Implementation of an Electronic Medical Record-Embedded Refeeding Risk Order Set and Its Impact on Refeeding Syndrome Among Adults Receiving Enteral Nutrition: A Retrospective Cohort Study in an Inpatient Hospital Setting
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Intervention: EMR Refeeding Risk Order Set
2.3. Study Population
2.4. Data Collection
2.5. Outcomes
2.6. Statistical Analysis
3. Results
3.1. RFS Occurrence and Severity
3.2. Laboratory Monitoring and Electrolyte Replacement Patterns
3.3. EN Initiation and Advancement
4. Discussion
4.1. Major Findings
4.2. Diagnostic Challenges in RFS
4.3. Strengths and Limitations
4.4. Implications and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RFS | Refeeding syndrome |
| ASPEN | American Society for Parenteral and Enteral Nutrition |
| EN | Enteral nutrition |
| EMR | Electronic medical record |
| RROS | Refeeding Risk Order Set |
| RD | Registered dietitian |
| mg | Milligram |
| g | Gram |
| BMP | Basic metabolic panel |
| Mg | Magnesium |
| Phos | Inorganic Phosphate |
| dL | Deciliter |
| mL | Mililiter |
| h | Hour |
| BMI | Body mass index |
| MST | Malnutrition Screening Tool |
| LOS | Length of hospital stay |
| ICU | Intensive Care Unit |
| ANOVA | Analysis of variance |
| CRRT | Continuous Renal Replacement Therapy |
| ML | Machine learning |
References
- da Silva, J.S.V.; Seres, D.S.; Sabino, K.; Adams, S.C.; Berdahl, G.J.; Citty, S.W.; Cober, M.P.; Evans, D.C.; Greaves, J.R.; Gura, K.M.; et al. Parenteral Nutrition Safety and Clinical Practice Committees, American Society for Parenteral and Enteral Nutrition. ASPEN consensus recommendations for refeeding syndrome. Nutr. Clin. Pract. 2020, 35, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Heuft, L.; Voigt, J.; Selig, L.; Stumvoll, M.; Schlögl, H.; Kaiser, T. Refeeding syndrome: Diagnostic challenges and the potential of clinical decision support systems. Dtsch. Arztebl. Int. 2023, 120, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, I.; Ponzo, V.; Pellegrini, M.; Evangelista, A.; Bioletto, F.; Ciccone, G.; Pasanisi, F.; Ghigo, E.; Bo, S. The incidence of the refeeding syndrome: A systematic review and meta-analyses of literature. Clin. Nutr. 2021, 40, 3688–3701. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Huang, H.; Wu, Y.; Wang, S.; Wang, D.; Ji, Z.; Lin, Z.; Zang, N.; Pan, S.; Huang, K. Incidence and outcome of refeeding syndrome in neurocritically ill patients. Clin. Nutr. 2021, 40, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.U.; Tazmini, K.; Aas, A.M.; Ranhoff, A.H.; Pripp, A.H.; Hesseberg, K.; Sunde, S.; Bye, A. The incidence and mortality of refeeding syndrome in older hospitalized patients, based on three different diagnostic criteria: A longitudinal study. Clin. Nutr. ESPEN 2024, 61, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Matthews-Rensch, K.; Capra, S.; Palmer, M. Systematic review of energy initiation rates and refeeding syndrome outcomes. Nutr. Clin. Pract. 