Modulation of Gut Microbiome and Metabolome as One of the Potential Mechanisms of Ketogenic Diet Effect in the Treatment of Epilepsy
Abstract
1. Introduction
2. Ketogenic Diet in the Treatment of Epilepsy
2.1. Importance of Ketogenic Diet in the Treatment of Epilepsy
2.2. Possible Therapeutic Mechanisms of Ketogenic Diet in Epilepsy
3. Gut Microbiome and Metabolome
3.1. Gut Microbiome
3.2. Gut Bacterial Metabolome
4. Interactions of the Microbiome and Metabolome with the Course of Epilepsy
4.1. Association of Dysbiosis and Other Gastrointestinal Disorders with the Risk of Seizure Development
4.2. Characteristics of Microbiome and Metabolome in Epileptic Patients
5. Modulation of Gut Microbiome and Metabolome as a Potential Therapeutic Mechanism of Ketogenic Diet in Epilepsy
5.1. Effect of Ketogenic Diet on the Modulation of Gut Microbiome and Metabolome in Epileptic Patients
5.2. Potential Mechanisms of the Antiepileptic Effect of Ketogenic Diet Exerted Through Microbiome and Metabolome
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| KD | ketogenic diet |
| SCFA | short-chain fatty acids |
| MAD | Modified Atkins Diet |
| DRE | drug-resistant epilepsy |
| MCTs | monocarboxylate transporters |
| BBB | blood–brain barrier |
| GABA | gamma-aminobutyric acid |
| KATP | ATP-sensitive potassium |
| BA | butyric acid |
| AA | acetic acid |
| PA | propionic acid |
| IBA | isobutyric acid |
| VA | valeric acid |
| CA | caproic acid |
| IVA | isovaleric acid |
| TMA | trimethylamine |
| GPC | glycerophosphorylcholine |
| TMAO | trimethylamine N-oxide |
| DSE | drug-sensitive epilepsy |
| mOTU | metagenomic operational taxonomic units |
| PCA | the principal component analysis |
| OTUs | operational taxonomic units |
| CD | control group |
| KEGG | Kyoto Encyclopaedia of Genes and Genomes |
| KYN | kynurenine |
| KYNA | kynurenic acid |
| 3-OH-KYN | 3-OH-kynurenine |
| IBD | inflammatory bowel disease |
| HDAC | inhibiting histone deacetylase |
References
- Rai, B.R.; Rai, B.K.; Mamatha, S.; Sooda, K. Advancements in epilepsy classification: Current trends and future directions. MethodsX 2025, 14, 103257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falco-Walter, J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020, 40, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Wilder, R.M. The effects of ketonemia on the course of epilepsy. Mayo Clin. Bull. 1921, 2, 307. [Google Scholar]
- Özcan, E.; Yu, K.B.; Dinh, L.; Lum, G.R.; Lau, K.; Hsu, J.; Arino, M.; Paramo, J.; Lopez-Romero, A.; Hsiao, E.Y. Dietary fiber content in clinical ketogenic diets modifies the gut microbiome and seizure resistance in mice. Nat. Commun. 2025, 16, 5090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, Y.; Wang, H.; Liu, X.; Zhang, J.; Liu, G. Crosstalk between the Ketogenic Diet and Epilepsy: From the Perspective of Gut Microbiota. Mediat. Inflamm. 2019, 2019, 8373060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zinger, J.W.; Rietdijk, W.J.R.; van den Berg, S. Ketogenic diet therapy enables antiseizure medication reduction and withdrawal in children with epilepsy. Seizure 2025, 133, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Lai, X.; Li, C.; Ding, D.; Wang, Y.; Zhu, Y. The Role of Gut Microbiota in Various Neurological and Psychiatric Disorders-An Evidence Mapping Based on Quantified Evidence. Mediat. Inflamm. 2023, 2023, 5127157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrio, C.; Arias-Sánchez, S.; Martín-Monzón, I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology 2022, 137, 105640. [Google Scholar] [CrossRef] [PubMed]
- Tran, S.M.; Mohajeri, M.H. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021, 13, 732. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, A.; Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 2016, 13, 43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Pondel, N.; Liśkiewicz, D.; Liśkiewicz, A. Dieta ketogeniczna–mechanizm działania i perspektywy zastosowania w terapii: Dane z badań klinicznych. Postępy Biochem. 2020, 66, 270–286. [Google Scholar] [CrossRef]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, D.; Żendzian-Piotrowska, M. Ketogenic Diet: A Review of Composition Diversity Mechanism of Action Clinical Application. J. Nutr. Metab. 2024, 2024, 6666171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alharbi, A.; Al-Sowayan, N. The Effect of Ketogenic-Diet on Health. Jan. Food Nutr. Sci. 2020, 11, 301–313. [Google Scholar] [CrossRef]
- Wilson, J.; Lowery, R. The Ketogenic Bible; Victory Belt Publishing Inc.: Las Vegas, NV, USA, 2017; ISBN 13:978-1-628601-04-6. [Google Scholar]
- Sampaio, L.P. Ketogenic diet for epilepsy treatment. Arq. Neuropsiquiatr. 2016, 74, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Kossoff, E.H. The Modified Atkins Diet for Epilepsy: Two Decades of an “Alternative” Ketogenic Diet Therapy. Pediatr. Neurol. 2023, 147, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Nova, E.; Gómez-Martinez, S.; González-Soltero, R. The Influence of Dietary Factors on the Gut Microbiota. Microorganisms 2022, 10, 1368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajoka, M.S.R.; Shi, J.; Mehwish, H.M.; Zhu, J.; Li, Q.; Shao, D.; Huang, Q.; Yang, H. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Sci. Hum. Wellness 2017, 6, 121–130. [Google Scholar] [CrossRef]
- Berding, K.; Vlckova, K.; Marx, W.; Schellekens, H.; Stanton, C.; Clarke, G.; Jacka, F.; Dinan, T.G.; Cryan, J.F. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv. Nutr. 2021, 12, 1239–1285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rondinella, D.; Raoul, P.C.; Valeriani, E.; Venturini, I.; Cintoni, M.; Severino, A.; Galli, F.S.; Mora, V.; Mele, M.C.; Cammarota, G.; et al. The Detrimental Impact of Ultra-Processed Foods on the Human Gut Microbiome and Gut Barrier. Nutrients 2025, 17, 859. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meiners, F.; Ortega-Matienzo, A.; Fuellen, G.; Barrantes, I. Gut microbiome-mediated health effects of fiber and polyphenol-rich dietary interventions. Front. Nutr. 2025, 12, 1647740. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, B.; Zhao, D.; Zhou, S.; Kang, J.X.; Wang, B. Insight into the effects of Omega-3 fatty acids on gut microbiota: Impact of a balanced tissue Omega-6/Omega-3 ratio. Front. Nutr. 2025, 12, 1575323. [Google Scholar] [CrossRef]
- Garrido-Romero, M.; Díez-Municio, M.; Moreno, F.J. Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health. Foods 2025, 14, 2413. [Google Scholar] [CrossRef]
- Bartlett, A.; Kleiner, M. Dietary protein and the intestinal microbiota: An understudied relationship. iScience 2022, 25, 105313. [Google Scholar] [CrossRef] [PubMed]
- Adejumo, S.; Das, P.; Ghimire, S.; Lim, C. Dietary Protein Sources Shape Gut Microbiome: Insights from Meta-analysis and Machine Learning. bioRxiv 2025. [Google Scholar] [CrossRef]
- World Health Organization. Epilepsy. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed on 7 February 2024).
