1. Introduction
Author, year | Patient Group | Outcome |
---|---|---|
Till 2005 | ||
Hallert,1981 [24] | CD (Folate) | Decreased serum folate concentration abnormality in adult CD. Predictive value of low folate for advice jejunal biopsy. |
Stene-Larsen, 1988 [25] | CD (n = 3) | Vitamin B12 malabsorption by CD is emphasized as a pathogenic mechanism of megaloblastic anaemia. |
Crofton, 1990 [20] | Untreated CD (n = 8) and healthy controls (n = 5) (Zinc) | Impaired turnover and loss of endogenous zinc in mild untreated CD. Zinc levels normal. |
Kemppainen, 1995 [26] | Untreated CD (n = 40), CD in remission (n = 52)(Nutritional status) | Nutritional status quite good in both groups. 15%–38% deficiencies (HB, ferritin, iron or B12) in untreated CD compared to 0%–20% in remission CD. |
Kemppainen, 1998 [27] | Untreated CD (n = 40) (Nutritional status) | Anthropometric and biochemical nutritional status acceptable. Low ferritin and folate (enterocyte) levels, but normalised after 1 year GFD. |
Alwitry, 2000 [23] | Celiac disease (Vitamin A) | Case report in vitamin A deficiency and eye deviation |
Dahele, 2001 [18] | Untreated CD (n = 39) (Vitamin B12) | 41% B12 deficient (<220 ng/L), 41% anaemic, and 31% folate deficient f the B12 deficient CD-patients. |
Dickey, 2002 [28] | CD (n = 159) (Vitamin B12) | Low serum B12 is common in CD (12%) and is not due to autoimmune gastritis. 10% of B12 deficient group had atrophic gastritis. Advice to know B12 level before folate supplementation. |
Hozyasz, 2003 [29] | Untreated CD Polish (n = 18), remission on GFD (n = 12) (Vitamin E) | All untreated CD-patients had reduced vitamin E levels. Vitamin A comparable to treated CD. |
2005–2013 | ||
Harper, 2007 [30] | Untreated (3 mo after diagnosis) CD (n = 405) (Anaemia) | Iron deficiency in 31% of male and 19% of females, folate in 12%, B12 5% and anaemia in 20% of CD-patients. Anaemia can not only be explained by nutritional deficiencies. |
Dickey, 2008 [17] | Untreated CD (n = 35), persistent villous atrophy (n = 34, recovered (n = 41) (B-vitamins) | No compromised B2 and B6 in 3 groups.Homocysteine concentrations are inversely associated with serum and red cell folate and with B12. |
Henri-Bhargava, 2008 [19] | CD (Vitamin E, copper) | Neurological impairment due to vitamin E and copper deficiencies in CD. |
Bergamaschi, 2008 [21] | Untreated CD (n = 150), after 1 year GFD (n = 53) (Anaemia) | 34% anaemia at diagnosis. Iron, vitamin deficiencies and anaemia of chronic disease are common in CD. GFD treatment improves anaemia. |
Lerner, 2012 [31] | CD (Spanish) (n = 22) and CD children (n = 120) (Spanish, Israeli), (Vitamin D) | Vitamin D levels correlate negatively with age. 55% of Adult CD-patients had vitamin D deficiency (25-hydroxy < 20 ng/mL) and should be supplemented. |