2021, 36, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Adika, E.; Jia, R.; Li, J.; Seres, D.; Freedberg, D.E. Evaluation of the ASPEN guidelines for refeeding syndrome among hospitalized patients receiving enteral nutrition: A retrospective cohort study. J. Parenter. Enteral Nutr. 2022, 46, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Raphaeli, O.; Statlender, L.; Hajaj, C.; Bendavid, I.; Goldstein, A.; Robinson, E.; Singer, P. Using machine-learning to assess the prognostic value of early enteral feeding intolerance in critically ill patients: A retrospective study. Nutrients 2023, 15, 2705. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.Y.; Chang, M.Y.; Heo, S.; Jang, J.Y. Explainable machine learning model to predict refeeding hypophosphatemia. Clin. Nutr. ESPEN 2021, 45, 213–219. [Google Scholar] [CrossRef] [PubMed]
| Pre-Protocol | Post-Protocol | p-Value | |
|---|---|---|---|
| Age | 61.8 ± 13.7 | 59.8 ± 15.9 | 0.14 |
| BMI | 23.9 ± 6.9 | 27.5 ± 19.5 | 0.017 * |
| Malnutrition Status | <0.001 * | ||
| No Malnutrition | 19 (9.2) | 104 (37.8) | |
| Mild | 27 (13.0) | 19 (6.9) | |
| Moderate | 47 (22.7) | 46 (16.7) | |
| Severe | 114 (55.1) | 106 (38.6) | |
| MST Score | 0.49 | ||
| 0 | 47 (33.8) | 62 (35.8) | |
| 1 | 14 (10.1) | 28 (16.2) | |
| 2 | 18 (13.0) | 18 (10.4) | |
| 3 | 17 (12.2) | 26 (15.0) | |
| 4 | 12 (8.6) | 13 (7.5) | |
| 5 | 18 (13.0) | 15 (8.7) | |
| 6 | 13 (9.4) | 11 (6.4) | |
| LOS | 22.3 ± 29.1 | 24.0 ± 27.0 | 0.5 |
| ICU Admission | 0.02 * | ||
| No | 53 (25.6) | 47 (17.1) | |
| Yes | 154 (74.4) | 228 (82.9) |
| Pre-Protocol | Post-Protocol | p-Value | |
|---|---|---|---|
| RFS Occurrence | 191 (92.3) | 251 (91.3) | 0.694 |
| RFS Severity | 0.535 | ||
| No RFS | 16 (7.7) | 24 (8.7) | |
| Mild | 42 (20.3) | 62 (22.6) | |
| Moderate | 50 (24.2) | 76 (27.6) | |
| Severe | 99 (47.8) | 113 (41.1) |
| Pre-Protocol | Post-Protocol | p-Value | |
|---|---|---|---|
| Avg. Δ Electrolyte Level Day 0–1 | |||
| K | −0.006 ± 0.54 | −0.049 ± 0.48 | 0.353 |
| Mg | 0.037 ± 0.33 | 0.032 ± 0.33 | 0.861 |
| Phos | −0.311 ± 0.94 | −0.157 ± 1.27 | 0.146 |
| Avg. Δ Electrolyte Level Day 1–2 | |||
| K | −0.030 ± 0.51 | −0.038 ± 0.46 | 0.869 |
| Mg | −0.028 ± 0.34 | −0.020 ± 0.30 | 0.794 |
| Phos | −0.137 ± 0.80 | −0.268 ± 0.93 | 0.125 |
| Avg. Δ Electrolyte Level Day 2–3 | |||
| K | 0.051 ± 0.47 | 0.076 ± 0.41 | 0.567 |
| Mg | −0.026 ± 0.30 | −0.037 ± 0.25 | 0.685 |
| Phos | 0.046 ± 0.88 | −0.116 ± 0.80 | 0.060 |
| Avg. Δ Electrolyte Level Day 3–4 | |||
| K | 0.086 ± 0.37 | 0.043 ± 0.43 | 0.303 |
| Mg | 0.030 ± 0.29 | −0.018 ± 0.24 | 0.079 |
| Phos | 0.166 ± 0.77 | 0.254 ± 0.93 | 0.338 |
| Avg. Δ Electrolyte Level Day 4–5 | |||
| K | 0.062 ± 0.36 | −0.011 ± 0.43 | 0.093 |
| Mg | −0.001 ± 0.29 | 0.004 ± 0.28 | 0.858 |
| Phos | 0.033 ± 0.72 | 0.083 ± 0.90 | 0.595 |
| EN Day | Pre-Protocol | Post-Protocol | p-Value |
|---|---|---|---|
| Day 0 | |||
| K | 207 (100) | 275 (100) | - |
| Mg | 207 (100) | 275 (100) | - |
| Phos | 207 (100) | 275 (100) | - |
| Day 1 | |||
| K | 205 (99.0) | 274 (99.6) | 0.580 ^ |
| Mg | 206 (99.5) | 271 (98.6) | 0.397 ^ |
| Phos | 204 (98.6) | 271 (98.6) | 1.000 ^ |
| Day 2 | |||
| K | 202 (97.6) | 256 (93.09) | 0.033 ^* |
| Mg | 197 (95.2) | 245 (89.09) | 0.017 * |
| Phos | 190 (91.8) | 244 (88.73) | 0.267 |
| Day 3 | |||
