Exclusive Breastfeeding Is Not Ensuring an Adequate Vitamin B Status in Premature Infants with Very Low Birth Weight
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Nutrition
2.2.1. Diet
2.2.2. Multivitamin Supplementation
2.3. Blood Sampling and Analyses
2.4. Statistical Analysis
3. Results
3.1. Demographics and Nutrition
3.1.1. Mothers
3.1.2. Infants
During the Hospital Stay
After Discharge to Home
3.2. Infant B Vitamin Status
3.2.1. Vitamin Deficiency
3.2.2. Determinants of B Vitamin Status
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benton, D. Vitamins and neural and cognitive developmental outcomes in children. Proc. Nutr. Soc. 2012, 71, 14–26. [Google Scholar] [CrossRef]
- Allen, L.H. Multiple micronutrients in pregnancy and lactation: An overview. Am. J. Clin. Nutr. 2005, 81, 1206S–1212S. [Google Scholar] [CrossRef]
- Butte, N.F.; Wong, W.W.; Garza, C. Energy cost of growth during infancy. Proc. Nutr. Soc. 1989, 48, 303–312. [Google Scholar] [CrossRef]
- Parker, M.G.; Stellwagen, L.M.; Noble, L.; Kim, J.H.; Poindexter, B.B.; Puopolo, K.M. Promoting Human Milk and Breastfeeding for the Very Low Birth Weight Infant. Pediatrics 2021, 148, e2021054272. [Google Scholar] [CrossRef] [PubMed]
- Kuschel, C.A.; Harding, J.E. Multicomponent fortified human milk for promoting growth in preterm infants. Cochrane Database Syst. Rev. 2000, CD000343. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Moro, G.E.; Ziegler, E.E.; The Wapm Working Group On Nutrition. Optimization of human milk fortification for preterm infants: New concepts and recommendations. J. Perinat. Med. 2010, 38, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, S.; Boquien, C.Y.; King, C.; Lamireau, D.; Tonetto, P.; Barnett, D.; Bertino, E.; Gaya, A.; Gebauer, C.; Grovslien, A.; et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front. Pediatr. 2019, 7, 76. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef] [PubMed]
- Gregory, K.E.; Walker, W.A. Immunologic Factors in Human Milk and Disease Prevention in the Preterm Infant. Curr. Pediatr. Rep. 2013, 1, 222–228. [Google Scholar] [CrossRef]
- Crippa, B.L.; Morniroli, D.; Baldassarre, M.E.; Consales, A.; Vizzari, G.; Colombo, L.; Mosca, F.; Gianni, M.L. Preterm’s Nutrition from Hospital to Solid Foods: Are We Still Navigating by Sight? Nutrients 2020, 12, 3646. [Google Scholar] [CrossRef]
- Vorosmarti, A.; Yaktine, A.L.; Rasmussen, K. (Eds.) Scanning for New Evidence on the Nutrient Content of Human Milk: A Process Model for Determining Age-Specific Nutrient Requirements; National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
- Greer, F.R. Are breast-fed infants vitamin K deficient? Adv. Exp. Med. Biol. 2001, 501, 391–395. [Google Scholar]
- Markestad, T. Plasma concentrations of vitamin D metabolites in unsupplemented breast-fed infants. Eur. J. Pediatr. 1983, 141, 77–80. [Google Scholar] [CrossRef]
- Allen, L.H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 2012, 3, 362–369. [Google Scholar] [CrossRef]