2. Materials and Methods
2.1. Patients
2.2. Nutritional Status
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics and Nutritional Status
CD Patients | Healthy Controls * | ||||
---|---|---|---|---|---|
N | 80 | 24 | |||
Sex | All | Female (52) | Male (28) | F14/M11 | |
Age (year) | mean ± SD (range) | 42.8 ± 15.1 (18–75) | 39.5 ± 14.3 ^ | 49.1 ± 14.9 | 43.0 ± 12.9 |
Height (m) | mean ± SD | 1.73 ± 0.1 | 1.68 ± 0.09 ^ | 1.80 ± 0.08 | 1.76 ± 0.07 *a |
Weight (kg) | mean ± SD | 70.6 ± 15.3 | 66.0 ± 14.3 ^ | 79.1 ± 13.8 | 75.5 ± 11.6 |
BMI (kg/m2) | mean ± SD | 23.6 ± 4.0 | 23.2 ± 4.2 | 24.3 ± 3.6 | 24.1 ± 2.6 |
Marsh classification N (%) | <18.5 | 6 (7.5%) | 6 (22.5%) | 0 | 0 |
18.5–25 | 51 (63.8%) | 31 (59.6%) | 20 (71.4%) | 18 (72%) | |
>25 | 23 (28.8%) | 15 (28.8%) | 8 (28.6%) | 27 (28%) | |
I/II # | 9 (11.3%) | 6 (11.5%) | 3 (10.7%) | ||
IIIA | 37 (46%) | 23 (44.2%) | 14 (50.0%) | ||
IIIB | 20 (25%) | 10 (19.2%) | 10 (35.7%) | ||
IIIC | 14 (17.5%) | 13 (25%) | 1 (3.6%) | ||
Antibodies N (%) | Negative | 17 (21.3%) | 11 (21.1%) | 6 (22.0%) | |
EMA | doubtful | 1 (1.3%) | 1 (1.9%) | 0 | |
weak positive | 5 (6.3%) | 5 (9.6%) | 0 | ||
positive | 14 (17.5%) | 10 (19.2%) | 4 (14.3%) | ||
strong positive | 38 (47.5%) | 23 (44.2%) | 15 (53.6%) | ||
n.d. | 5 (6.3%) | 2 (3.8%) | 1 (3.6%) | ||
tTG | Negative | 16 (20%) | 9 (17.3%) | 7 (25%) | |
doubtful | 4 (5%) | 3 (5.8%) | 1 (3.6%) | ||
weak positive | 10 (12.5%) | 9 (17.3%) | 1 (3.6%) | ||
positive | 18 (22.5%) | 12 (23.1%) | 6 (21.4%) | ||
strong positive | 31 (38.8%) | 19 (36.5% | 12 (42.9%) | ||
n.d. | 1 (1.3%) | 0 | 1 (3.6%) | ||
tTG (U/mL) | mean ± SD (range) | 171 ± 402 (3.2–2500) | 124 ± 378 (4–2500) | 274 ± 445 (3.2–1999) | |
CD genotypes | DQ2(hetero-/homozygote) | 62 (77.5%)(56/6) | 42 (80.8%)(37/5) | 20 (71.4%)(19/1) | |
DQ8(hetero-/homozygote) | 5 (6.3%)(3/2) | 3 (5.8%)(2/1) | 2 (7.1%)(1/1) | ||
DQ2 and DQ8 | 3 (3.8%) | 2 (3.8%) | 1 (3.6%) | ||
DQ2 nor DQ8 | 3 (3.8%) | 1 (1.9%) | 2 (7.1%) | ||
n.d. | 7 (8.8%) | 4 (7.7%) | 3 (14.3%) |
Serum Vitamin/Mineral [Reference Value] | Serum Concentration ^ | Percentage deficient patients # | ||||||
---|---|---|---|---|---|---|---|---|
All | Male | Female | Healthy Controls | All | Male | Female | Healthy Controls | |
Vitamin A [1.2–3.0 nmol/L] | 2.0 ± 0.7 0.1–4.0 (53) | 2.2 ± 0.9 (17) | 1.9 ± 0.6 (36) | 2.5 ± 0.6 (1.4–4.0) %a (25) | 7.5% (4/53) | 11.8% (2/17) | 5.6% (2/36) | 0% (0/24) |
Vitamin B6 [13–80 nmol/L] | 92.2 ± 142.7 6.0–593.0 (62) | 56.1 ± 87.1 (20) | 109.4 ± 160.8 (42) | 70.1 ± 74.5 (21–384) (25) | 14.5% (9/62) | 25.0% (5/20) | 9.5% (4/42) | 0% (0/24) $a |