| K | 182 (87.9) | 250 (90.9) | 0.831 |
| Mg | 177 (85.5) | 233 (84.7) | 0.812 |
| Phos | 175 (84.5) | 229 (83.3) | 0.708 |
| Day 4 | |||
| K | 166 (80.2) | 224 (81.5) | 0.727 |
| Mg | 159 (76.8) | 215 (78.2) | 0.721 |
| Phos | 157 (75.9) | 209 (76.0) | 0.969 |
| Day 5 | |||
| K | 157 (75.9) | 207 (75.3) | 0.885 |
| Mg | 151 (73.0) | 194 (70.6) | 0.563 |
| Phos | 147 (71.0) | 184 (66.9) | 0.336 |
| Pre-Protocol | Post-Protocol | p-Value | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| # of E. Bolus | 0 E. Bolus | 1 E. Bolus | 2 E. Bolus | 3 E. Bolus | 4 E. Bolus | 0 E. Bolus | 1 E. Bolus | 2 E. Bolus | 3 E. Bolus | 4 E. Bolus | |
| Day 0 | 143 | 52 | 9 | 0 | 3 | 176 | 79 | 13 | 7 | 0 | 0.027 *^ |
| Day 1 | 155 | 47 | 4 | 1 | 0 | 203 | 65 | 6 | 1 | 0 | 0.979 ^ |
| Day 2 | 160 | 42 | 3 | 2 | 0 | 210 | 53 | 11 | 1 | 0 | 0.332 ^ |
| Day 3 | 152 | 49 | 4 | 1 | 1 | 209 | 59 | 3 | 4 | 0 | 0.539 ^ |
| Day 4 | 171 | 31 | 4 | 1 | 0 | 210 | 55 | 7 | 1 | 2 | 0.406 ^ |
| Day 5 | 175 | 29 | 3 | 0 | 0 | 213 | 50 | 10 | 1 | 1 | 0.181 ^ |
| Pre-Protocol | Post-Protocol | p-Value | |
|---|---|---|---|
| EN Start Rate (mL/h) | 18.3 ± 14.0 | 15.7 ± 7.9 | 0.045 * |
| EN Adv 1 | 14.9 ± 11.8 | 14.7 ± 9.3 | 0.834 |
| EN Adv 2 | 17.9 ± 14.3 | 18.0 ± 12.2 | 0.923 |
| EN Adv 3 | 7.4 ± 18.5 | 5.4 ± 17.3 | 0.536 |
| EN Adv 4 | 10.8 ± 24.3 | 7.4 ± 21.8 | 0.499 |
| EN Adv 5 | 6.5 ± 14.1 | 11.4 ± 20.9 | 0.234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Peterson, E.; Arnold, A.; Payzant, K.; Wills, L.; Jackson, M.; Hanson, C.; Timmerman, M.; Lietka, R.; George, K.; Ponce, J. Implementation of an Electronic Medical Record-Embedded Refeeding Risk Order Set and Its Impact on Refeeding Syndrome Among Adults Receiving Enteral Nutrition: A Retrospective Cohort Study in an Inpatient Hospital Setting. Nutrients 2026, 18, 226. https://doi.org/10.3390/nu18020226
Peterson E, Arnold A, Payzant K, Wills L, Jackson M, Hanson C, Timmerman M, Lietka R, George K, Ponce J. Implementation of an Electronic Medical Record-Embedded Refeeding Risk Order Set and Its Impact on Refeeding Syndrome Among Adults Receiving Enteral Nutrition: A Retrospective Cohort Study in an Inpatient Hospital Setting. Nutrients. 2026; 18(2):226. https://doi.org/10.3390/nu18020226
Chicago/Turabian StylePeterson, Emma, Audrey Arnold, Kristen Payzant, Leslie Wills, Mariah Jackson, Corri Hanson, Megan Timmerman, Rachel Lietka, Kaiti George, and Jana Ponce. 2026. "Implementation of an Electronic Medical Record-Embedded Refeeding Risk Order Set and Its Impact on Refeeding Syndrome Among Adults Receiving Enteral Nutrition: A Retrospective Cohort Study in an Inpatient Hospital Setting" Nutrients 18, no. 2: 226. https://doi.org/10.3390/nu18020226
APA StylePeterson, E., Arnold, A., Payzant, K., Wills, L., Jackson, M., Hanson, C., Timmerman, M., Lietka, R., George, K., & Ponce, J. (2026). Implementation of an Electronic Medical Record-Embedded Refeeding Risk Order Set and Its Impact on Refeeding Syndrome Among Adults Receiving Enteral Nutrition: A Retrospective Cohort Study in an Inpatient Hospital Setting. Nutrients, 18(2), 226. https://doi.org/10.3390/nu18020226