- Allen, L.H.; Shahab-Ferdows, S.; Moore, S.E.; Peerson, J.M.; Kac, G.; Figueiredo, A.C.; Dror, D.K.; Michaelsen, K.F.; Islam, M.M.; Nije, F.; et al. Reference Values for B Vitamins in Human Milk: The Mothers, Infants and Lactation Quality (MILQ) Study. Adv. Nutr. 2025, 16, 100500. [Google Scholar] [CrossRef]
- Dror, D.K.; Allen, L.H. Vitamin B-12 in Human Milk: A Systematic Review. Adv. Nutr. 2018, 9, 358S–366S. [Google Scholar] [CrossRef] [PubMed]
- Bjorke-Monsen, A.L.; Lysne, V. Vitamin B(12)—A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67. [Google Scholar] [CrossRef]
- Bjorke-Monsen, A.L. Defining Optimal Cobalamin Status for Neonates and Infants. Food Nutr. Bull. 2024, 45, S16–S22. [Google Scholar] [CrossRef]
- Bjørke-Monsen, A.L.; Torsvik, I.; Saetran, H.; Markestad, T.; Ueland, P.M. Common metabolic profile in infants indicating impaired cobalamin status responds to cobalamin supplementation. Pediatrics 2008, 122, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Monsen, A.L.; Refsum, H.; Markestad, T.; Ueland, P.M. Cobalamin status and its biochemical markers methylmalonic acid and homocysteine in different age groups from 4 days to 19 years. Clin. Chem. 2003, 49, 2067–2075. [Google Scholar] [CrossRef]
- de Benoist, B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 2008, 29, S238–S244. [Google Scholar] [CrossRef]
- Ueland, P.M.; Ulvik, A.; Rios-Avila, L.; Midttun, O.; Gregory, J.F. Direct and Functional Biomarkers of Vitamin B6 Status. Annu. Rev. Nutr. 2015, 35, 33–70. [Google Scholar] [CrossRef]
- Bjørke-Monsen, A.L.; Varsi, K.; Sakkestad, S.T.; Ulvik, A.; Ueland, P.M. Assessment of vitamin B6 status in never-pregnant, pregnant and postpartum women and their infants. Eur. J. Nutr. 2023, 62, 867–878. [Google Scholar] [CrossRef]
- Hustad, S.; McKinley, M.C.; McNulty, H.; Schneede, J.; Strain, J.J.; Scott, J.M.; Ueland, P.M. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation. Clin. Chem. 2002, 48, 1571–1577. [Google Scholar] [CrossRef]
- Tan, A.; Zubair, M.; Ho, C.-L.; McAnena, L.; McNulty, H.; Ward, M.; Lamers, Y. Plasma riboflavin concentration as novel indicator for vitamin-B2 status assessment: Suggested cutoffs and its association with vitamin-B6 status in women. Proc. Nutr. Soc. 2020, 79, E658. [Google Scholar] [CrossRef]
- Meiliana, M.; Alexander, T.; Bloomfield, F.H.; Cormack, B.E.; Harding, J.E.; Walsh, O.; Lin, L. Nutrition guidelines for preterm infants: A systematic review. J. Parenter. Enter. Nutr. 2024, 48, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.; Watson, C.; Crowley, E.; Gilroy, M.; Page, D.; Weber, K.; Messina, D.; Cormack, B. Vitamin and Mineral Supplementation Practices in Preterm Infants: A Survey of Australian and New Zealand Neonatal Intensive and Special Care Units. Nutrients 2019, 12, 51. [Google Scholar] [CrossRef]
- Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 2012, 23, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Skjaerven, R.; Gjessing, H.K.; Bakketeig, L.S. Birthweight by gestational age in Norway. Acta Obstet. Gynecol. Scand. 2000, 79, 440–449. [Google Scholar] [CrossRef]
