Evaluation of Riboflavin Intakes and Status of 20–64-Year-Old Adults in South Korea
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Calculation of Intakes of Selected Nutrients and Riboflavin
2.3. Measurement of Urinary Riboflavin Excretion
2.4. Statistical Analysis
3. Results
3.1. Subject Characteristics and Selected Nutrient Intakes
Variable | Men (n = 145) | Women (n = 267) | Total (n = 412) |
---|---|---|---|
Age (year) ** | 36.6 ± 12.7 | 40.1 ± 12.4 | 38.8 ± 12.6 |
Weight (kg) *** | 72.3 ± 9.8 | 56.8 ± 8.1 | 62.3 ± 11.4 |
Height (cm) *** | 173.3 ± 6.0 | 159.9 ± 4.6 | 164.6 ± 8.2 |
BMI (kg/m2) *** | 24.0 ± 2.7 | 22.2 ± 3.0 | 22.9 ± 3.0 |
Macronutrients | |||
Energy (kcal/day) *** | 2119.5 ± 389.3 | 1729.7 ± 289.1 | 1866.9 ± 376.7 |
Carbohydrate (g/day) *** | 275.3 ± 50.8 | 251.5 ± 54.0 | 259.9 ± 54.1 |
Protein (g/day) *** | 89.7 ± 23.8 | 69.9 ± 15.7 | 76.9 ± 21.2 |
Total fat (g/day) *** | 60.6 ± 18.6 | 48.7 ± 15.2 | 52.9 ± 17.5 |
Vitamins | |||
Vitamin A (μg RE 1)/day) | 803.9 ± 302.1 | 813.7 ± 329.2 | 810.3 ± 319.6 |
Vitamin E (mg α-TE 2)/day) *** | 19.4 ± 12.4 | 16.0 ± 5.1 | 17.2 ± 8.6 |
Thiamin (mg/day) *** | 1.4 ± 0.4 | 1.2 ± 0.3 | 1.2 ± 0.3 |
Niacin (mg NE 3)/day) *** | 19.8 ± 5.5 | 15.9 ± 4.0 | 17.3 ± 4.9 |
Vitamin B6 (mg/day) *** | 1.9 ± 0.6 | 1.8 ± 0.6 | 1.8 ± 0.5 |
Vitamin C (mg/day) *** | 96.5 ± 45.8 | 119.9 ± 63.0 | 111.6 ± 58.5 |
3.2. Riboflavin Intakes
3.3. Urinary Riboflavin Excretion and Riboflavin Status
3.4. Percentile Values of Riboflavin Intake
3.5. Associations among Riboflavin Intakes and Urinary Riboflavin Excretion
4. Discussion
Variable | Gender | Riboflavin Supplementation | Total (n = 412) | ||
---|---|---|---|---|---|
Men (n = 145) | Women (n = 267) | Nonusers of Riboflavin Supplements (n = 332) | Users of Riboflavin Supplements (n = 80) | ||
Dietary riboflavin intake (mg/day) | 1.35 ± 0.34 | 1.31 ± 0.33 | 1.25 ± 0.35 | 1.27 ± 0.32 | 1.33 ± 0.34 |
Dietary riboflavin/energy (mg/1000 kcal) | 0.65 ± 0.14 *** | 0.74 ± 0.16 | 0.68 ± 0.16 | 0.67 ± 0.15 | 0.69 ± 0.16 |
Total riboflavin intake (diet + supplements) (mg/day) | 2.62 ± 5.51 | 3.08 ± 6.94 | 1.25 ± 0.35 *** | 5.72 ± 9.31 | 2.87 ± 6.29 |
Using supplements with riboflavin (% (n)) | 21.4 (31) | 18.4 (49) | 0 (0) | 100 (80) | 19.4 (80) |
Not meeting the Estimated Average Requirement with dietary riboflavin (% (n)) | 42.8 (62) | 29.2 (78) | 33.7 (112) | 35.0 (28) | 33.9 (140) |
Not meeting the Estimated Average Requirement with total riboflavin (% (n)) | 33.8 (49) | 24.7 (66) | 33.7 (112) | 2.5 (2) | 27.6 (114) |
Variable | Gender | Riboflavin Supplementation | Total (n = 149) | ||
---|---|---|---|---|---|
Men (n = 70) | Women (n = 79) | Nonusers of RiboflavinSupplements (n = 115) | Users of RiboflavinSupplements (n = 34) | ||
Urinary riboflavin (μg/g creatinine) | 193.8 ± 183.3 | 215.1 ± 196.4 | 175.8 ± 164.2 *** | 304.3 ± 236.2 | 205.1 ± 190.1 |
27 μg/g creatinine ≤ Urinary riboflavin < 80 μg/g creatinine (%(n)) | 21.4 (15) | 20.3 (16) | 24.3 (28) | 8.8 (3) | 20.8 (31) |
Urinary riboflavin < 27 μg/g creatinine (%(n)) | 12.9 (9) | 10.1 (8) | 11.3 (13) | 11.8 (4) | 11.4 (17) |
Subject | n | Dietary Riboflavin (mg/day) | Total Riboflavin 1 (mg/day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5th | 25th | 50th | 75th | 95th | 5th | 25th | 50th | 75th | 95th | ||
Total subjects (n = 412) | |||||||||||
Men | 145 | 0.76 | 1.11 | 1.37 | 1.58 | 1.96 | 0.77 | 1.16 | 1.46 | 1.83 | 3.76 |
Women | 267 | 0.71 | 0.95 | 1.18 | 1.39 | 1.78 | 0.72 | 1.00 | 1.24 | 1.63 | 2.94 |
Selected subjects (n=149) 2 | |||||||||||
