Effects of Green Tea Extract Supplementation on Inflammatory Cytokines Among Postmenopausal Women with Overweight or Obesity—A Secondary Analysis of a Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Treatment Effect on Inflammatory Cytokines
3.2. Impact of COMT Genotype Differences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| A | Adenine |
| BMI | Body mass index |
| CI | Confidence interval |
| COMT | Catechol-O-methyltransferase |
| CRP | C-reactive protein |
| EGCG | Epigallocatechin gallate |
| G | Guanine |
| GTE | Green tea extract |
| IL-6 | Interleukin-6 |
| IQR | Interquartile range |
| LMM | Linear mixed model |
| MET | Metabolic equivalent of task |
| MGTT | Minnesota Green Tea Trial |
| RCT | Randomized controlled trial |
| SD | Standard deviation |
| SNP | Single nucleotide polymorphism |
| TNF-α | Tumor necrosis factor alpha |
References
- National Cancer Institute. Obesity and Cancer. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet#how-many-cancer-cases-may-be-due-to-obesity (accessed on 7 December 2025).
- Berger, N.A. Obesity, Inflammation, and Cancer, 1st ed.; Dannenberg, A.J., Berger, N.A., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Kehm, R.D.; McDonald, J.A.; Fenton, S.E.; Kavanaugh-Lynch, M.; Leung, K.A.; McKenzie, K.E.; Mandelblatt, J.S.; Terry, M.B. Inflammatory Biomarkers and Breast Cancer Risk: A Systematic Review of the Evidence and Future Potential for Intervention Research. Int. J. Environ. Res. Public Health 2020, 17, 5445. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Tan, T.; Yang, W.; Xu, Z.; Liu, Y. Association between the systemic immune-inflammation index and obesity among adults: Insights from the NHANES 2017–2018. PLoS ONE 2024, 19, e0308288. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Kurylowicz, A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023, 11, 690. [Google Scholar] [CrossRef]
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Vitale, E.; Rizzo, A.; Santa, K.; Jirillo, E. Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A Scoping Review. Biology 2024, 13, 352. [Google Scholar] [CrossRef]
- Garcia-Estevez, L.; Cortes, J.; Perez, S.; Calvo, I.; Gallegos, I.; Moreno-Bueno, G. Obesity and Breast Cancer: A Paradoxical and Controversial Relationship Influenced by Menopausal Status. Front. Oncol. 2021, 11, 705911. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Mohanty, P.K. Obesity as potential breast cancer risk factor for postmenopausal women. Genes Dis. 2021, 8, 117–123. [Google Scholar] [CrossRef]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef]
- Zeng, L.; Holly, J.M.; Perks, C.M. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front. Endocrinol. 2014, 5, 61. [Google Scholar] [CrossRef]
- American Cancer Society. Body Weight and Cancer Risk. Available online: https://www.cancer.org/cancer/risk-prevention/diet-physical-activity/body-weight-and-cancer-risk.html (accessed on 7 December 2025).
- American Institute for Cancer Research. Breast-Cancer-Report-2017; American Institute for Cancer Research: Arlington, VA, USA, 2017. [Google Scholar]
- Neuhouser, M.L.; Aragaki, A.K.; Prentice, R.L.; Manson, J.E.; Chlebowski, R.; Carty, C.L.; Ochs-Balcom, H.M.; Thomson, C.A.; Caan, B.J.; Tinker, L.F.; et al. Overweight, Obesity, and Postmenopausal Invasive Breast Cancer Risk: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Oncol. 2015, 1, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Noronha, N.Y.; Pinhel, M.A.S.; Nicoletti, C.F.; Quinhoneiro, D.C.G.; Pinhanelli, V.C.; Oliveira, B.A.P.; Cortes-Oliveira, C.; Delfino, H.B.P.; Wolf, L.S.; Frantz, F.G.; et al. Green tea supplementation improves oxidative stress biomarkers and modulates IL-6 circulating levels in obese women. Nutr. Hosp. 2019, 36, 583–588. [Google Scholar] [CrossRef]
- Rondanelli, M.; Gasparri, C.; Perna, S.; Petrangolini, G.; Allegrini, P.; Fazia, T.; Bernardinelli, L.; Cavioni, A.; Mansueto, F.; Oberto, L.; et al. A 60-Day Green Tea Extract Supplementation Counteracts the Dysfunction of Adipose Tissue in Overweight Post-Menopausal and Class I Obese Women. Nutrients 2022, 14, 5209. [Google Scholar] [CrossRef] [PubMed]
- Mombaini, E.; Jafarirad, S.; Husain, D.; Haghighizadeh, M.H.; Padfar, P. The Impact of Green Tea Supplementation on Anthropometric Indices and Inflammatory Cytokines in Women with Polycystic Ovary Syndrome. Phytother. Res. 2017, 31, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Malavolti, M.; Borrelli, F.; Izzo, A.A.; Fairweather-Tait, S.J.; Horneber, M.; Vinceti, M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2020, 3, CD005004. [Google Scholar] [CrossRef]