Folic acid [>5.6 nmol/L] | 15.1 ± 15.0 2.1–90.1 (80) | 10.4 ± 6.6 (28) | 17.6 ± 17.6 *a (52) | 20.4 ± 18.1 (4.4–91) %b (25) | 20.0% (16/80) | 28.5% (8/28) | 15.4% (8/52) | 4.2% (1/14) $b |
Vitamin B12 [150–700 pmol/L) | 231.2 ± 104.3 64.0–590.0 (80) | 222.6 ± 75.6 (28) | 235.7 ± 117.4 (52) | 272.6 ± 112.5 (100–453) (25) | 19.0% (15/80) | 22.2% (6/27) | 17.3% (9/52) | 16.6% (4/24) |
Zinc [11–19 nmol/L] | 10.3 ± 2.1 6.3–14.8 (40) | 10.4 ± 2.2 (16) | 10.2 ± 2.0 (24) | 66.7% (26/40) | 62.5% (10/16) | 70.8% (17/24) | ||
Vitamin (25-hydroxy) D [30–150 nmol/L] | 64.8 ± 26.8 29–120 (21) | 64.5 ± 35.3 (8) | 65.0 ± 21.6 (13) | 4.8% (1/21) | 12.5% (1/8) | 0 (0/13) | ||
Haemoglobin [M 8.5–11/F 7.5–10 mmol/L] | 8.0 ± 1.1 5.0–10.2 (71) | 8.9 ± 0.8 (25) | 7.5 ± 0.9 *b (46) | 32.4% (23/71) | 24.0% (6/25) | 37.0% (17/46) | ||
Ferritin [20–250 µG/L] | 48.1 ± 83.9 3.0–451.0 (39) | 110.9 ± 147.2 (10) | 26.4 ± 26.2 (29) | 46.2% (18/39) | 30.0% (3/10) | 51.7% (15/29) |
3.2. Biochemical Analyses
3.3. Association between Vitamin and Mineral Concentrations and Histological Damage (Marsh-Classification)
Serum Vitamin/Mineral | Marsh Stratum | |||
---|---|---|---|---|
I/II # (n = 9) | IIIA (n = 37) | IIIB (n = 20) | IIIC (n = 14) | |
Vitamin A (nmol/L) | 2.3 ± 0.4 (4/9) | 2.0 ± 0.8 (28/37) | 1.9 ± 0.44 (11/20) | 1.9 ± 0.8 (10/14) |
Vitamin B6 (nmol/L) | 129.8 ± 115.0 (7/9) | 107.6 ± 170.7 (29/37) | 55.7 ± 43.5 (15/20) | 86.8 ± 163.9 (11/14) |
Folic acid (nmol/L) | 14.1 ± 8.5 (9/9) | 14.7 ± 12.9 (37/37) | 13.9 ± 15.5 (20/20) | 18.4 ± 22.4 (14/14) |
Vitamin B12 (pmol/L) | 282.4 ± 151.7 (9/9) | 225.2 ± 91.1 (37/37) | 216.5 ± 80.2 (20/20) | 234.7 ± 131.8 (14/14) |
Vitamin (25-hydroxy) D (nmol/L) | 89.3 ± 27.0 (3/9) | 52.7 ± 16.4 (7/37) | 63.0 ± 31.4 (6/20) | 69.2 ± 29.2 (5/14) |
Zinc (nmol/L) | 11.0 ± 1.7 (5/9) | 10.8 ± 2.3 (19/37) | 9.8 ± 1.7 (11/20) | 8.8 ± 1.7 (5/14) |
Haemoglobin (mmol/L) * | 8.5 ± 0.5 (7/9) | 8.0 ± 1.2 (33/37) | 8.0 ± 1.1 (18/20) | 7.9 ± 1.0 (13/14) |
Ferritin (µG/L) ^ | 123.8 ± 167.3 (6/9) | 47.6 ± 66.3 (18/37) | 18.8 ± 17.6 (10/20) | 17.2 ± 22.0 (5/14) |
3.4. Association between Vitamin and Mineral Concentrations and Nutritional Status
Serum Vitamin/Mineral | BMI Stratum (kg/m2) ^ | Weight Loss (% in past 6 months) | ||||
---|---|---|---|---|---|---|
Under-Weight (<18.5) (n = 6) | Normal Weight (18.5–25.0) (n = 51) | Over-Weight (>25) (n = 23) | Well-Nourished (0%–10%) (n = 64) | Mal-Nourished (>10%) (n = 13) | ||
Vitamin A (nmol/L) | 1.7 ± 0.7 (5) | 2.0 ± 0.7 (35) | 2.0 ± 0.6 (13) | 1.8 ± 0.6 (40) | 2.6 ± 0.7 # (11) | |
Vitamin B6 (nmol/L) | 128.5 ± 207.8 (6) | 99.3 ± 146.2 (39) | 63.1 ± 109.0 (17) | 68.1 ± 102.0 (48) | 206 ± 240.8 (11) | |