Total men | 70 | 0.73 | 1.08 | 1.38 | 1.60 | 1.96 | 0.76 | 1.29 | 1.47 | 1.77 | 6.33 |
Men with urinary riboflavin ≥ 27 μg/g creatinine | 61 | 0.73 | 1.08 | 1.37 | 1.54 | 1.93 | 0.76 | 1.19 | 1.44 | 1.66 | 6.33 |
Total women | 79 | 0.71 | 1.09 | 1.30 | 1.51 | 1.97 | 0.81 | 1.11 | 1.39 | 1.78 | 21.31 |
Women with urinary riboflavin ≥ 27 μg/g creatinine | 71 | 0.81 | 1.11 | 1.33 | 1.53 | 1.97 | 0.93 | 1.17 | 1.43 | 1.78 | 5.20 |
Riboflavin Intake | Urinary Riboflavin |
---|---|
Dietary riboflavin | 0.082 (0.318) 1 |
Dietary riboflavin per energy | 0.129 (0.116) |
Total riboflavin (diet + supplements) | 0.171 (0.036) * |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ministry of Health and Welfare; Korea Centers for Disease Control and Prevention. Korea Health Statistics 2008: Korea National Health and Nutrition Examination Survey (KNHANES IV-2); Korea Centers for Disease Control and Prevention: Osong, Korea, 2009. [Google Scholar]
- Ministry of Health and Welfare; Korea Centers for Disease Control and Prevention. Korea Health Statistics 2007–2009: Korea National Health and Nutrition Examination Survey (KNHANES IV-3); Korea Centers for Disease Control and Prevention: Osong, Korea, 2010. [Google Scholar]
- Ministry of Health and Welfare; Korea Centers for Disease Control and Prevention. Korea Health Statistics 2010–2012: Korea National Health and Nutrition Examination Survey (KNHANES V-3); Korea Centers for Disease Control and Prevention: Osong, Korea, 2013. [Google Scholar]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press, Inc.: New York, NY, USA, 2005; pp. 554–562. [Google Scholar]
- Akimoto, M.; Sato, Y.; Okubo, T.; Todo, H.; Hasegawa, T.; Sugibayashi, K. Conversion of FAD to FMN and riboflavin in plasma: Effects of measuring method. Pharm. Soc. Jpn. 2006, 29, 1779–1782. [Google Scholar]
- Hustad, S.; Ueland, P.M.; Schneede, J. Quantification of riboflavin, flavin mononucleotide, flavin adenine dinucleotide in human plasma by capillary electrophoresis and laser-induced fluorescence detection. Clin. Chem. 1999, 45, 862–868. [Google Scholar] [PubMed]
- Shaw, N.S. Prevalence of thiamin and riboflavin deficiency among the elderly in Taiwan. Asia Pac. J. Clin. Nutr. 2005, 14, 238–243. [Google Scholar] [PubMed]
- Anderson, J.J.; Suchindran, C.M.; Roggenkamp, K.J. Micronutrient intakes in two US populations of older adults: Lipid research clinics program prevalence study findings. J. Nutr. Health Aging 2009, 13, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Preziosi, P.; Galan, P.; Deheeger, M.; Yacoup, N.; Drewnowski, A.; Hercberg, S. Breakfast type, daily nutrient intakes and vitamin and mineral status of French children, adolescents, and adults. J. Am. Coll. Nutr. 1999, 18, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Matrix, J.; Aranda, P.; Sanchez, C.; Montellano, M.A.; Planells, E.; Liopis, J. Assessment of thiamin (vitamin B1) and riboflavin (vitamin B2) status in an adult Mediterranean population. Br. J. Nutr. 2003, 90, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Szczuko, M.; Seidler, T.; Mierzwa, M.; Stachowska, E.; Chlubek, D. Effect of riboflavin supply on student body’s provision in north-western Poland with riboflavin measured by activity of glutathione reductase considering daily intake of other nutrients. Int. J. Food Sci. Nutr. 2011, 62, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.S.; Shu, X.O.; Xiang, Y.; Yang, G.; Ji, B.T.; Li, H.; Gao, Y.T.; Zheng, W.; Shrubsole, M.J. One-carbon metabolism dietary factors and distal gastric cancer risk in Chinese woman. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1–20. [Google Scholar]