- Arsky, G.H.; Lande, B. Mat for spedbarn. In Helsedirektoratet; Avdeling for Ernæring: Oslo, Norway, 2011. [Google Scholar]
- Kelleher, B.P.; Broin, S.D. Microbiological assay for vitamin B12 performed in 96-well microtitre plates. J. Clin. Pathol. 1991, 44, 592–595. [Google Scholar] [CrossRef]
- O’Broin, S.; Kelleher, B. Microbiological assay on microtitre plates of folate in serum and red cells. J. Clin. Pathol. 1992, 45, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Ueland, P.M.; McCann, A.; Midttun, O.; Ulvik, A. Inflammation, vitamin B6 and related pathways. Mol. Asp. Med. 2017, 53, 10–27. [Google Scholar] [CrossRef]
- Midttun, O.; Hustad, S.; Ueland, P.M. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2009, 23, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Windelberg, A.; Arseth, O.; Kvalheim, G.; Ueland, P.M. Automated assay for the determination of methylmalonic acid, total homocysteine, and related amino acids in human serum or plasma by means of methylchloroformate derivatization and gas chromatography-mass spectrometry. Clin. Chem. 2005, 51, 2103–2109. [Google Scholar] [CrossRef]
- Torsvik, I.K.; Ueland, P.M.; Markestad, T.; Midttun, O.; Bjorke Monsen, A.L. Motor development related to duration of exclusive breastfeeding, B vitamin status and B12 supplementation in infants with a birth weight between 2000-3000 g, results from a randomized intervention trial. BMC Pediatr. 2015, 15, 218. [Google Scholar] [CrossRef]
- Andon, M.B.; Reynolds, R.D.; Moser-Veillon, P.B.; Howard, M.P. Dietary intake of total and glycosylated vitamin B-6 and the vitamin B-6 nutritional status of unsupplemented lactating women and their infants. Am. J. Clin. Nutr. 1989, 50, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Kang-Yoon, S.A.; Kirksey, A.; Giacoia, G.P.; West, K.D. Vitamin B-6 adequacy in neonatal nutrition: Associations with preterm delivery, type of feeding, and vitamin B-6 supplementation. Am. J. Clin. Nutr. 1995, 62, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Hoey, L.; McNulty, H.; Strain, J.J. Studies of biomarker responses to intervention with riboflavin: A systematic review. Am. J. Clin. Nutr. 2009, 89, 1960S–1980S. [Google Scholar] [CrossRef]
- Jungert, A.; McNulty, H.; Hoey, L.; Ward, M.; Strain, J.J.; Hughes, C.F.; McAnena, L.; Neuhauser-Berthold, M.; Pentieva, K. Riboflavin Is an Important Determinant of Vitamin B-6 Status in Healthy Adults. J. Nutr. 2020, 150, 2699–2706. [Google Scholar] [CrossRef]
- Specker, B.L.; Brazerol, W.; Ho, M.L.; Norman, E.J. Urinary methylmalonic acid excretion in infants fed formula or human milk. Am. J. Clin. Nutr. 1990, 51, 209–211. [Google Scholar] [CrossRef]
- Minet, J.C.; Bisse, E.; Aebischer, C.P.; Beil, A.; Wieland, H.; Lutschg, J. Assessment of vitamin B-12, folate, and vitamin B-6 status and relation to sulfur amino acid metabolism in neonates. Am. J. Clin. Nutr. 2000, 72, 751–757. [Google Scholar] [CrossRef]