- Temkin, O. The Falling Sickness: A History of Epilepsy from the Greeks to the Beginnings of Modern Neurology; Johns Hopkins University Press: Baltimore, MD, USA, 1994. [Google Scholar]
- Wheless, J.W. History of the ketogenic diet. Epilepsia 2008, 49, 3–5. [Google Scholar] [CrossRef]
- Guelpa, G.; Marie, A. La lutte contre l’epilepsie par la de’ sintoxication et par la re’e’ducation alimentaire. Rev. De Ther. Med. Chir. 1911, 78, 8–13. [Google Scholar]
- El-Rashidy, O.F.; Nassar, M.F.; Shokair, W.A.; El Gendy, Y.G.A. Ketogenic diet for epilepsy control and enhancement in adaptive behavior. Sci. Rep. 2023, 13, 2102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baghdadi, L.R.; Alhomaidi, R.A.; Alhelal, F.S.; Alqahtani, A.A.; Aldosary, S.A.; Almohammedi, S.M.; Almutairi, R.A.; Jad, L.A.; AlShammari, H.H. Effect of a ketogenic diet on decrease of seizures in refractory epilepsy among children (infancy to 14 years old) in Saudi Arabia: A cross-sectional study. Transl. Pediatr. 2023, 12, 1676–1689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scantlebury, M.H.; Choudhary, A.; Ng, A.C.; Gavrilovici, C. Ketogenic diet for infantile epileptic spasms. Epilepsia Open 2025, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea Meira, I.; Romão, T.T.; Pires do Prado, H.J.; Krüger, L.T.; Pires, M.E.P.; da Conceição, P.O. Ketogenic Diet and Epilepsy: What We Know so Far. Front. Neurosci. 2019, 13, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dyńka, D.; Kowalcze, K.; Paziewska, A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022, 14, 5003. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.A.; Sampaio, L.P.; Damasceno, N.R. Neurobiochemical mechanisms of a ketogenic diet in refractory epilepsy. Clinics 2014, 69, 699–705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Imdad, K.; Abualait, T.; Kanwal, A.; AlGhannam, Z.T.; Bashir, S.; Farrukh, A.; Khattak, S.H.; Albaradie, R.; Bashir, S. The Metabolic Role of Ketogenic Diets in Treating Epilepsy. Nutrients 2022, 14, 5074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Na, J.-H.; Lee, H.; Lee, Y.-M. Clinical Efficacy and Safety of the Ketogenic Diet in Patients with Genetic Confirmation of Drug-Resistant Epilepsy. Nutrients 2025, 17, 979. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, R.S.B.; Boison, D.; Masino, S.A. Mechanisms of Ketogenic Diet Action; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.N.; Joshi, A.N.; Joshi, N.D. A primary mechanism for efficacy of the ketogenic diet may be energy repletion at the tripartite synapse. J. Neural Eng. 2025, 22, 046025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ross, D.L.; Swaiman, K.F.; Torres, F.; Hansen, J. Early biochemical and EEG correlates of the ketogenic diet in children with atypical absence epilepsy. Pediatr. Neurol. 1985, 1, 104–108. [Google Scholar] [CrossRef]
- Fraser, D.D.; Whiting, S.; Andrew, R.D.; Macdonald, E.A.; Musa-Veloso, K.; Cunnane, S.C. Elevated polyunsaturated fatty acids in blood serum obtained from children on the ketogenic diet. Neurology 2003, 60, 1026–1029. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Likhodii, S.S.; Rarama, E.; Benoit, S.; Liu, Y.-M.C.; Chartrand, D.; Curtis, R.; Carmant, L.; Lortie, A.; Comeau, F.J.; et al. Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition 2006, 22, 1–8. [Google Scholar] [CrossRef]
- Kossoff, E.H.; Zupec-Kania, B.A.; Amark, P.E.; Ballaban-Gil, K.R.; Bergqvist, C.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Cross, H.J.; Dahlin, M.G.; et al. The Charlie Foundation, Practice Committee of the Child Neurology Society. Optimal clinical management of children receiving the ketogenic diet: Recommendations of the International Ketogenic Diet Study Group. Epilepsia 2009, 50, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Simeone, T.A.; Simeone, K.A.; Stafstrom, C.E.; Rho, J.M. Do ketone bodies mediate the anti-seizure effects of the ketogenic diet? Neuropharmacology 2018, 133, 233–241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mishra, P.; Singh, S.C.; Ramadass, B. Drug resistant epilepsy and ketogenic diet: A narrative review of mechanisms of action. World Neurosurg. X 2024, 22, 100328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Institute of Environmental Health Sciences. Microbiome. Available online: https://www.niehs.nih.gov/health/topics/science/microbiome/index.cfm (accessed on 7 July 2025).
- National Human Genome Research Institute. Microbiome. 2025. Available online: https://www.genome.gov/genetics-glossary/Microbiome (accessed on 15 December 2025).
- The Nutrition Source. The Microbiome. Available online: https://www.hsph.harvard.edu/nutritionsource/microbiome/ (accessed on 15 December 2025).