Folic acid (nmol/L) | 33.0 ± 29.9 (6) | 14.5 ± 13.4 (51) | 11.8 ± 10.0 (23) | 13.4 ± 11.2 (64) | 23.5 ± 27.1 (13) | |
Vitamin B12 (pmol/L) | 216.3 ± 57.3 (6) | 226.2 ± 114.5 (51) | 246.0 ± 90.4 (23) | 227.6 ± 104.0 (64) | 250.8 ± 117.7 (13) | |
Vitamin (25-hydroxy) D (nmol/L) | 52.0(1) | 63.4 ± 28.0 (11) | 68.0 ± 27.9 (9) | 67.1 ± 27.1 (17) | 55.0 ± 26.5 (4) | |
Zinc (nmol/L) | 8.8 ± 0.3 (2) | 10.3 ± 2.1 (26) | 10.6 ± 2.2 (12) | 10.5 ± 2.1 (31) | 9.8 ± 2.1 (7) | |
Haemoglobin (mmol/L) | 7.6 ± 0.7 (6) | 8.0 ± 1.1 (45) | 8.2 ± 1.2 (20) | 8.1 ± 1.1 (56) | 7.8 ± 1.4 (12) | |
Ferritin (µG/L) | 25.0 ± 2.1 (3) | 34.9 ± 38.4 (26) | 89.0 ± 151.9 (10) | 48.5 ± 90.4 (33) | 46.2 ± 38.3 (5) |
4. Discussion
5. Conclusions
Acknowledgements
Authorship Statement
Financially Support
Conflicts of interest
References
- Gujral, N.; Freeman, H.J.; Thomson, A.B. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment. World J. Gastroenterol. 2012, 18, 6036–6059. [Google Scholar] [CrossRef]
- Green, P.; Cellier, C. Celiac disease. N. Engl. J. Med. 2007, 357, 1731–1743. [Google Scholar] [CrossRef]
- Bai, J.; Fried, M.; Corazza, G.; Schuppan, D.; Farthing, M.; Catassi, C.; Greco, L.; Cohen, H.; Ciacci, C.; Eliakim, R.; et al. World Gastroenterology Organisation global guidelines on celiac disease. J. Clin. Gastroenterol. 2013, 47, 121–126. [Google Scholar] [CrossRef]
- Tack, G.; Verbeek, W.H.; Schreurs, M.; Mulder, C.J.J. The spectrum of celiac disease: Epidemiology, clinical aspects and treatment. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 204–213. [Google Scholar] [CrossRef]
- Pare, P.; Douville, P.; Caron, D.; Lagace, R. Adult celiac sprue: Changes in the pattern of clinical recognition. J. Clin Gastroenterol. 1988, 10, 395–400. [Google Scholar] [CrossRef]
- Corazza, G.; Frisoni, M.; Treggiari, E.; Valentini, R.; Filipponi, C.; Volta, U.; Gasbarrini, G. Subclinical celiac sprue. Increasing occurence and clues to its diagnosis. J. Clin. Gastroenterol. 1993, 16, 16–21. [Google Scholar] [CrossRef]
- Gupta, R.; Reddy, D.; Makhari, G.; Sood, A.; Ramakrischna, B.; Yaccha, S.; Thapa, B.; Banerjee, R.; Anuradha, S.; Dutta, U.; et al. Indian task force for celiac disease: Current status. World J. Gastroenterol. 2009, 15, 6028–6033. [Google Scholar] [CrossRef]
- Cheng, J.; Brar, P.S.; Lee, A.R.; Green, P.H. Body mass index in celiac disease: Beneficial effect of a gluten-free diet. J. Clin. Gastroenterol. 2010, 44, 267–271. [Google Scholar] [CrossRef]
- Ukkola, A.; Maki, M.; Kurppa, K.; Collin, P.; Huhtala, H.; Kekkonen, L.; Kaukinen, K. Changes in body mass index on a gluten free diet in coeliac disease: A nationwide study. Eur. J. Int. Med. 2012, 23, 384–388. [Google Scholar] [CrossRef]