- Karademir, F.; Suleymanoglu, S.; Ersen, A.; Aydinoz, S.; Gultepe, M.; Meral, C.; Ozkaya, H.; Gocmen, I. Vitamin B12, folate, homocysteine and urinary methylmalonic acid levels in infants. J. Int. Med. Res. 2007, 35, 384–388. [Google Scholar] [CrossRef]
- Fokkema, M.R.; Woltil, H.A.; van Beusekom, C.M.; Schaafsma, A.; Dijck-Brouwer, D.A.; Muskiet, F.A. Plasma total homocysteine increases from day 20 to 40 in breastfed but not formula-fed low-birthweight infants. Acta Paediatr. 2002, 91, 507–511. [Google Scholar] [CrossRef]
- Torsvik, I.; Ueland, P.M.; Markestad, T.; Bjorke-Monsen, A.L. Cobalamin supplementation improves motor development and regurgitations in infants: Results from a randomized intervention study. Am. J. Clin. Nutr. 2013, 98, 1233–1240. [Google Scholar] [CrossRef]
- Hack, M. Young adult outcomes of very-low-birth-weight children. Semin. Fetal Neonatal Med. 2006, 11, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Casirati, A.; Somaschini, A.; Perrone, M.; Vandoni, G.; Sebastiani, F.; Montagna, E.; Somaschini, M.; Caccialanza, R. Preterm birth and metabolic implications on later life: A narrative review focused on body composition. Front. Nutr. 2022, 9, 978271. [Google Scholar] [CrossRef]
- Lossi, L.; Castagna, C.; Merighi, A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 3881. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients 2013, 5, 3481–3495. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Lin, Z.J.; Li, C.C.; Lin, X.; Shan, S.K.; Guo, B.; Zheng, M.H.; Li, F.; Yuan, L.Q.; Li, Z.H. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef]
- Liu, L.; Wylie, R.C.; Andrews, L.G.; Tollefsbol, T.O. Aging, cancer and nutrition: The DNA methylation connection. Mech. Ageing Dev. 2003, 124, 989–998. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef]
- Frison, L.; Pocock, S.J. Repeated measures in clinical trials: Analysis using mean summary statistics and its implications for design. Stat. Med. 1992, 11, 1685–1704. [Google Scholar] [CrossRef]
- Vickers, A.J. How many repeated measures in repeated measures designs? Statistical issues for comparative trials. BMC Med. Res. Methodol. 2003, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Vitolins, M.Z.; Case, T.L. What Makes Nutrition Research So Difficult to Conduct and Interpret? Diabetes Spectr. 2020, 33, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.P.; Arnold, C.D.; Williams, A.M.; Arnold, B.F.; Pickering, A.J.; Dentz, H.; Kiprotich, M.; Lin, A.; Null, C.; Colford, J.M., Jr.; et al. Social Desirability Bias in a Randomized Controlled Trial That Included Breastfeeding Promotion in Western Kenya. Curr. Dev. Nutr. 2025, 9, 103779. [Google Scholar] [CrossRef] [PubMed]



| Mothers (n = 60) | |
| Age, years, mean (SD), min–max | 31 (6) |
| BMI before pregnancy, mean (SD) | 24.9 (5.5) |
| Parity 0, n (%) | 39 (65%) |
| Interbirth interval, months, median (IQR) | 44 (29, 99) |
| Regular use during pregnancy, n (%) | |
| Micronutrient supplements | 45 (75%) |
| Iron supplements | 9 (15%) |
| Infants (n = 64) | |
| Gestational age, weeks, mean (SD), range | 28.9 (2.3), 23.6–35.5 |
