologia 2006, 49, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.T.; Chan, D.C.; Barrett, P.H.; Adams, L.A.; Watts, G.F. Effect of omega-3 fatty acid ethyl esters on apolipoprotein B-48 kinetics in obese subjects on a weight-loss diet: A new tracer kinetic study in the postprandial state. J. Clin. Endocrinol. Metab. 2014, 99, E1427–E1435. [Google Scholar] [CrossRef] [PubMed]
- Cottin, S.C.; Sanders, T.A.; Hall, W.L. The differential effects of EPA and DHA on cardiovascular risk factors. Proc. Nutr. Soc. 2011, 70, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H. (n-3) Fatty acids and cardiovascular health: Are effects of EPA and DHA shared or complementary? J. Nutr. 2012, 142, 614S–625S. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.; Gerstein, H.C.; Dagenais, G.R.; Diaz, R.; Dyal, L.; Jung, H.; Maggiono, A.P.; Probstfield, J.; Ramachandran, A.; Riddle, M.C.; et al. n-3 Fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 2012, 367, 309–318. [Google Scholar] [PubMed]
- Kromhout, D.; Giltay, E.J.; Geleijnse, J.M. n-3 Fatty acids and cardiovascular events after myocardial infarction. N. Engl. J. Med. 2010, 363, 2015–2026. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Marchioli, R.; Macchia, A.; Silletta, M.G.; Ferrazzi, P.; Gardner, T.J.; Latini, R.; Libby, P.; Lombardi, F.; O’Gara, P.T.; et al. Fish oil and postoperative atrial fibrillation: The Omega-3 Fatty Acids for Prevention of Post-operative Atrial Fibrillation (OPERA) randomized trial. JAMA 2012, 308, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Macchia, A.; Grancelli, H.; Varini, S.; Nul, D.; Laffaye, N.; Mariani, J.; Ferrante, D.; Badra, R.; Figal, J.; Ramos, S.; et al. Omega-3 Fatty Acids for the Prevention of Recurrent Symptomatic Atrial Fibrillation: Results of the FORWARD (Randomized Trial to Assess Efficacy of PUFA for the Maintenance of Sinus Rhythm in Persistent Atrial Fibrillation) Trial. J. Am. Coll. Cardiol. 2013, 61, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Van Schalkwijk, D.B.; Pasman, W.J.; Hendriks, H.F.; Verheij, E.R.; Rubingh, C.M.; van Bochove, K.; Vaes, W.H.; Adiels, M.; Freidig, A.P.; de Graaf, A.A. Dietary medium chain fatty acid supplementation leads to reduced VLDL lipolysis and uptake rates in comparison to linoleic acid supplementation. PLoS ONE 2014, 9, e100376. [Google Scholar] [CrossRef]
- Shepherd, J.; Packard, C.J.; Grundy, S.M.; Yeshurun, D.; Gotto, A.M., Jr.; Taunton, O.D. Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J. Lipid Res. 1980, 21, 91–99. [Google Scholar] [PubMed]
- Turner, J.D.; Le, N.A.; Brown, W.V. Effect of changing dietary fat saturation on low-density lipoprotein metabolism in man. Am. J. Physiol. 1981, 241, E57–E63. [Google Scholar] [PubMed]
- Sanders, T.A.; Filippou, A.; Berry, S.E.; Baumgartner, S.; Mensink, R.P. Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. Am. J. Clin. Nutr. 2011, 94, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, A.J.; Lamarche, B.; Labonte, M.E.; Lepine, M.C.; Lemelin, V.; Couture, P. Dietary medium-chain triglyceride supplementation has no effect on apolipoprotein B-48 and apolipoprotein B-100 kinetics in insulin-resistant men. Am. J. Clin. Nutr. 2014, 99, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Khoo, C.; Furtado, J.; Ikewaki, K.; Sacks, F.M. Dietary monounsaturated fat activates metabolic pathways for triglyceride-rich lipoproteins that involve apolipoproteins E and C-III. Am. J. Clin. Nutr. 2008, 88, 272–281. [Google Scholar] [PubMed]
- Kien, C.L.; Bunn, J.Y.; Stevens, R.; Bain, J.; Ikayeva, O.; Crain, K.; Koves, T.R.; Muoio, D.M. Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans. Am. J. Clin. Nutr. 2014, 99, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Matthan, N.R.; Welty, F.K.; Barrett, P.H.; Harausz, C.; Dolnikowski, G.G.; Parks, J.S.; Eckel, R.H.; Schaefer, E.J.; Lichtenstein, A.H. Dietary hydrogenated fat increases high-density lipoprotein apoA-I catabolism and decreases low-density lipoprotein apoB-100 catabolism in hypercholesterolemic women. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Gayet-Boyer, C.; Tenenhaus-Aziza, F.; Prunet, C.; Marmonier, C.; Malpuech-Brugere, C.; Lamarche, B.; Chardigny, J.M. Is there a linear relationship between the dose of ruminant trans-fatty acids and cardiovascular risk markers in healthy subjects: Results from a systematic review and meta-regression of randomised clinical trials. Br. J. Nutr. 2014, 112, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.K.; Chardigny, J.M.; Jakobsen, M.U.; Lamarche, B.; Lock, A.L.; Proctor, S.D.; Baer, D.J. Effects of ruminant trans fatty acids on cardiovascular disease and cancer: A comprehensive review of epidemiological, clinical, and mechanistic studies. Adv. Nutr. 2011, 2, 332–354. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Steffen, L.M.; Steffen, B.T.; Guan, W.; Weir, N.L.; Rich, S.S.; Manichaikul, A.; Vargas, J.D.; Tsai, M.Y. APOE genotype modifies the association between plasma omega-3 fatty acids and plasma lipids in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2013, 228, 181–187. [Google Scholar] [CrossRef]
- Weisgraber, K.H. Apolipoprotein E distribution among human plasma lipoproteins: Role of the cysteine-arginine interchange at residue 112. J. Lipid Res. 1990, 31, 1503–1511. [Google Scholar] [PubMed]
- Bradberry, J.C.; Hilleman, D.E. Overview of omega-3 Fatty Acid therapies. P. T. 2013, 38, 681–691. [Google Scholar] [PubMed]
- Mahley, R.W.; Huang, Y.; Weisgraber, K.H. Putting cholesterol in its place: APOE and reverse cholesterol transport. J. Clin. Investig. 2006, 116, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Ooi, E.M.; Janus, E.D.; Grant, S.J.; Sinclair, L.M.; PH, R.B. Effect of apolipoprotein E genotype on apolipoprotein B-100 metabolism in normolipidemic and hyperlipidemic subjects. J. Lipid Res. 2010, 51, 2413–2421. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ooi, E.M.M.; Watts, G.F.; Ng, T.W.K.; Barrett, P.H.R. Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update. Nutrients 2015, 7, 4416-4425. https://doi.org/10.3390/nu7064416
Ooi EMM, Watts GF, Ng TWK, Barrett PHR. Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update. Nutrients. 2015; 7(6):4416-4425. https://doi.org/10.3390/nu7064416
Chicago/Turabian StyleOoi, Esther M.M., Gerald F. Watts, Theodore W.K. Ng, and P. Hugh R. Barrett. 2015. "Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update" Nutrients 7, no. 6: 4416-4425. https://doi.org/10.3390/nu7064416
APA StyleOoi, E. M. M., Watts, G. F., Ng, T. W. K., & Barrett, P. H. R. (2015). Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update. Nutrients, 7(6), 4416-4425. https://doi.org/10.3390/nu7064416