- Powers, H.J.; Hill, M.H.; Welfare, M.; Spiers, A.; Bal, W.; Russell, J.; Dukworth, T.; Gibney, E.; Williams, E.A.; Mathers, J.C. Responses of biomarkers of folate and riboflavin status to folate and riboflavin supplementation in healthy and colorectal polyp patients (The FAB2 study). Cancer Epidemiol. Biomark. Prev. 2007, 16, 2128–2134. [Google Scholar] [CrossRef]
- Vogel, S.; Dindore, V.; Engeland, M.; Goldbohm, R.A.; Brandt, P.A.; Weijenberg, M.P. Dietary folate, methionine, riboflavin, and vitamin B6 and risk of sporadic colorectal cancer. J. Nutr. 2008, 138, 2372–2378. [Google Scholar] [CrossRef] [PubMed]
- Bassett, J.K.; Hodgem, A.M.; English, D.R.; Baglietto, L.; Hopper, J.L.; Giles, G.G.; Severi, G. Dietary intake of B vitamins and methionine and risk of lung cancer. Eur. J. Clin. Nutr. 2012, 66, 182–187. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ye, L.; Shan, B.; Song, G.; Meng, F.; Wang, S. Effect of riboflavin-fortified salt nutrition intervention on esophageal squamous cell carcinoma in a high incidence area, China. Asian Pac. J. Cancer Prev. 2009, 10, 619–622. [Google Scholar] [PubMed]
- Azizi-Namini, P.; Ahmed, M.; Yan, A.T.; Keith, M. The role of B vitamins in the Management of heart Failure. Nutr. Clin. Prat. 2012, 27, 363–374. [Google Scholar] [CrossRef]
- Powers, H.J. Riboflavin and health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [PubMed]
- Yoon, J.S.; Lim, W.J.; Kim, S.Y. A human metabolic study for determination of daily requirement of riboflavin. Korean J. Nutr. 1989, 22, 507–515. [Google Scholar]
- Lim, W.J.; Yoon, J.S. A longitudinal study on seasonal variation of riboflavin status of rural women: Dietary intake, erythrocyte glutathione reductase activity coefficient, and urinary riboflavin excretion. Korean J. Nutr. 1997, 29, 507–516. [Google Scholar]
- The Korean Nutrition Society. Computer Aided Nutritional Analysis Program for Professionals; The Korean Nutrition Society: Seoul, Korea, 2011. [Google Scholar]
- The Korean Nutrition Society. Dietary Reference Intakes for Koreans; The Korean Nutrition Society: Seoul, Korea, 2010. [Google Scholar]
- Gatautis, V.J.; Naito, H.K. Liquid-chromatographic determination of urinary riboflavin. Clin. Chem. 1981, 27, 1672–1675. [Google Scholar] [PubMed]
- Huang, J.; Vieira, A. DNA methylation, riboswitches, and transcription factor activity: Fucdamental mechanisms of gene-nutrient interactions involving vitamins. Mol. Biol. Rep. 2006, 381, 1029–1036. [Google Scholar]
- Bian, S.; Gao, Y.; Zhang, M.; Wang, X.; Liu, W.; Zhang, D.; Huang, G. Dietary nutrient intake and metabolic syndrome risk in Chinese adults: A case-control study. Nutr. J. 2013, 12, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Beverley, B.; Alison, L.; Ann, P.; Chris, B.; Polly, P.; Sonja, N.; Gillian, S. National Diet and Nutrition Survey: Results from Years 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009–2011/2012); Public Health England and the Food Standards Agency: London, UK, 2014; pp. 88–111. [Google Scholar]
- Shi, Z.; Zhen, S.; Wittert, G.A.; Yuan, B.; Zuo, H.; Taylor, A.W. Inadequate riboflavin intake and anemia risk in a Chinese population: Five-year follow up of the Jiangsu Nutrition Survey. PLoS One 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- What We Eat in America, NHANES 2009–2010, Individuals 2 Years and over (Excluding Pregnant and/or Lactating Females and Breast-Fed Children), Day 1 Food and Supplement Intake Data, Weighted. Available online: http://www.ars.usda.gov/ba/bhnrc/fsrg (accessed on 29 September 2014).