| Birth weight, g, mean (SD), range | 1066 (270), 400–1490 |
| Birth length, cm, mean (SD), range | 36 (3), 28–41 |
| Head circumference, cm, mean (SD), range | 26.2 (2.1), 21–29 |
| Small for gestational age, n (%) | 30 (47%) |
| Twins, n (%) | 14 (22%) |
| Gender, boys n (%) | 35 (55%) |
| Parameters | Corrected Age | |||
|---|---|---|---|---|
| Term | 2 Months | 6 Months | 12 Months | |
| n = 35 | n = 47 | n = 48 | n = 58 | |
| Weight, g, mean (SD), | 2937 (400) | 4769 (758) | 7202 (1308) | 8933 (1385) |
| min, max | 2172, 3695 | 3295, 6320 | 4745, 11,200 | 5680, 12,370 |
| Length, cm, mean (SD), | 47 (3) | 55 (3) | 66 (3) | 74 (3) |
| min, max | 33, 51 | 42, 57 | 58, 72 | 63, 81 |
| Head circumference, cm, mean (SD), | 35.5 (1.6) | 39.2 (3.0) | 43.5 (1.6) | 46.1 (1.6) |
| min, max | 32.0, 40.8 | 31.5, 57.0 | 40.0, 48.5 | 43, 51 |
| Daily intake, number of infants (%) | ||||
| Human milk only | 16 (46%) | 17 (36%) | 15 (31%) | 5 (9%) |
| Human milk + formula | 14 (40%) | 13 (28%) | 11 (23%) | 2 (3%) |
| Formula only | 5 (14%) | 17 (36%) | 22 (46%) | 13 (22%) |
| Cow’s milk | 0 | 0 | 0 | 36 (62%) |
| Porridge | 0 | 8 (17%) | 46 (96%) | 58 (100%) |
| Dinner | 0 | 1 (2%) | 43 (90%) | 58 (100%) |
| Micronutrient supplements | 16 (46%) | 9 (19%) | 6 (13%) | 8 (14%) |
| Folic acid supplements | 35 (100%) | 38 (97%) | 0 | 0 |
| Iron supplements | 35 (100%) | 47 (100%) | 43 (90%) | 4 (7%) |
| Parameters Median (IQR) Min, Max | Corrected Age | |||
|---|---|---|---|---|
| Term | 2 Months | 6 Months | 12 Months | |
| n = 35 | n = 47 | n = 48 | n = 58 | |
| Serum folate, nmol/L | 118 (76, 137) | 125 (93, 146) | 41 (24, 58) | 22 (18, 37) |
| 19, 200 | 7, 186 | 6, 140 | 4, 71 | |
| Serum cobalamin, pmol/L | 392 (293, 531) | 415 (301, 573) | 448 (336, 638) | 563 (428, 679) |
| 212, 662 | 69, 944 | 49, 1189 | 99, 1456 | |
| Plasma pyridoxal 5′-phosphate, nmol/L | 177 (98, 300) | 225 (93, 326) | 176 (127, 225) | 99 (73, 148) |
| 37, 434 | 23, 689 | 23, 484 | 22, 300 | |
| Plasma riboflavin, nmol/L | 61 (27, 75) | 42 (23, 66) | 39 (30, 52) | 39 (32, 47) |
| 18, 248 | 9, 276 | 17, 163 | 16, 138 | |
| Plasma homocysteine, µmol/L | 5.9 (5.4, 6.7) | 7.8 (6.5, 8.7) | 5.9 (5.1, 7.6) | 4.5 (4.1, 5.2) |
| 4.0, 10.2 | 3.6, 11.1 | 3.8, 10.7 | 3.1, 9.5 | |
| Plasma methylmalonic acid, µmol/L | 0.54 (0.29, 1.53) | 0.49 (0.26, 1.42) | 0.32 (0.20, 0.61) | 0.20 (0.14, 0.23) |
| 0.16, 9.01 | 0.11, 8.49 | 0.11, 2.14 | 0.09, 0.55 | |
| Serum Folate, nmol/L | Serum Cobalamin, pmol/L | Plasma Pyridoxal 5′-Phosphate, nmol/L | Plasma Riboflavin, nmol/L | Plasma Total Homocysteine µmol/L | Plasma Methylmalonic Acid µmol/L | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| B1 | p Value | B1 | p Value | B1 | p Value | B1 | p Value | B1 | p Value | B1 | p Value | |
| At corrected age term | ||||||||||||
| Human milk versus formula +/− human milk 2 | −10 | 0.57 | 39 | 0.42 | 149 | <0.001 | 49 | 0.01 | 1.1 | 0.04 | −0.54 | 0.52 |
| Infant vitamin supplementation 3 | −8 | 0.66 | 42 | 0.40 | 84 | 0.02 | 50 | 0.02 | 0.5 | 0.33 | −0.05 | 0.83 |