- Sinniah, R.; Roche, H.M. Letter: Rising incidence of obesity in the coeliac population—A malady or maladaptation? Alliment. Pharmacol. Ther. 2012, 35, 1483–1484. [Google Scholar] [CrossRef]
- Tucker, E.; Rostami, K.; Prabhakaran, S.; Al Dulaimi, D. Patients with coeliac disease are increasingly overweight or obese on presentation. J. Gastrointest. Liver Dis. 2012, 21, 11–15. [Google Scholar]
- Tikkakoski, S.; Savilahti, E.; Kolho, K. Undiagnosed coeliac disease and nutritional deficiencies in adults screened in primary health care. Scand. J. Gastroenterol. 2007, 42, 60–65. [Google Scholar] [CrossRef]
- Kabbani, T.; Goldberg, A.; Kelly, C.; Pallav, K.; Tariq, S.; Peer, A.; Hansen, J.; Dennis, M.D.; Leffler, D. Body mass index and the risk of obesity in coeliac disease treated with gluten-free diet. Alliment. Pharmacol. Ther. 2012, 35, 723–729. [Google Scholar] [CrossRef]
- Evans, K.E.; Leeds, J.S.; Sanders, D.S. Be vigilant for patients with coeliac disease. Practitioner 2009, 253, 19–22. [Google Scholar]
- Rostami, N.M.; Rostami, K.; Pourhoseingholi, M.A.; Nazemalhosseini, M.E.; Habibi, M.; Dabiri, H.; Zali, M.R. Atypical presentation is dominant and typical for coeliac disease. J. Gastrointest. Liver Dis. 2009, 18, 285–291. [Google Scholar]
- McGough, N.; Cummings, J.H. Coeliac disease: A diverse clinical syndrome caused by intolerance of wheat, barley and rye. Proc. Nutr. Soc. 2005, 64, 434–450. [Google Scholar] [CrossRef]
- Dickey, W.; Ward, M.; Whittle, C.R.; Kelly, M.T.; Pentieva, K.; Horigan, G.; Patton, S.; McNulty, H. Homocysteine and related B-vitamin status in coeliac disease: Effects of gluten exclusion and histological recovery. Scand. J. Gastroenterol. 2008, 43, 682–688. [Google Scholar] [CrossRef]
- Dahele, A.; Ghosh, S. Vitamin B12 deficiency in untreated celiac disease. Am. J. Gastroenterol. 2001, 96, 745–750. [Google Scholar] [CrossRef]
- Henri-Bhargava, A.; Melmed, C.; Glikstein, R.; Schipper, H.M. Neurologic impairment due to vitamin E and copper deficiencies in celiac disease. Neurology 2008, 71, 860–861. [Google Scholar] [CrossRef]
- Crofton, R.W.; Aggett, P.J.; Gvozdanovic, S.; Gvozdanovic, D.; Mowat, N.A.; Brunt, P.W. Zinc metabolism in celiac disease. Am. J. Clin. Nutr. 1990, 52, 379–382. [Google Scholar]
- Bergamaschi, G.; Markopoulos, K.; Albertini, R.; Di Sabatino, A.; Biagi, F.; Ciccocioppo, R.; Arbustini, E.; Corazza, G.R. Anemia of chronic disease and defective erythropoietin production in patients with celiac disease. Haematologica 2008, 93, 1785–1791. [Google Scholar] [CrossRef]
- Peters, J.H.; Wierdsma, N.J.; Teerlink, T.; van Leeuwen, P.A.; Mulder, C.J.; van Bodegraven, A.A. The citrulline generation test: Proposal for a new enterocyte function test. Aliment. Pharmacol. Ther. 2008, 27, 1300–1310. [Google Scholar] [CrossRef]