- Rosenberg, E. Diversity of bacteria within the human gut and its contribution to the functional unity of holobionts. NPJ Biofilms Microbiomes 2024, 10, 134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhanaraju, R.; Rao, D.N. The Human Microbiome: An Acquired Organ? Resonance 2022, 27, 247–272. [Google Scholar] [CrossRef]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, X.; Han, Y.; Du, J.; Liu, R.; Jin, K.; Yi, W. Microbiota-gut-brain axis andthe central nervous system. Oncotarget 2017, 8, 53829–53838. [Google Scholar] [CrossRef]
- Yılmaz, K.; Altundiş, M. Gastrointestinal microbiota and fecal transplantation. Nobel Med. 2017, 13, 9–15. [Google Scholar]
- Xu, Z.; Knight, R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 2015, 113, S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Kadyan, S.; Park, G.; Singh, T.P. Microbiome-based therapeutics towards healthier aging ang longevity. Genome Med. 2025, 17, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.; Huang, H.; Yang, Y. Reinventing gut health: Leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front. Nutr. 2024, 11, 1491821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Almansour, N.; Al-Rashed, F.; Choudhry, K. Gut microbiota: A promising new target in immune tolerance. Front. Immunol. 2025, 16, 1607388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Merlo, G.; Bachtel, G.; Sudgen, S.G. Gut microbiota, nutrition, and mental health. Front. Nutr. 2024, 11, 1337889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Hul, M.; Cani, P.D.; Petitfils, C. What defines a healthy gut microbiome? Gut 2024, 73, 1893–1908. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 11245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome 2019, 7, 91. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiao, Y.; Wu, L.; Huntington, N.D.; Zhang, X. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases. Front. Immunol. 2020, 11, 282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vicentini, F.A.; Keenan, C.M.; Wallace, L.E.; Woods, C.; Cavin, J.B.; Flockton, A.R.; Macklin, W.B.; Belkind-Gerson, J.; Hirota, S.A.; Sharkey, K.A. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome 2021, 9, 210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, H.; Wang, W.; Li, Y. The interplay between microbiota and brain-gut axis in epilepsy treatment. Front. Pharmacol. 2024, 15, 1276551. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sorboni, S.G.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin. Microbiol. Rev. 2022, 35, e0033820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, R.; Zhang, L.; Chen, Y. Therapeutic potential of gut microbiota modulation in epilepsy: A focus on short-chain fatty acids. Neurobiol. Dis. 2025, 209, 106880. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scarpellini, E.; Rinninella, E. Gut Microbiota According to the Metabolome. Nutrients 2023, 15, 4768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Czajkowska, A.; Szponar, B. Short chain fatty acids (SCFA), the products of gut bacteria metabolism and their role in the host. Postep. Hig. Med. Dosw 2018, 72, 131–142. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Ross, F.C.; Patangia, D.; Grimaud, G. The interplay between diet and the gut microbiome: Implications for health and disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Rath, S.; Heidrich, B.; Pieper, D.H.; Vital, M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 2017, 5, 54. [Google Scholar] [CrossRef]
- Wang, Z.; Hazen, J.; Jia, X.; Org, E.; Zhao, Y.; Osborn, L.J.; Nimer, N.; Buffa, J.; Culley, M.K.; Krajcik, D.; et al. The Nutritional Supplement L-Alpha Glycerylphosphorylcholine Promotes Atherosclerosis. Int. J. Mol. Sci. 2021, 22, 13477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrett, E.; Ross, R.P.; O’Toole, P.W.; Fitzgerald, G.F.; Stanton, C. γ-Aminobutyric acid productionby culturable bacteria from the human intestine. J. Appl. Microbiol. 2012, 113, 411–417. [Google Scholar] [CrossRef]
- Miao, H.; Zhang, S.-J.; Wu, X. Tryptophan metabolism as a target in gut microbiota, ageing and kidney disease. Int. J. Biol. Sci. 2025, 21, 4374–4387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan Metabolism and Gut-Brain Homeostasis. Int. J. Mol. Sci. 2021, 22, 2973. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terry, N.; Margolis, K.G. Serotonergic Mechanisms Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb. Exp. Pharmacol. 2017, 239, 319–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amlerova, J.; Šroubek, J.; Angelucci, F.; Hort, J. Evidences for a Role of Gut Microbiota in Pathogenesis and Management of Epilepsy. Int. J. Mol. Sci. 2021, 22, 5576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karakis, I. Is There a Link Between Epilepsy and Intestinal Microbiota: What is Your gut Feeling? Epilepsy Curr. 2025, 25, 320–322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iannone, L.F.; Gómez-Eguílaz, M.; De Caro, C. Gut microbiota manipulation as an epilepsy treatment. Neurobiol. Dis. 2022, 174, 105897. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Granados, D.M.; Villasana-Salazar, B.; Lozano-García, L.; Cavalheiro, E.A.; Striano, P. Gut-microbiota-directed strategies to treat epilepsy: Clinical and experimental evidence. Seizure 2021, 90, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 2018, 174, 497. [Google Scholar] [CrossRef]
- Sutter, R.; Ruegg, S.; Tschudin-Sutter, S. Seizures as adverse events of antibiotic drugs: A systematic review. Neurology 2015, 85, 1332–1341. [Google Scholar] [CrossRef]
- Federici, B.; Dell’lsola, G.B.; Striano, P. Intestinal microbiome and epilepsy: A new therapeutic approach? Expert. Rev. Clin. Pharmacol. 2025, 18, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Wanleenuwat, P.; Suntharampillai, N.; Iwanowski, P. Antibiotic-induced epileptic seizures: Mechanisms of action and clinical considerations. Seizure 2020, 81, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Czapińska-Ciepiela, E. The risk of epileptic seizures during antibiotic therapy. Wiad Lek. 2017, 70, 820–826. (In Polish) [Google Scholar] [PubMed]
- Braakman, H.M.H.; van Ingen, J. Can epilepsy be treated by antibiotics? J. Neurol. 2018, 265, 1934–1936. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Eguílaz, M.; Ramón-Trapero, J.L.; Pérez-Martínez, L.; Blanco, J.R. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: A pilot study. Benef. Microbes 2018, 9, 875–882. [Google Scholar] [CrossRef]
- El-Sharkawy, O.S.; El-Rashidy, O.F.; Elagouza, I.A.A. The beneficial effect of probiotics as an adjuvant treatment in childhood drug resistant epilepsy: A prospective pilot study. Int. J. Immunopathol. Pharmacol. 2024, 38, 3946320241291276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, T.S.; Lu, X.G.; Li, B.; Chen, Y.; Wen, J.L.; Hu, Y.; Chen, L.; Xiao, Y.H.; Zhang, J.; Liao, J.X. Benign infantile convulsions with mild gastroenteritis: Clinical analysis of 40 cases. Chin. J. Contemp. Pediatr. 2010, 12, 533–535. (In Chinese) [Google Scholar] [PubMed]