| At corrected age 2 months | ||||||||||||
| Human milk versus formula +/− human milk 2 | −31 | 0.02 | 177 | 0.002 | 171 | <0.001 | 30 | 0.06 | −0.7 | 0.15 | −0.74 | 0.14 |
| Infant vitamin supplementation 3 | 8 | 0.48 | 1 | 0.98 | 76 | 0.02 | 32 | 0.02 | 0.5 | 0.29 | 0.20 | 0.62 |
| At corrected age 6 months | ||||||||||||
| Human milk versus formula +/− human milk 2 | 4 | 0.51 | 291 | <0.001 | 70 | 0.003 | 18 | 0.03 | −2.1 | <0.001 | −0.75 | <0.001 |
| Infant vitamin supplementation 3 | 17 | 0.23 | −20 | 0.66 | 117 | <0.001 | 7 | 0.26 | 0.3 | 0.29 | 0.10 | 0.25 |
| Parameters, Median (IQR) | Corrected Age | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Term | 2 Months | 6 Months | |||||||
| Exclusive Breastfeeding | Formula +/− Human Milk | p1 Value | Exclusive Breastfeeding | Formula +/− Human Milk | p 1 Value | Exclusive Breastfeeding | Formula +/− Human Milk | p1 Value | |
| n = 16 | n = 19 | n = 17 | n = 30 | n = 15 | n = 33 | ||||
| Serum Folate, nmol/L | 118 (68, 137) | 113 (85, 137) | 0.83 | 128 (113, 148) | 115 (64, 141) | 0.13 | 41 (17, 57) | 41 (25, 64) | 0.44 |
| Serum Cobalamin, pmol/L | 333 (246, 521) | 475 (352, 531) | 0.10 | 315 (201, 393) | 519 (367, 605) | 0.001 | 318 (189, 370) | 541 (443, 657) | <0.001 |
| Plasma Pyridoxal 5-phosphate, nmol/L | 109 (79, 159) | 291 (217, 399) | <0.001 | 93 (54, 140) | 274 (175, 366) | <0.001 | 112 (82, 199) | 196 (132, 261) | 0.015 |
| Plasma Riboflavin, nmol/L | 32 (21, 41) | 69 (62, 113) | <0.001 | 21 (16, 38) | 55 (39, 71) | 0.001 | 26 (19, 36) | 46 (36, 56) | <0.001 |
| Plasma Homocysteine, µmol/L | 5.5 (4.7, 6.0) | 6.4 (5.7, 8.3) | 0.005 | 8.2 (7.1, 9.5) | 7.4 (6.2, 8.3) | 0.07 | 7.6 (6.6, 8.9) | 5.4 (4.9, 6.4) | <0.001 |
| Plasma Methylmalonic acid, µmol/L | 0.57 (0.26, 1.67) | 0.54 (0.29, 1.38) | 0.83 | 1.06 (0.26, 3.03) | 0.43 (0.26, 0.76) | 0.74 | 0.91 (0.48, 1.33) | 0.27 (0.19, 0.36) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bjørke-Monsen, A.-L.; Torsvik, I.K.; Bentsen, M.H.L.; Halvorsen, T.; Ueland, P.M. Exclusive Breastfeeding Is Not Ensuring an Adequate Vitamin B Status in Premature Infants with Very Low Birth Weight. Nutrients 2026, 18, 423. https://doi.org/10.3390/nu18030423
Bjørke-Monsen A-L, Torsvik IK, Bentsen MHL, Halvorsen T, Ueland PM. Exclusive Breastfeeding Is Not Ensuring an Adequate Vitamin B Status in Premature Infants with Very Low Birth Weight. Nutrients. 2026; 18(3):423. https://doi.org/10.3390/nu18030423
Chicago/Turabian StyleBjørke-Monsen, Anne-Lise, Ingrid Kristin Torsvik, Mariann Haavik Lysfjord Bentsen, Thomas Halvorsen, and Per Magne Ueland. 2026. "Exclusive Breastfeeding Is Not Ensuring an Adequate Vitamin B Status in Premature Infants with Very Low Birth Weight" Nutrients 18, no. 3: 423. https://doi.org/10.3390/nu18030423
APA StyleBjørke-Monsen, A.-L., Torsvik, I. K., Bentsen, M. H. L., Halvorsen, T., & Ueland, P. M. (2026). Exclusive Breastfeeding Is Not Ensuring an Adequate Vitamin B Status in Premature Infants with Very Low Birth Weight. Nutrients, 18(3), 423. https://doi.org/10.3390/nu18030423