- Alwitry, A. Vitamin A deficiency in coeliac disease. Br. J. Ophthalmol. 2000, 84, 1079–1080. [Google Scholar] [CrossRef]
- Hallert, C.; Tobiasson, P.; Walan, A. Serum folate determinations in tracing adult coeliacs. Scand. J. Gastroenterol. 1981, 16, 263–267. [Google Scholar] [CrossRef]
- Stene-Larsen, G.; Mosvold, J.; Ly, B. Selective vitamin B12 malabsorption in adult coeliac disease. Report on three cases with associated autoimmune diseases. Scand. J. Gastroenterol. 1988, 23, 1105–1108. [Google Scholar] [CrossRef]
- Kemppainen, T.; Uusitupa, M.; Janatuinen, E.; Jarvinen, R.; Julkunen, R.; Pikkarainen, P. Intakes of nutrients and nutritional status in coeliac patients. Scand. J. Gastroenterol. 1995, 30, 575–579. [Google Scholar] [CrossRef]
- Kemppainen, T.A.; Kosma, V.M.; Janatuinen, E.K.; Julkunen, R.J.; Pikkarainen, P.H.; Uusitupa, M.I. Nutritional status of newly diagnosed celiac disease patients before and after the institution of a celiac disease diet—Association with the grade of mucosal villous atrophy. Am. J. Clin. Nutr. 1998, 67, 482–487. [Google Scholar]
- Dickey, W. Low serum vitamin B12 is common in coeliac disease and is not due to autoimmune gastritis. Eur. J. Gastroenterol. Hepatol. 2002, 14, 425–427. [Google Scholar] [CrossRef]
- Hozyasz, K.K.; Chelchowska, M.; Laskowska-Klita, T. Vitamin E levels in patients with celiac disease. Med. Wieku Rozwoj 2003, 7, 593–604. [Google Scholar]
- Harper, J.W.; Holleran, S.F.; Ramakrishnan, R.; Bhagat, G.; Green, P.H. Anemia in celiac disease is multifactorial in etiology. Am. J. Hematol. 2007, 82, 996–1000. [Google Scholar] [CrossRef]
- Lerner, A.; Shapira, Y.; Agmon-Levin, N.; Pacht, A.; Ben-Ami Shor, D.; Lopez, H.; Sanchez-Castanon, M.; Shoenfeld, Y. The clinical significance of 25OH-vitamin D status in celiac disease. Clin. Rev. Allergy Immunol. 2013, 42, 322–330. [Google Scholar]
- Van Overbeek, F.M.; Uil-Dieterman, I.G.A.; Mol, I.W.; Kohler-Brands, L.; Heymans, H.S.A.; Mulder, C.J.J. The daily gluten intake in relatives of patients with coeliac disease compared with that of the general Dutch population. Eur. J. Gastroenterol. Hepatol. 1997, 9, 1097–1099. [Google Scholar] [CrossRef]
- Marsh, M.N. Gluten, major histocompatibility complex and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (“celiac sprue”). Gastroenterology 1992, 102, 330–354. [Google Scholar]
- Rostami, K. From microenteropathy to villous atrophy: What is treatable? Dig. Liver Dis. 2003, 35, 758–759. [Google Scholar] [CrossRef]