- Saeed, N.K.; Al-Beltagi, M.; Bediwy, A.S.; El-Sawaf, Y.; Toema, O. Gut microbiota in various childhood disorders: Implication and indications. World J. Gastroenterol. 2022, 28, 1875–1901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bian, X.; Shao, X. Advances in the study of gut microbes in pediatric epilepsy. Epilepsy Behav. 2024, 157, 109899. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Younesian, S.; Ejtahed, H.-S. The alteration of gut microbiota composition in patients with epilepsy: A systematic review and meta-analysis. Microb Pathog. 2025, 199, 107266. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Koh, H.; Lee, J.S. Gastroesophageal Reflux in Neurologically Impaired Children: What Are the Risk Factors? Gut Liver 2017, 11, 232–236. [Google Scholar] [CrossRef]
- Bayram, A.K.; Canpolat, M.; Karacabey, N.; Gumus, H.; Kumandas, S.; Doğanay, S.; Arslan, D.; Per, H. Misdiagnosis of gastroesophageal reflux disease as epileptic seizures in children. Brain Dev. 2016, 38, 274–279. [Google Scholar] [CrossRef]
- Keezer, M.R.; Sisodiya, S.M.; Sander, J.W. Comorbidities of epilepsy: Current concepts and future perspectives. Lancet Neurol. 2016, 15, 106–115. [Google Scholar] [CrossRef]
- Işıkay, S.; Kocamaz, H. Prevalence of celiac disease in children with idiopathic epilepsy in southeast Turkey. Pediatr. Neurol. 2014, 50, 479–481. [Google Scholar] [CrossRef]
- Djurić, Z.; Nagorni, A.; Jocić-Jakubi, B.; Dimić, M.; Novak, M.; Milićević, R.; Radenković, G. Celiac disease prevalence in epileptic children from Serbia. Turk. J. Pediatr. 2012, 54, 247–250. [Google Scholar]
- Chen, C.H.; Lin, C.L.; Kao, C.H. Irritable Bowel Syndrome Increases the Risk of Epilepsy: A Population-Based Study. Medicine 2015, 94, e1497. [Google Scholar] [CrossRef]
- Camara-Lemarroy, C.R.; Escobedo-Zúñiga, N.; Ortiz-Zacarias, D.; Peña-Avendaño, J.; Villarreal-Garza, E.; Díaz-Torres, M.A. Prevalence and impact of irritable bowel syndrome in people with epilepsy. Epilepsy Behav. 2016, 63, 29–33. [Google Scholar] [CrossRef]
- Ferro, J.M.; Oliveira Santos, M. Neurology of inflammatory bowel disease. J. Neurol. Sci. 2021, 424, 117426. [Google Scholar] [CrossRef] [PubMed]
- Castellazzi, L.; Principi, N.; Agostoni, C.; Esposito, S. Benign convulsions in children with mild gastroenteritis. Eur. J. Paediatr. Neurol. 2016, 20, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Al-Beltagi, M.; Saeed, N.K. Epilepsy and the gut: Perpetrator or victim? World J. Gastrointest. Pathophysiol. 2022, 13, 143–156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, F.; You, D.; Li, Y. Multi-omics integration reveals gut microbiota dysbiosis and metabolic alterations of cerebrospinal fluid in children with epilepsy. Front. Microbiol. 2025, 16, 1630062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, X.; Zhang, Y. Changes in gut flora in patients with epilepsy: A systematic review and meta-analysis. Front. Microbiol. 2024, 15, 1480022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arulsamy, A.; Tan, Q.Y.; Balasubramaniam, V.; O’Brien, T.J.; Shaikh, M.F. Gut Microbiota and Epilepsy: A Systematic Review on Their Relationship and Possible Therapeutics. ACS Chem. Neurosci. 2020, 11, 3488–3498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Luan, J.; He, L. Role of the gut-brain axis in neurological diseases: Molecular connections and therapeutic implications (Review). Int. J. Mol. Med. 2025, 56, 192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holmes, M.; Flaminio, Z.; Vardhan, M.; Xu, F.; Li, X.; Devinsky, O.; Saxena, D. Cross talk between drug-resistant epilepsy and the gut microbiome. Epilepsia 2020, 61, 2619–2628. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Liu, X.; Chen, C.; Lin, J.; Li, A.; Guo, K.; An, D.; Zhou, D.; Hong, Z. Alteration of Gut Microbiota in Patients with Epilepsy and the Potential Index as a Biomarker. Front. Microbiol. 2020, 11, 517797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuwattana, R.; Suparan, K.; Kerdphoo, S. Altered gut microbiome profiles in epileptic children are associated with spectrum of anti-seizure medication responsiveness. Brain Res. 2025, 1849, 149367. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Sahin, E.; Volpedo, G. Medication-resistant epilepsy is associated with a unique gut microbiota signature. Epilepsia 2025, 66, 2268–2284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, Y.; Qiu, X.; Lai, W.; Li, W.; Zhang, L.; Zhu, X.; He, S.; Duan, J.; Chen, L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 2018, 147, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Lindefeldt, M.; Eng, A.; Darban, H.; Bjerkner, A.; Zetterström, C.K.; Allander, T.; Andersson, B.; Borenstein, E.; Dahlin, M.; Prast-Nielsen, S. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, G.; Zhou, Q.; Qiu, C.Z.; Dai, W.K.; Wang, H.P.; Li, Y.H.; Liao, J.X.; Lu, X.G.; Lin, S.F.; Ye, J.H.; et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 2017, 23, 6164–6171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, G.; Liu, S.; Liu, Z.; Chen, Y.; Wu, T.; Lou, J.; Wang, H.; Zou, Y.; Sun, Y.; Rao, B.; et al. Gut Microbiome Distinguishes Patients With Epilepsy From Healthy Individuals. Front. Microbiol. 2022, 12, 696632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, H.; Lee, S.; Lee, D.H.; Kim, D.W. A comparison of the gut microbiota among adult patients with drug-responsive and drug-resistant epilepsy: An exploratory study. Epilepsy Res. 2021, 172, 106601. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Chiu, A.T.G.; Li, V.W.Y.; Zhang, X.; Yeung, W.L.; Chan, S.H.S.; Tun, H.M. The role of the gut-microbiome-brain axis in metabolic remodeling amongst children with cerebral palsy and epilepsy. Front. Neurol. 2023, 14, 1109469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Türay, S.; Cangür, Ş.; Kahraman, G.; Kayabaşı, E.; Çetiner, Ö.F.; Aydın, B.; Öztürk, C.E. Can the Gut Microbiota Serve as a Guide to the Diagnosis and Treatment of Childhood Epilepsy? Pediatr. Neurol. 2023, 145, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chu, C.; Peng, Y.; Zhang, N.; Yang, Z.; You, J.; Wei, F. Correlations between gastrointestinal and oral microbiota in children with cerebral palsy and epilepsy. Front. Pediatr. 2022, 10, 988601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwack, D.W.; Lee, S.; Lee, D.-H. Changes in gut microbiome can be associated with abrupt seizure exacerbation in epilepsy patients. Clin. Neurol. Neurosurg. 2024, 246, 108556. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, S.; Choi, T.G.; Kim, S.S. Role of Short Chain Fatty Acids in Epilepsy and Potential Benefits of Probiotics and Prebiotics: Targeting “Health” of Epileptic Patients. Nutrients 2022, 14, 2982. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, H.; Guo, M. Evaluating the impact of gut microbiota, circulating cytokines and plasma metabolites on febrile seizure risk in Mendelian randomization study. Sci. Rep. 2025, 15, 13603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ouyang, Y.; Chen, Y.; Wang, G.; Song, Y.; Zhao, H.; Xiao, B.; Yang, Z.; Long, L. Genetically proxied gut microbiota, gut metabolites with risk of epilepsy and the subtypes: A bi-directional Mendelian randomization study. Front. Mol. Neurosci. 2022, 15, 994270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ko, A.; Kwon, H.E.; Kim, H.D. Updates on the ketogenic diet therapy for pediatric epilepsy. Biomed. J. 2022, 45, 19–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cannataro, R. Ketogenic diet: Possible mechanism, old and new applications. Exp. Physiol. 2023, 108, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Özcan, E.; Lum, G.R.; Hsiao, E.Y. Interactions between the gut microbiome and ketogenic diet in refractory epilepsy. Int. Rev. Neurobiol. 2022, 167, 217–249. [Google Scholar] [CrossRef] [PubMed]
