Inverse Correlation between Vitamin D and C-Reactive Protein in Newborns
Abstract
:1. Introduction
2. Methods
2.1. Patients and Study Design
2.2. Cord Blood 25-Hydoxyvitamin D and C-Reactive Protein
2.3. Potential Confounders
2.4. Statistical Analysis
3. Results
Characteristics | All Subjects (n = 1491) | 25(OH)D Levels (nmol/L) | p-Values * | CRP Levels (mg/L) | p-Values * | ||||
---|---|---|---|---|---|---|---|---|---|
<25.0 (n = 389) | 25.0–49.9 (n = 731) | ≥50.0 (n = 371) | <6.0 (n = 577) | 6.0–9.99 (n = 716) | ≥10.0 (n = 198) | ||||
Sociodemographic characteristics | |||||||||
Maternal age, year, mean (SD) | 27.65 (3.66) | 27.4 (3.5) | 27.8 (3.7) | 27.6 (3.7) | 0.441 | 27.9 (3.7) | 27.6 (3.7) | 27.1 (3.3) | 0.005 |
Maternal education <9 years, n (%) | 319 (21) | 85 (22) | 146 (20) | 79 (21) | 0.840 | 115 (20) | 147 (21) | 48 (24) | 0.265 |
Maternal income <2000 RMB yuan/month, n (%) | 225 (15) | 65 (17) | 105 (14) | 55 (15) | 0.461 | 82 (14) | 109 (15) | 34 (17) | 0.324 |
Perinatal health status | |||||||||
Prepregnancy BMI, kg/m2, mean (SD) | 20.16 (2.41) | 20.3 (2.6) | 20.1 (2.4) | 20.2 (2.3) | 0.739 | 20.1 (2.2) | 20.2 (2.6) | 20.0 (2.2) | 0.793 |
GWG, kg, mean (SD) | 16.76 (4.85) | 17.0 (4.9) | 17.0 (4.9) | 16.1 (4.6) | 0.007 | 16.7 (4.7) | 16.9 (4.9) | 16.7 (5.1) | 0.531 |
Multipara, n (%) | 199 (13) | 50 (13) | 104 (14) | 45 (12) | 0.782 | 84 (15) | 93 (13) | 22 (11) | 0.198 |
Pregnancy complications a, n (%) | 226 (15) | 72 (19) | 102 (14) | 52 (14) | 0.081 | 81 (14) | 114 (16) | 31 (16) | 0.426 |
Lifestyle b | |||||||||
Maternal alcohol consumption c, n (%) | 225 (15) | 59 (15) | 116 (16) | 50 (14) | 0.524 | 90 (16) | 110 (15) | 25 (13) | 0.403 |
Paternal alcohol consumption c, n (%) | 1199 (80) | 308 (79) | 576 (79) | 315 (85) | 0.050 | 462 (80) | 586 (82) | 151 (76) | 0.547 |
Paternal smoking d, n (%) | 336 (23) | 91 (23) | 166 (23) | 79 (21) | 0.490 | 123 (21) | 158 (22) | 55 (28) | 0.110 |
Vitamin D supplementation e, n (%) | 712 (48) | 171 (44) | 344 (47) | 197 (53) | 0.012 | 287 (50) | 345 (48) | 80 (40) | 0.046 |
Birth outcomes | |||||||||
Female infant, n (%) | 700 (47) | 198 (51) | 338 (46) | 164 (44) | 0.063 | 258 (45) | 342 (48) | 100 (51) | 0.125 |
Cesarean section, n (%) | 842 (57) | 204 (52) | 428 (59) | 210 (57) | 0.237 | 334 (58) | 405 (57) | 103 (52) | 0.189 |
Birth during summer or autumn f, n (%) | 792 (53) | 40 (10) | 429 (59) | 323 (87) | <0.001 | 348 (60) | 387 (54) | 57 (29) | <0.001 |
Gestational weeks, week, mean (SD) | 38.91 (1.46) | 38.8 (1.7) | 39.0 (1.4) | 38.9 (1.4) | 0.253 | 38.98 (1.34) | 38.93 (1.45) | 38.64 (1.88) | 0.014 |
Birth weight, g, mean (SD) | 3385 (450) | 3320 (503) | 3437 (417) | 3348 (440) | 0.353 | 3463 (409) | 3378 (444) | 3181 (516) | <0.001 |
SGA, n (%) | 133 (9) | 50 (13) | 46 (6) | 37 (10) | 0.147 | 25 (4) | 61 (9) | 47 (24) | <0.001 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, Y.H.; Fu, L.; Hao, J.H.; Yu, Z.; Zhu, P.; Wang, H.; Xu, Y.Y.; Zhang, C.; Tao, F.B.; Xu, D.X. Maternal vitamin D deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in Chinese population. J. Clin. Endocrinol. Metab. 2015, 100, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Cizmeci, M.N.; Kanburoglu, M.K.; Akelma, A.Z.; Ayyildiz, A.; Kutukoglu, I.; Malli, D.D.; Tatli, M.M. Cord-blood 25-hydroxyvitamin D levels and risk of early-onset neonatal sepsis: A case-control study from a tertiary care center in Turkey. Eur. J. Pediatr. 2015, 174, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, A.J.; Holt, B.J.; Serralha, M.; Holt, P.G.; Kusel, M.M.; Hart, P.H. Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 2012, 129, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Amarilyo, G.; Oren, A.; Mimouni, F.; Ochshorn, Y.; Deutsch, V.; Mandel, D. Increased cord serum inflammatory markers in small-for-gestational-age neonates. J. Perinatol. 2010, 31, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.R.; Steinbach, G.; Kron, M.; Pohlandt, F. Reduction of unnecessary antibiotic therapy in newborn infants using interleukin-8 and C-reactive protein as markers of bacterial infections. Pediatrics 1999, 104, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Stolp, H.B.; Turnquist, C.; Dziegielewska, K.M.; Saunders, N.R.; Anthony, D.C.; Molnár, Z. Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse. Brain 2011, 134, 3236–3248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Leung, D.Y.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 2012, 188, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Almerighi, C.; Sinistro, A.; Cavazza, A.; Ciaprini, C.; Rocchi, G.; Bergamini, A. 1α, 25-dihydroxyvitamin D3 inhibits CD40L-induced pro-inflammatory and immunomodulatory activity in human monocytes. Cytokine 2009, 45, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Standage, S.W.; Wong, H.R. Biomarkers for pediatric sepsis and septic shock. Expert Rev. Anti-Infect. Ther. 2011, 9, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Hofer, N.; Zacharias, E.; Müller, W.; Resch, B. An update on the use of C-reactive protein in early-onset neonatal sepsis: Current insights and new tasks. Neonatology 2012, 102, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Trochez-Martinez, R.; Smith, P.; Lamont, R. Use of C-reactive protein as a predictor of chorioamnionitis in preterm prelabour rupture of membranes: A systematic review. BJOG 2007, 114, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Romem, Y.; Artal, R. C-reactive protein as a predictor for chorioamnionitis in cases of premature rupture of the membranes. Am. J. Obstet. Gynecol. 1984, 150, 546–550. [Google Scholar] [CrossRef]
- Wersching, H.; Duning, T.; Lohmann, H.; Mohammadi, S.; Stehling, C.; Fobker, M.; Conty, M.; Minnerup, J.; Ringelstein, E.B.; Berger, K.; et al. Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function. Neurology 2010, 74, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Rose, L.; Buring, J.E.; Cook, N.R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 2002, 347, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001, 286, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.; Qayyum, R. Relation between serum 25-hydroxyvitamin D and C-reactive protein in asymptomatic adults (from the continuous national health and nutrition examination survey 2001 to 2006). Am. J. Cardiol. 2012, 109, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Jorde, R.; Sneve, M.; Torjesen, P.A.; Figenschau, Y.; Gøransson, L.G.; Omdal, R. No effect of supplementation with cholecalciferol on cytokines and markers of inflammation in overweight and obese subjects. Cytokine 2010, 50, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Schleithoff, S.S.; Zittermann, A.; Tenderich, G.; Berthold, H.K.; Stehle, P.; Koerfer, R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: A double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2006, 83, 754–759. [Google Scholar] [PubMed]
- Bjorkman, M.; Sorva, A.; Tilvis, R. C-reactive protein and fibrinogen of bedridden older patients in a six-month vitamin D supplementation trial. J. Nutr. Health Aging 2009, 13, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Haddad, J.G.; Boisseau, V.; Avioli, L.V. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J. Lab. Clin. Med. 1971, 77, 908–915. [Google Scholar] [PubMed]
- Jaye, D.L.; Waites, K.B. Clinical applications of C-reactive protein in pediatrics. Pediatr. Infect. Dis. J. 1997, 16, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, C.; Signore, F.; Assumma, M.; Buffone, E.; Tramontozzi, P.; Osborn, J.F.; Pacifico, L. Serial measurements of C-reactive protein and interleukin-6 in the immediate postnatal period: Reference intervals and analysis of maternal and perinatal confounders. Clin. Chem. 2001, 47, 1016–1022. [Google Scholar] [PubMed]
- Holmes, V.A.; Barnes, M.S.; Alexander, H.D.; McFaul, P.; Wallace, J.M. Vitamin D deficiency and insufficiency in pregnant women: A longitudinal study. Br. J. Nutr. 2009, 102, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, W.; Wei, Z.; Ouyang, F.; Huang, L.; Wang, X.; Zhao, Y.; Zhang, H.; Zhang, J. Vitamin D status and related factors in newborns in Shanghai, China. Nutrients 2014, 6, 5600–5610. [Google Scholar] [CrossRef] [PubMed]
- Society, C.P. Vitamin D supplementation: Recommendations for Canadian mothers and infants. Paediatr. Child Health 2007, 12, 583–598. [Google Scholar] [PubMed]