- Rostami, K.; Kerckhaert, J.; Tiemessen, R.; von Blomberg, B.M.; Meijer, J.W.; Mulder, C.J. Sensitivity of antiendomysium and antigliadin antibodies in untreated celiac disease: Disappointing in clinical practice. Am. J. Gastroenterol. 1999, 94, 888–894. [Google Scholar] [CrossRef]
- Hopper, A.D.; Hadjivassiliou, M.; Hurlstone, D.P.; Lobo, A.J.; McAlindon, M.E.; Egner, W.; Wild, G.; Sanders, D.S. What is the role of serologic testing in celiac disease? A prospective, biopsy-confirmed study with economic analysis. Clin. Gastroenterol. Hepatol. 2008, 6, 314–320. [Google Scholar] [CrossRef]
- Wahab, P.J.; Meijer, J.W.; Mulder, C.J. Histologic follow-up of people with celiac disease on a gluten-free diet: Slow and incomplete recovery. Am. J. Clin. Pathol. 2002, 118, 459–463. [Google Scholar] [CrossRef]
- Al-Toma, A.; Goerres, M.S.; Meijer, J.W.; Pena, A.S.; Crusius, J.B.; Mulder, C.J. Human leukocyte antigen-DQ2 homozygosity and the development of refractory celiac disease and enteropathy-associated T-cell lymphoma. Clin. Gastroenterol. Hepatol. 2006, 4, 315–319. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; Peters, J.H.C.; van Bokhorst-de van der Schueren, M.A.E.; Mulder, C.J.J.; Metgod, I.; van Bodegraven, A.A. Bomb calorimetry, the gold standard for assessment of intestinal absorption capacity: Normative values in healthy ambulant adults. J. Hum. Nutr. Diet. 2013. [Google Scholar] [CrossRef]
- Suitor, C.W.; Bailey, L.B. Food folate vs. synthetic folic acid: A comparison. J. Am. Diet. Assoc. 1999, 99, 285. [Google Scholar] [CrossRef]
- Reinken, L.; Zieglauer, H. Vitamin B-6 absorption in children with acute celiac disease and in control subjects. J. Nutr. 1978, 108, 1562–1565. [Google Scholar]
- Reinken, L.; Zieglauer, H.; Berger, H. Vitamin B6 nutriture of children with acute celiac disease, celiac disease in remission, and of children with normal duodenal mucosa. Am. J. Clin. Nutr. 1976, 29, 750–753. [Google Scholar]
- Hadithi, M.; Al-Toma, A.; Oudejans, J.J.; van Bodegraven, A.A.; Mulder, C.J.J.; Jacobs, M. The value of double-balloon enteroscopy in patients with refractory celiac disease. Am. J. Gastroenterol. 2007, 102, 987–996. [Google Scholar] [CrossRef]
- Fedosov, S.N.; Fedosova, N.U.; Krautler, B.; Nexo, E.; Petersen, T.E. Mechanisms of discrimination between cobalamins and their natural analogues during their binding to the specific B12-transporting proteins. Biochemistry 2007, 46, 6446–6458. [Google Scholar] [CrossRef]
- Deressa, E.; Wammer, A.C.; Falch, J.A.; Jahnsen, J. Bone metabolism in patients with newly diagnosed caeliac disease. Tidsskr. Laegeforen. 2006, 126, 1201–1204. [Google Scholar]
- Tanumihardjo, S.A. Assessing vitamin A status: Past, present and future. J. Nutr. 2004, 134, 290S–293S. [Google Scholar]