- Kaviyarasan, S.; Chung Sia, E.L.; Retinasamy, T.; Arulsamy, A.; Shaikh, M.F. Regulation of gut microbiome by ketogenic diet in neurodegenerative diseases: A molecular crosstalk. Front. Aging Neurosci. 2022, 14, 1015837. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, M.; Wang, W.; Wang, J.; Wang, Y. Alteration of Gut Microbiota by Ketogenic Diet as an Alternative Therapeutic Target for Drug-Resistant Epilepsy. Microorganisms 2025, 13, 2539. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, Z.; Lin, L.; Niu, J.; Meng, G.; Wang, W.; Wang, J.; Wang, Y. Comparative Analysis of Growth Dynamics and Relative Abundances of Gut Microbiota Influenced by Ketogenic Diet. Phenomics 2025, 5, 65–75. [Google Scholar] [CrossRef]
- Bianchi, V.E.; Herrera, P.F.; Laura, R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr. Neurosci. 2019, 24, 810–834. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Ghezzi, L.; Cross, A.H.; Piccio, L. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J. Exp. Med. 2021, 218, e20190086. [Google Scholar] [CrossRef]
- Zhu, H.; Bi, D.; Zhang, Y.; Kong, C.; Du, J.; Wu, X.; Wei, Q.; Qin, H. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Sig Transduct. Target. Ther. 2022, 7, 11. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Zhang, J.; Jiang, T.; Zhang, Z.; Wang, Z.; Gong, M.; Zhao, L.; Zhang, C. Ketogenic Diets Induced Glucose Intolerance and Lipid Accumulation in Mice with Alterations in Gut Microbiota and Metabolites. mBio 2021, 12, e03601-20. [Google Scholar] [CrossRef]
- Ang, Q.Y.; Alexander, M.; Newman, J.C.; Tian, Y.; Cai, J.; Upadhyay, V.; Turnbaugh, J.A.; Verdin, E.; Hall, K.D.; Leibel, R.L.; et al. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell 2020, 181, 1263–1275.e16. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; Liu, H.; Li, F.; Peng, Q.; Liu, C. Effects of ketogenic diet containing medium-chain fatty acids on serum inflammatory factor and mTOR signaling pathway in rats. Chem. Biol. Technol. Agric. 2020, 7, 27. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020, 19, 609–633. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Li, H.; Chen, G.; Yang, L.; Wang, D.; Han, H.; Zheng, G.; Wang, X.; Liang, J.; et al. Effects of ketogenic diet on the classification and functional composition of intestinal flora in children with mitochondrial epilepsy. Front. Neurol. 2023, 14, 1237255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, K.; Kim, N.; Shim, J.O.; Kim, G.H. Gut Bacterial Dysbiosis in Children with Intractable Epilepsy. J. Clin. Med. 2020, 10, 5. [Google Scholar] [CrossRef]
- Menzies, J.; Sundararaj, A.; Cardamone, M.; McHarg, A.; Leach, S.; Krishnan, U. Ketogenic Diets in Children with Intractable Epilepsy and its Effects on Gastrointestinal Function, Gut Microbiome, Inflammation, and Quality of Life. J. Pediatr. Gastroenterol. Nutr. 2023, 77, 679–685. [Google Scholar] [CrossRef] [PubMed]
- García-Belenguer, S.; Grasa, L.; Palacio, J.; Moral, J.; Rosado, B. Effect of a Ketogenic Medium Chain Triglyceride-Enriched Diet on the Fecal Microbiota in Canine Idiopathic Epilepsy: A Pilot Study. Vet. Sci. 2023, 10, 245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pilla, R.; Law, T.H.; Pan, Y.; Zanghi, B.M.; Li, Q.; Want, E.J.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S.; Volk, H.A. The Effects of a Ketogenic Medium-Chain Triglyceride Diet on the Feces in Dogs with Idiopathic Epilepsy. Front. Vet. Sci. 2020, 7, 541547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dahlin, M.; Singleton, S.S.; David, J.A.; Basuchoudhary, A.; Wickström, R.; Mazumder, R.; Prast-Nielsen, S. Higher levels of Bifidobacteria and tumor necrosis factor in children with drug-resistant epilepsy are associated with anti-seizure response to the ketogenic diet. EBioMedicine 2022, 80, 104061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferraris, C.; Meroni, E.; Casiraghi, M.C.; Tagliabue, A.; De Giorgis, V.; Erba, D. One Month of Classic Therapeutic Ketogenic Diet Decreases Short Chain Fatty Acids Production in Epileptic Patients. Front. Nutr. 2021, 8, 613100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, X.; Cai, Q.; Liu, X.; An, D.; Zhou, D.; Luo, R.; Peng, R.; Hong, Z. Gut flora and metabolism are altered in epilepsy and partially restored after ketogenic diets. Microb Pathog. 2021, 155, 104899, Erratum in: Microb Pathog. 2022, 173, 105832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, S.; Zhou, Y.; Yu, L.; Zhang, L.; Wang, Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018, 145, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Gernone, F.; Uva, A.; Silvestrino, M.; Cavalera, M.A.; Zatelli, A. Role of Gut Microbiota through Gut-Brain Axis in Epileptogenesis: A Systematic Review of Human and Veterinary Medicine. Biology 2022, 11, 1290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, Y.; Wei, Z.H.; Liu, C.; Li, G.Y.; Qiao, X.Z.; Gan, Y.J.; Zhang, C.C.; Deng, Y.C. Genetic variations in GABA metabolism and epilepsy. Seizure 2022, 101, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P.; Kim, K.H.; Terekhova, D.; Liu, J.K.; Sharma, A.; Levering, J.; McDonald, D.; Dietrich, D.; Ramadhar, T.R.; Lekbua, A.; et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 2019, 4, 396–403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eor, J.Y.; Tan, P.L.; Son, Y.J.; Kwak, M.J.; Kim, S.H. Gut microbiota modulation by both Lactoba-cillus fermentum MSK 408 and ketogenic diet in a murine model of pentylenetetrazole-induced acute seizure. Epilepsy Res. 2021, 169, 106506. [Google Scholar] [CrossRef] [PubMed]
- Melø, T.M.; Nehlig, A.; Sonnewald, U. Neuronal–Glial Interactions in Rats Fed a Ketogenic Diet. Neurochem. Int. 2006, 48, 498–507. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Bagdy, G.; Kecskemeti, V.; Riba, P.; Jakus, R. Serotonin and epilepsy. J. Neurochem. 2007, 100, 857–873. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, F.G.; Hecimovic, H.; Gentry, M.S. Serotonergic therapy in epilepsy. Curr. Opin. Neurol. 2021, 34, 206–212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mu, C.; Choudhary, A.; Mayengbam, S.; Barrett, K.T.; Rho, J.M.; Shearer, J.; Scantlebury, M.H. Seizure modulation by the gut microbiota and tryptophan-kynurenine metabolism in an animal model of infantile spasms. EBioMedicine 2022, 76, 103833. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vashadze, S.; Kekenadze, M.; Brunjadze, S. Serotonin and epilepsy. Emerg. Med. 2022, 18, 55–57. [Google Scholar] [CrossRef]