- Horwitt, M.K. Interpretations of requirements for thiamin, riboflavin, niacin-tryptophan, and vitamin E plus comments on balance studies and vitamin B6. Am. J. Clin. Nutr. 1986, 44, 973–985. [Google Scholar] [PubMed]
- Zempleni, J.; Galloway, J.R.; McCormick, D.B. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am. J. Clin. Nutr. 1996, 63, 54–66. [Google Scholar] [PubMed]
- Tsuji, T.; Fukuwatari, T.; Shihata, K. Twenty-four-hour urinary water-soluble vitamin levels correlate with their intakes in free-living Japanese schoolchildren. Public Health Nutr. 2010, 14, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Tasevska, N.; Runswick, S.A.; McTaggart, A.; Bingham, S.A. Twenty-four hour urinary thiamine as a biomarker for the assessment of thiamin intake. Eur. J. Clin. Nutr. 2007, 62, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Fukuwatari, T.; Shibata, K. Urinary water-soluble vitamins and their metabolite contents as nutritional marker for evaluating vitamin intakes in young Japanese women. J. Nutr. Sci. Vitaminol. 2008, 54, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.H.E.; Bradley, A.; Mushtaq, S.; Williams, E.A.; Powers, H.J. Effects of methodological variation on assessment of riboflavin status using the erythrocyte glutathione reductase activation coefficient assay. Br. J. Nutr. 2009, 102, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, K.; McCann, A.; Karakochuk, C.; Talukder, A.; Ward, M.; McNulty, H.; McLean, J.; Green, T. High rates of riboflavin deficiency in women of childbearing age in Cambodia and Canada. FASEB J. 2014, 28 (Suppl. 1). [Google Scholar] [CrossRef] [PubMed]
- Fukuwatari, T. Urinary water-soluble vitamins as potential nutritional biomarkers to assess their intakes. J. Nutr. Food Sci. 2011, 6, 1–9. [Google Scholar]
- Kim, Y.N.; Cho, Y.O. Evaluation of vitamin B6 intake and status of 20- to 64-year-old Koreans. Nutr. Res. Pract. 2014, 8, 688–694. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.Y.; Kim, Y.-N.; Cho, Y.-O. Evaluation of Riboflavin Intakes and Status of 20–64-Year-Old Adults in South Korea. Nutrients 2015, 7, 253-264. https://doi.org/10.3390/nu7010253
Choi JY, Kim Y-N, Cho Y-O. Evaluation of Riboflavin Intakes and Status of 20–64-Year-Old Adults in South Korea. Nutrients. 2015; 7(1):253-264. https://doi.org/10.3390/nu7010253
Chicago/Turabian StyleChoi, Ji Young, Young-Nam Kim, and Youn-OK Cho. 2015. "Evaluation of Riboflavin Intakes and Status of 20–64-Year-Old Adults in South Korea" Nutrients 7, no. 1: 253-264. https://doi.org/10.3390/nu7010253
APA StyleChoi, J. Y., Kim, Y. -N., & Cho, Y. -O. (2015). Evaluation of Riboflavin Intakes and Status of 20–64-Year-Old Adults in South Korea. Nutrients, 7(1), 253-264. https://doi.org/10.3390/nu7010253