- Loche, F.; Bazex, J. Celiac disease associated with cuteanous sarcodosic granuloma. Rev. Med. Interne 1997, 18, 975–978. [Google Scholar] [CrossRef]
- Tasanen, K.; Raudasoja, R.; Kallioinen, M.; Ranki, A. Erythema elevatum diutinum in association with coeliac disease. Br. J. Dermatol. 1997, 136, 624–627. [Google Scholar] [CrossRef]
- Collin, P.; Reunala, T. Recognition and management of the cutaneous manifestations of celiac disease: A guide for dematologists. Am. J. Clin. Dermatol. 2003, 4, 13–20. [Google Scholar] [CrossRef]
- Addolorato, G.; Parente, A.; de Lorenzi, G.; Dʼangelo di Paola, M.E.; Abenavoli, L.; Leggio, G.; Capristo, E.; de Simone, C.; Rotoli, M.; Rapaccini, G.; et al. Rapid regression of psoriasis in a coeliac patient after gluten-free diet. A case report and review of the literature. Digestion 2003, 68, 9–12. [Google Scholar] [CrossRef]
- Prasad, A. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Nordstrom, F.; Lindholm, L.; Sandström, O.; Nordyke, K.; Ivarsson, A. Delay to celiac disease diagnosis and its implications for health-related quality of life. BMC Gastroenterol. 2011, 11, 118. [Google Scholar] [CrossRef]
- Blaser, M.J.; Falkow, S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 2009, 7, 887–894. [Google Scholar] [CrossRef]
- Zanini, B.; Caselani, F.; Magni, A.; Turini, D.; Ferraresi, A.; Lanzarotto, F.; Villanacci, V.; Carabellese, N.; Ricci, C.; Lanzini, A. Celiac disease with mild enteropathy is not mild disease. Clin. Gastroenterol. Hepatol. 2013, 11, 253–258. [Google Scholar] [CrossRef]
- Hallert, C.; Grant, C.; Grehn, S.; Granno, C.; Hulten, S.; Midhagen, G.; Strom, M.; Svensson, H.; Valdimarsson, T. Evidence of poor vitamin status in coeliac patients on a gluten-free diet for 10 years. Aliment. Pharmacol. Ther. 2002, 16, 1333–1339. [Google Scholar] [CrossRef]
- Snodgrass, S. Vitamin neurotoxicity. Mol. Neurobiol. 1992, 6, 41–73. [Google Scholar] [CrossRef]
- Gdynia, H.; Müller, T.; Sperfeld, A.; Kühnlein, P.; Otto, M.; Kassubek, J.; Ludolph, A.C. Severe sensorimotor neuropathy after intake of highest dosages of vitamin B6. Neuromuscul. Disord. 2008, 18, 156–158. [Google Scholar] [CrossRef]
- Sategna-Guidetti, C.; Grosso, S.B.; Grosso, S.; Mengozzi, G.; Aimo, G.; Zaccaria, T.; Di Stefano, M.; Isaia, G.C. The effects of 1-year gluten withdrawal on bone mass, bone metabolism and nutritional status in newly-diagnosed adult coeliac disease patients. Aliment. Pharmacol. Ther. 2000, 14, 35–43. [Google Scholar]
- Hallert, C.; Svensson, M.; Tholstrup, J.; Hultberg, B. Clinical trial: B vitamins improve helath in patients with coeliac disease living on a gluten-free diet. Alliment. Pharmacol. Ther. 2009, 29, 811–816. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).