- Żarnowska, I.; Wróbel-Dudzińska, D.; Tulidowicz-Bielak, M.; Kocki, T.; Mitosek-Szewczyk, K.; Gasior, M.; Turski, W.A. Changes in tryptophan and kynurenine pathway metabolites in the blood of children treated with ketogenic diet for refractory epilepsy. Seizure 2019, 69, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Chojnowski, K.; Opiełka, M.; Urbanowicz, K.; Zawadzka, M.; Wangin, K.; Smoleński, R.T.; Mazurkiewicz-Bełdzińska, M. Untargeted metabolomics reveals key metabolic alterations in pediatric epilepsy with insights into Tryptophan metabolism and the gut–brain axis. Sci. Rep. 2025, 15, 15262. [Google Scholar] [CrossRef]
- Kaur, M.; Porel, P.; Patel, R.; Aran, K.R. Kynurenine Pathway in Epilepsy: Unraveling Its Role in Glutamate Excitotoxicity, GABAergic Dysregulation, Neuroinflammation, and Mitochondrial Dysfunction. Neurotox. Res. 2025, 43, 18. [Google Scholar] [CrossRef]
- Starr, M.S. The role of dopamine in epilepsy. Synapse 1996, 22, 159–194. [Google Scholar] [CrossRef] [PubMed]
- Bozzi, Y.; Borrelli, E. The role of dopamine signaling in epileptogenesis. Front. Cell Neurosci. 2013, 7, 157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rezaei, M.; Sadeghian, A.; Roohi, N.; Shojaei, A.; Mirnajafi-Zadeh, J. Epilepsy and dopaminergic system. Physiol. Pharmacol. 2017, 21, 1–14. [Google Scholar]
- Church, W.H.; Adams, R.E.; Wyss, L.S. Ketogenic diet alters dopaminergic activity in the mouse cortex. Neurosci. Lett. 2014, 571, 1–4. [Google Scholar] [CrossRef] [PubMed]
- González-Arancibia, C.; Urrutia-Piñones, J.; Illanes-González, J.; Martinez-Pinto, J.; Sotomayor-Zárate, R.; Julio-Pieper, M.; Bravo, J.A. Do your gut microbes affect your brain dopamine? Psychopharmacology 2019, 236, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hampton, T. Gut microbes may account for the anti-seizure effects of the ketogenic diet. JAMA 2018, 320, 1307. [Google Scholar] [CrossRef]
- Darch, H.; McCafferty, C.P. Gut microbiome effects on neuronal excitability & activity: Implications for epilepsy. Neurobiol. Dis. 2022, 165, 105629. [Google Scholar] [CrossRef]
- Engler, D.B.; Leonardi, I.; Hartung, M.L.; Kyburz, A.; Spath, S.; Becher, B.; Rogler, G.; Müller, A. Helicobacter pylori-specific protection against inflammatory bowel disease requires the NLRP3 inflammasome and IL-18. Inflamm. Bowel Dis. 2015, 21, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N.A. The Therapeutic Role of Short-Chain Fatty Acids Mediated Very Low-Calorie Ketogenic Diet-Gut Microbiota Relationships in Paediatric Inflammatory Bowel Diseases. Nutrients 2022, 14, 4113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nandivada, P.; Fell, G.L.; Pan, A.H.; Nose, V.; Ling, P.; Bistrian, B.R.; Puder, M. Eucaloric Ketogenic Diet Reduces Hypoglycemia and Inflammation in Mice with Endotoxemia. Lipids 2016, 51, 703–714. [Google Scholar] [CrossRef]
- Sewal, R.K.; Modi, M.; Saikia, U.N.; Chakrabarti, A.; Medhi, B. Increase in seizure susceptibility in sepsis like condition explained by spiking cytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides. Epilepsy Res. 2017, 135, 176–186. [Google Scholar] [CrossRef]
- Wang, J.; Xie, L.; Jiang, L. Potential inflammatory mechanisms of the ketogenic diet against febrile infection-related epilepsy syndrome. Acta Epileptol. 2025, 7, 3. [Google Scholar] [CrossRef]
- Lin, W.S.; Hsu, T.R. Hypothesis: Febrile infection-related epilepsy syndrome is a microglial NLRP3 inflammasome/IL-1 axis-driven autoinflammatory syndrome. Clin. Transl. Immunology 2021, 10, e1299. [Google Scholar] [CrossRef]
- Ulusoy, C.; Vanlı-Yavuz, E.N.; Şanlı, E.; Timirci-Kahraman, Ö.; Yılmaz, V.; Bebek, N.; Küçükali, C.I.; Baykan, B.; Tüzün, E. Peripheral blood expression levels of inflammasome complex components in two different focal epilepsy syndromes. J. Neuroimmunol. 2020, 347, 577343. [Google Scholar] [CrossRef]
- Kim, E.R.; Kim, S.R.; Cho, W.; Lee, S.-G.; Kim, S.H.; Kim, J.H.; Choi, E.; Kim, J.-H.; Yu, J.-W.; Lee, B.-W.; et al. Short Term Isocaloric Ketogenic Diet Modulates NLRP3 Inflammasome Via B-hydroxybutyrate and Fibroblast Growth Factor 21. Front. Immunol. 2022, 13, 843520. [Google Scholar] [CrossRef]
- Yuhong, D.; Chuhui, L.; Dezhi, C.A.O. The beneficial effect of Bacteroides fragilis (BF839) as a supplementary treatment in drug-resistant epilepsy: A pilot study. J. Epilepsy 2021, 7, 288–295. [Google Scholar] [CrossRef]
- Shearer, J.; Scantlebury, M.H.; Rho, J.M.; Tompkins, T.A.; Mu, C. Intermittent vs continuous ketogenic diet: Impact on seizures, gut microbiota, and mitochondrial metabolism. Epilepsia 2023, 64, e177–e183. [Google Scholar] [CrossRef] [PubMed]
- Masino, S.A.; Geiger, J.D. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci. 2008, 31, 273–278. [Google Scholar] [CrossRef]
- Paleologou, E.; Ismayilova, N.; Kinali, M. Use of the ketogenic diet to treat intractable epilepsy in mitochondrial disorders. J. Clin. Med. 2017, 6, 56. [Google Scholar] [CrossRef]
- Wang, H.X.; Wang, Y.P. Gut Microbiota-brain Axis. Chin. Med. J. 2016, 129, 2373–2380. [Google Scholar] [CrossRef]
- Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015, 125, 926–938. [Google Scholar] [CrossRef]
- Chatzikonstantinou, S.; Gioula, G.; Kimiskidis, V.K.; McKenna, J.; Mavroudis, I.; Kazis, D. The gut microbiome in drug-resistant epilepsy. Epilepsia Open 2021, 6, 28–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, Y.; Wang, Q.; Liu, J. Microbiota-gut-brain axis: A novel potential target of ketogenic diet for epilepsy. Curr. Opin. Pharmacol. 2021, 61, 36–41. [Google Scholar] [CrossRef] [PubMed]

| Year of Study, Reference | Study Aim | Groups | Results |
|---|---|---|---|
| 2025 [116] | To investigate gut microbiota differences between medication-resistant and medication-sensitive pediatric epileptic patients with genetic and presumed genetic etiology. | 1. 20 children with medication-resistant (MR) epilepsy 2. 21 children with medication-sensitive epilepsy 3. 27 age-matched healthy controls (HCs) | 1. Significant differences between the ratio of Bacteroidetes and Firmicutes were not found. 2. Significant dominance in Hung in the MR population. 3. BD measures indicate that a unique gut bacterial profile was present in patients with epilepsy, but no significant differences were found between MR and MS subgroups. |
| 2023 [122] | Elucidate the mechanistic roles of the gut microbiome in epileptogenesis following cerebral palsy and identify gut microbiota alterations related to seizure control | 1. 8 children with non-epileptic cerebral palsy (NECP) 2. 13 children with cerebral palsy with epilepsy (CPE) (including 5 with drug-resistant epilepsy (DRE)) | 1. In the CPE group, lower counts of Bacteroides fragilis and Dialister invisus and higher counts of Phascolarctobacterum faecium and Eubacterium limosum were found 2. In the DRE group, an increased count of Veilonella parvula was observed. 3. In the CPE group, an increase was found in the concentrations of metabolites, i.e., kynurenic acid, L-vinic acid, D-saccharic acid, 2-oxindole, dopamine, 2-hydroxyphenylalanine and 3,4-dihydroxyphenyloglycol. 4. In the DRE group, an increase was observed in indole and homovanilic acid concentrations. 5. In the CPE group, an increased number of ethanol production pathways but a decreased number of pathways of serine, glutamate, quinolinic acid, glycerol degradation and of sulphate and nitrate reduction were found. |