- Zhang, B.L. Revised values of birth weight by gender and gestational age in 15 cities of China. Acta Pediatirc J. 1992, 7, 306. [Google Scholar]
- Ngo, D.T.; Sverdlov, A.L.; McNeil, J.J.; Horowitz, J.D. Does vitamin D modulate asymmetric dimethylarginine and C-reactive protein concentrations? Am. J. Med. 2010, 123, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Bellia, A.; Garcovich, C.; D’Adamo, M.; Lombardo, M.; Tesauro, M.; Donadel, G.; Gentileschi, P.; Lauro, D.; Federici, M.; Lauro, R.; et al. Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Intern. Emerg. Med. 2013, 8, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.B.; vin Tangpricha, M.; Eric Yow, M.; Reut Gurion, D.; Grace, A. Vitamin D deficiency is common and associated with increased C-reactive protein in children with lupus: An atherosclerosis prevention in pediatric lupus erythematosus (APPLE) substudy. Lupus Sci. Med. 2013, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Wan, Z.; Han, S.F.; Li, B.Y.; Zhang, Z.L.; Qin, L.Q. Effect of vitamin D supplementation on the level of circulating high-sensitivity C-reactive protein: A meta-analysis of randomized controlled trials. Nutrients 2014, 6, 2206–2216. [Google Scholar] [CrossRef] [PubMed]
- Asemi, Z.; Samimi, M.; Tabassi, Z.; Shakeri, H.; Esmaillzadeh, A. Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women. J. Nutr. 2013, 143, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, H.B.; Yaktine, A.L.; Taylor, C.L.; Ross, A.C. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Grant, C.C.; Stewart, A.W.; Scragg, R.; Milne, T.; Rowden, J.; Ekeroma, A.; Wall, C.; Mitchell, E.A.; Crengle, S.; Trenholme, A.; et al. Vitamin D during pregnancy and infancy and infant serum 25-hydroxyvitamin D concentration. Pediatrics 2014, 133, e143–e153. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.H.; van Marter, L.J.; McElrath, T.F.; Tabatabai, P.; Litonjua, A.A.; Weiss, S.T.; Christou, H. Vitamin D status among preterm and full-term infants at birth. Pediatr. Res. 2013, 75, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, P.; Khaw, K.; Plummer, M.; Meade, T.; Foley, A. Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: Winter infections and death from cardiovascular disease. Lancet 1994, 343, 435–439. [Google Scholar] [CrossRef]
- Sung, K.C. Seasonal variation of C-reactive protein in apparently healthy Koreans. Int. J. Cardiol. 2006, 107, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Horan, J.T.; Francis, C.W.; Falsey, A.R.; Kolassa, J.; Smith, B.H.; Hall, W.J. Prothrombotic changes in hemostatic parameters and C-reactive protein in the elderly with winter acute respiratory tract infections. Thromb. Haemost. 2001, 85, 245–249. [Google Scholar] [PubMed]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Mellenthin, L.; Wallaschofski, H.; Grotevendt, A.; Völzke, H.; Nauck, M.; Hannemann, A. Association between serum vitamin D concentrations and inflammatory markers in the general adult population. Metabolism 2014, 63, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- ACOG. Vitamin D: Screening and supplementation during pregnancy. ACOG Committee Opinion No. 495. Obstet. Gynecol. 2011, 118, 197–198. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, R.-X.; Zhou, Q.-F.; Xu, Z.-W.; Hao, J.-H.; Huang, K.; Mou, Z.; Jiang, X.-M.; Tao, F.-B.; Zhu, P. Inverse Correlation between Vitamin D and C-Reactive Protein in Newborns. Nutrients 2015, 7, 9218-9228. https://doi.org/10.3390/nu7115468
Tao R-X, Zhou Q-F, Xu Z-W, Hao J-H, Huang K, Mou Z, Jiang X-M, Tao F-B, Zhu P. Inverse Correlation between Vitamin D and C-Reactive Protein in Newborns. Nutrients. 2015; 7(11):9218-9228. https://doi.org/10.3390/nu7115468
Chicago/Turabian StyleTao, Rui-Xue, Qi-Fan Zhou, Zhi-Wei Xu, Jia-Hu Hao, Kun Huang, Zhe Mou, Xiao-Min Jiang, Fang-Biao Tao, and Peng Zhu. 2015. "Inverse Correlation between Vitamin D and C-Reactive Protein in Newborns" Nutrients 7, no. 11: 9218-9228. https://doi.org/10.3390/nu7115468
APA StyleTao, R.-X., Zhou, Q.-F., Xu, Z.-W., Hao, J.-H., Huang, K., Mou, Z., Jiang, X.-M., Tao, F.-B., & Zhu, P. (2015). Inverse Correlation between Vitamin D and C-Reactive Protein in Newborns. Nutrients, 7(11), 9218-9228. https://doi.org/10.3390/nu7115468