| 2023 [123] | To investigate the activity of the gut–brain axis in the pathogenesis of childhood epilepsy and to define biomarkers capable of assisting with determining new strategies in that context. | 1. 20 children with epilepsy of “unknown aetiology” 2. 7 healthy controls in the same age group | 1. Differences between the groups were observed at genus, order, class, family and phylum levels. 2. Only in the group of epileptic patients Megamonas and Coriobacterium were observed. 3. Only in the control group Flavihumibacter, Niabella, Anoxybacillus, Brevundimonas, Devosia and Delftia were found. |
| 2022 [120] | To characterize the fecal microbiome, investigate the differences between epilepsy patients and healthy controls, and evaluate the potential efficacy of the fecal microbiome as a diagnostic tool for epilepsy. | 1. 24 patients with epilepsy (EPs) 2. 50 healthy people in the control group (HCs) | 1. In the group of EPs, a lower alpha diversity (mean Shannon Index value = 2.53 (epilepsy) vs. 3.4 (control group) was found. 2. In the EPs group, a significant increase was observed in Proteobacteria and Actinobacteriota (at phylum level) and 23 bacterial genera, i.e., among other organisms Faecalibacterium, Escherichia-Shigella, Subdoligranulum and Enterobacteriaceae (unclassified). 3. In the group of HCs, the relative abundance increased of Bacteriota (at phylum level) and 59 bacterial genera, i.e., among other bacteria Bacteroides, Megamonas, Prevotella, Lachnospiraceae (unclassified) and Blautia. |
| 2022 [124] | Exploring the correlation between gut and oral microbiota in children with cerebral palsy and epilepsy (CPE). | 27 children with cerebral palsy and epilepsy (CPE). | 1. Bifidobacterium, Bacteroides and Prevotella were noted as the most frequent bacterial genera in children with CPE. 2. A close correlation was found between microbiota in the oral cavity and gut microbiota. An abnormal oral microbiota can lead to dysbiosis of the gut microbiota. |
| 2021 [121] | A comparison of the gut microbiota among adult patients with drug-responsive and drug-resistant epilepsy | 1. 23 patients with drug-sensitive epilepsy (DSE) 2. 21 patients with drug-resistant epilepsy (DRE) | 1. No significant differences in alpha and beta diversity 2. In the DSE group, an increase in the relative abundance of Bacteroides fragilis and Ruminococcus_g2 was found 3. In the DRE group, an increase in the relative abundance of Negativicutes (Firmicutes phylum) was seen |
| 2020 [114] | To explore the structure and composition of the fecal microbiota of patients with epilepsy. | 1. 55 patients with epilepsy (EPs) (including 30 with drug-resistant epilepsy (DRE)) 2. 46 healthy people in the control group (HCs) | 1. The alpha diversity was significantly lower among EPs (the mean number of the found species = 275.33 ± 41.64 vs. 347.26 ± 102.40 in the HC group). 2. In the group of EPs, an increase in Actinobacteria and Verrucomicrobia and a decrease in Proteobacteria (at phylum level) occurred, while at genus level a decreased abundance was found of Klebsiella, Sutterella, Escherichia-Shigella, Lachnospiraceae_NK4A136_group and Lachnoclostridium, and an increase in Prevotella_9, Blautia, Bifidobacterium, Akkermansia, Megamonas, Ruminococcaceae_UCG_014, Ruminococcus_gnavus_group, Romboutsia and Eubacterium_hallii_group was demonstrated. 3. In the DRE group an increase in Actinobacteria, Verrucomicrobia, Nitrospirae and Firimicutes, but a reduction in the Cyanobacteria phylum were noted. At the genus level an increase occurred in Blautia, Bifidobacterium, Subdoligranulum, Dialister and Anaerostipes, while a reduction in Parabacteroides was found. |
| 2019 [118] | Comparison of gut microbiome composition in epileptic children vs. the control group and assessment of ketogenic diet effect on the taxonomic and functional composition of microbiota in epileptic children | 1. 12 children with drug-resistant epilepsy (DRE) 2. 11 healthy people in the control group (HCs) | 1. In the DRE group, an evidently lower total number of the observed metagenomic operational taxonomic units (mOTU), of total Chao1 species richness and Shannon evenness index were noted. 2. In the DRE group, a lower alpha diversity and a higher beta diversity were observed, compared to the HCs. |
| 2018 [117] | Exploring whether dysbiosis is involved in the mechanism of drug-resistant epilepsy. | 1. 42 patients with drug-resistant epilepsy (DRE) 2. 49 patients with drug-sensitive epilepsy (DSE) 3. 65 healthy people in the control group (HCs) | 1. In the DRE group, an increased alpha diversity was found (particularly in the subgroup of patients with four or more seizure attacks yearly). 2. In the DRE group, an increase was observed in the bacteria belonging mainly to the Firmicutes phylum, i.e., Roseburia, Coprococcus, Ruminococcus and Coprobacillus, compared to the DSE group. 3. In the DSE group, the gut microbiota composition was similar to that in the healthy control group. |
| 2017 [119] | To investigate whether patients with refractory epilepsy and healthy infants differ in gut microbiota (GM), and how ketogenic diet (KD) alters GM. | 1. 14 infants with drug-resistant epilepsy (DRE) 2. 30 healthy infants in the control group (HCs) | 1. In the DRE group, the greatest shares were of the phyla Firmicutes (45.82%), Bacteroidetes (26.75%), Proteobacteria (24.34%), Actinobacteria (2.38%), Verrucomicrobia (0.59%) and Fusobacteria (0.09%). At the genus level, Cronobacter predominated (23.30%) (compared to 0% in HCs) 2. In the group of HCs, the greatest shares were of the phylum Bacteroidetes (53.01%), followed by Firmicutes (34.38%), Actinobacteria (8.49%), Proteobacteria (2,9%), Verrucomicrobia (0.78%) and Fusobactera (0.43%). At the genus level, Bacteroides predominated (42.68%) (compared to 17.93% in the DRE group), but also Prevotella (7.29% vs. 0.37%) and Bifidobacterium (7.84% vs. 0.91%) were increased 3. In the group of HCs, a higher diversity of the microbiota was noted (Shannon index analysis) |
| Year of Study, Reference | Study Aim | Groups | Results |
|---|---|---|---|
| 2023 [143] | Exploring the relationship and potential altered pathways between ketosis, gut microbiota, and mitochondrial epilepsy. | 1. Ketogenic diet group (KD)—8 patients with mitochondrial epilepsy 2. Control group (CD)—7 patients with mitochondrial epilepsy | 1. Higher diversity of gut microbiota in the control group (significantly higher acc. to Chao1 diversity index, insignificantly higher acc. to Shannon diversity index) 2. In the KD group, a percentage reduction in Firmicutes (42.76% vs. 48.13% in CD) and an increase in Bacteroidota (36.93% vs. 25.41% in CD) were observed. 3. In the KD group, a percentage reduction in Actinobacteriota (1.66% vs. 7.64% in CD), Fusobacteriota (0.68% vs. 1.65% in CD) and Desufobacterota (0.15% vs. 0.50% in CD) was found. 4. In the KD group, a percentage increase was seen in Bacteroides (28.78% vs. 9.51% in CD) (mainly Bacteroides fragilis), Blautia.s_Blautia_sp_N6H1_15 and Anaerotignum_lactatifermentans species 5. In the KD group at 3 KEGG level an increased enrichment was noted in pathways, i.e., citrate pathway (TCA), pertussis pathway, biosynthesis of penicillin and cephalosporins, biosynthesis of lysosomes and glycosphingolipids, phosphatidylinositol signalling system, biofilm formation (Escherichia coli) and a reduced enrichment in the KD group was observed in the pathways including Quorum sensing, Legionellosis, nicotinate and nicotinamide metabolism, arginine biosynthesis or Bacterial secretion system. |
| 2023 [145] | Effects of the ketogenic diet on gastrointestinal function, gut microbiome, inflammation, and quality of life in children with intractable epilepsy | 1. Ketogenic diet group (KD)—14 patients with intractable epilepsy (IE) 2. Control group (CD)—7 patients with intractable epilepsy (IE) | 1. In the KD group a lower diversity of microbiota was noted 2. Both groups had normal levels of S100A12 (a marker of enteritis). |
| 2022 [147] | To analyse changes in the fecal microbiota and levels of inflammation markers in blood after three months on KD treatment in a cohort of children with pharmaco-resistant epilepsy. | 28 children with pharmaco-resistant epilepsy. | 1. Bifidobacterium longum and Bifidobacterium breve were significantly correlated with TNF-alpha concentration. The levels of all three were increased in children, who later responded with a reduced frequency of seizures (compared to children not responding to KD). 2. B. kashiwanohense PV20-2, B. angulatum GT102, B. adolescentis ATCC 15703 and B. breve JCM 7019 demonstrated negative correlations with CCL25 3. The values of 26 inflammatory condition markers decreased in the consequence of KD application (among other markers, IL-17A, IL-17C, TNF, IL-12B, IL-18R1 and GDNF). 4. The values of three inflammatory condition markers increased in the consequence of KD application (CCL25, IL-18 and IL-1 alpha). |
| 2021 [148] | To investigate whether 1 month of KD affects the gut environment in epileptic patients, by analysing short-chain fatty acids (SCFA) production and fecal water toxicity. | 7 patients with drug-resistant epilepsy (DRE) | After ketogenic diet application a significant reduction was found in: -fecal water genotoxicity level (from the mean value 33.4 (32.0–41.8) to 29.2 (26.2–32.6)) (expressed as % of DNA in the tail) -total SCFA amount (from the mean value 20.7 mg/g to 9.3 mg/g) -acetoacetate amount (from the mean value 8.4 mg/g to 2.7 mg/g) -butyrate amount (from the mean value 4.8 mg/g to 3.2 mg/g) -propionate amount (from the mean value 3.4 mg/g to 2.4 mg/g) -isovalerate amount (from the mean value 1.1 mg/g to 0.6 mg/g) -isobutyrate amount (from the mean value 0.6 mg/g to 0.3 mg/g) |
| 2021 [149] | To investigate the composition of the intestinal microbiota and its association with fecal short-chain fatty acids (SCFAs) in children with drug-refractory epilepsy (DRE) before and after treatment with a ketogenic diet (KD). | 1. 12 children with drug-resistant epilepsy (DRE) 2. 12 people in the control group (CG) | After ketogenic diet application an increase was noted in: -SCFA amount in feces -the abundance of Subdoligranulum, Dialister, Alloprevotella and a decrease of: -the abundance of Bifidobacterium, Akkermansia, Enterococcaceae and Actinomyces |
| 2019 [118] | Comparison of gut microbiome composition in epileptic children vs. the control group and assessment of ketogenic diet effect on the taxonomic and functional composition of microbiota in epileptic children | 1. ketogenic group (KD)—12 children with drug-resistant epilepsy (DRE) 2. 11 healthy people in the control group (HCs) | In the KD group the following were observed: -reduction in alpha diversity (mOTU, Chao1 and Shannon indices) -reduction in relative abundance of Actinobacteria (mainly Bifidobacterium, particularly two species: Bifidobacterium longum (reduction from 8.1% to 2.4%) and B. adolescentis (reduction from 3.2% to 0.2%)) and increase in Proteobacteria. -a reduction in the abundance of Eubacterium rectale (from 2.5% to 0.5%) and Dialister genus (from 2.2% to 0.4%), and an increased abundance of Escherichia genus (from 3.1% to 8.5%) (mainly Escherichia coli). -changes in 29 SEED subsystems (among other changes, reduction in seven pathways engaged in the metabolism of carbohydrates) |
| 2018 [150] | To investigate the characteristics and composition of intestinal microbiota in children with refractory epilepsy after ketogenic diet (KD) therapy and to explore the bacterial biomarkers related to clinical efficacy. | 20 children with refractory epilepsy | KD application led to: -a reduction in alpha diversity of gut microbiota -an increase in the abundance of Bacteroidetes and a significant decrease in the abundance of Firmicutes. -in the group not responding to KD, an increase occurred in the abundance of Clostridiales, Rikenellaceae, Lachnospiraceae, Ruminococcaceae, and Alistipes (compared to individuals responding to the treatment). |
| 2017 [119] | To investigate whether patients with refractory epilepsy and healthy infants differ in gut microbiota (GM), and how ketogenic diet (KD) alters GM. | 1. 14 infants with drug-resistant epilepsy (DRE) 2. 30 healthy infants in the control group (HCs) | After a week on KD, at the phylum level, the following were found: -an increase in Bacteroidetes (38.71% vs. 26.75% before) and Fusobacteria levels (0.32% vs. 0.09% before). -a reduction in Proteobacteria level (10.77% vs. 24.31% before). After a week on KD, at the genus level, the following were found: -a decrease in the percentage of Cronobacter (10.44% vs. 23.30% before), Erysipelatoclostridium (4.89% vs. 8.67%), Faecalibacterium (4.41% vs. 8.59% before) and other organisms, including Streptococcus, Alistipes, Veillonella, Bifidobacterium, Lachnoclostridium, Lactobacillus -an increase in the percentage of Bacteroides (24.42% vs. 17.93% before), Blautia (7.69% vs. 2.57% before), Gemmiger (5.05% vs. 1.92% before), Dysgonomonas (5.36% vs. 1.49% before) and other bacteria, including Anaerostipes, Prevotella, Dorea and Odoribacter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kowalcze, K.; Dyńka, D.; Klus, W.; Dudzińska, M.; Paziewska, A. Modulation of Gut Microbiome and Metabolome as One of the Potential Mechanisms of Ketogenic Diet Effect in the Treatment of Epilepsy. Nutrients 2026, 18, 31. https://doi.org/10.3390/nu18010031
Kowalcze K, Dyńka D, Klus W, Dudzińska M, Paziewska A. Modulation of Gut Microbiome and Metabolome as One of the Potential Mechanisms of Ketogenic Diet Effect in the Treatment of Epilepsy. Nutrients. 2026; 18(1):31. https://doi.org/10.3390/nu18010031
Chicago/Turabian StyleKowalcze, Katarzyna, Damian Dyńka, Wiktoria Klus, Magdalena Dudzińska, and Agnieszka Paziewska. 2026. "Modulation of Gut Microbiome and Metabolome as One of the Potential Mechanisms of Ketogenic Diet Effect in the Treatment of Epilepsy" Nutrients 18, no. 1: 31. https://doi.org/10.3390/nu18010031
APA StyleKowalcze, K., Dyńka, D., Klus, W., Dudzińska, M., & Paziewska, A. (2026). Modulation of Gut Microbiome and Metabolome as One of the Potential Mechanisms of Ketogenic Diet Effect in the Treatment of Epilepsy. Nutrients, 18(1), 31. https://doi.org/10.3390/nu18010031