- Fujiki, H.; Suganuma, M.; Okabe, S.; Sueoka, E.; Suga, K.; Imai, K.; Nakachi, K.; Kimura, S. Mechanistic findings of green tea as cancer preventive for humans. Proc. Soc. Exp. Biol. Med. 1999, 220, 225–228. [Google Scholar] [CrossRef]
- Oh, J.W.; Muthu, M.; Pushparaj, S.S.C.; Gopal, J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023, 28, 2151. [Google Scholar] [CrossRef]
- Alam, M.; Gulzar, M.; Akhtar, M.S.; Rashid, S.; Zulfareen; Tanuja; Shamsi, A.; Hassan, M.I. Epigallocatechin-3-gallate therapeutic potential in human diseases: Molecular mechanisms and clinical studies. Mol. Biomed. 2024, 5, 73. [Google Scholar] [CrossRef]
- Mokra, D.; Joskova, M.; Mokry, J. Therapeutic Effects of Green Tea Polyphenol (–)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int. J. Mol. Sci. 2022, 24, 340. [Google Scholar] [CrossRef]
- Lambert, J.D.; Sang, S.; Yang, C.S. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol. Pharm. 2007, 4, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Syvänen, A.C.; Tilgmann, C.; Rinne, J.; Ulmanen, I. Genetic polymorphism of catechol-O-methyltransferase (COMT): Correlation of genotype with individual variation of S-COMT activity and comparison of the allele frequencies in the normal population and Parkinsonian patients in Finland. Pharmacogenetics 1997, 7, 65–71. [Google Scholar] [CrossRef]
- Dawling, S.; Roodi, N.; Mernaugh, R.L.; Wang, X.; Parl, F.F. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: Comparison of wild-type and variant COMT isoforms. Cancer Res. 2001, 61, 6716–6722. [Google Scholar] [PubMed]
- Nogueira, L.P.; Nogueira Neto, J.F.; Klein, M.R.; Sanjuliani, A.F. Short-term Effects of Green Tea on Blood Pressure, Endothelial Function, and Metabolic Profile in Obese Prehypertensive Women: A Crossover Randomized Clinical Trial. J. Am. Coll. Nutr. 2017, 36, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Samavat, H.; Dostal, A.M.; Wang, R.; Bedell, S.; Emory, T.H.; Ursin, G.; Torkelson, C.J.; Gross, M.D.; Le, C.T.; Yu, M.C.; et al. The Minnesota Green Tea Trial (MGTT), a randomized controlled trial of the efficacy of green tea extract on biomarkers of breast cancer risk: Study rationale, design, methods, and participant characteristics. Cancer Causes Control 2015, 26, 1405–1419. [Google Scholar] [CrossRef]
- Samavat, H.; Ursin, G.; Emory, T.H.; Lee, E.; Wang, R.; Torkelson, C.J.; Dostal, A.M.; Swenson, K.; Le, C.T.; Yang, C.S.; et al. A Randomized Controlled Trial of Green Tea Extract Supplementation and Mammographic Density in Postmenopausal Women at Increased Risk of Breast Cancer. Cancer Prev. Res. 2017, 10, 710–718. [Google Scholar] [CrossRef]
- National Cancer Institute. Diet History Questionnaire (Archive Version). Available online: https://epi.grants.cancer.gov/dhq/ (accessed on 29 November 2023).
- National Cancer Institute. Dietary Health Questionnaire. Available online: https://epi.grants.cancer.gov/dhq/forms/dhq1.2007.sample.pdf (accessed on 7 December 2025).
- National Cancer Institute. NCI Diet*Calc Software. Available online: https://epi.grants.cancer.gov/dhq2/dietcalc/ (accessed on 7 December 2025).
- Monastero, R.N.; Pentyala, S. Cytokines as Biomarkers and Their Respective Clinical Cutoff Levels. Int. J. Inflam. 2017, 2017, 4309485. [Google Scholar] [CrossRef]
- Tylutka, A.; Walas, L.; Zembron-Lacny, A. Level of IL-6, TNF, and IL-1beta and age-related diseases: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1330386. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO_NMH_NHD_EPG_14.7_eng.pdf; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Meng, L.; Wang, X.; Carson, J.L.; Schlussel, Y.; Shapses, S.A. Vitamin D Binding Protein and Postsurgical Outcomes and Tissue Injury Markers After Hip Fracture: A Prospective Study. J. Clin. Endocrinol. Metab. 2023, 109, e18–e24. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Samavat, H.; Dostal, A.M.; Wang, R.; Torkelson, C.J.; Yang, C.S.; Butler, L.M.; Kensler, T.W.; Wu, A.H.; Kurzer, M.S.; et al. Effect of Green Tea Supplements on Liver Enzyme Elevation: Results from a Randomized Intervention Study in the United States. Cancer Prev. Res. 2017, 10, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Dostal, A.M.; Samavat, H.; Espejo, L.; Arikawa, A.Y.; Stendell-Hollis, N.R.; Kurzer, M.S. Green Tea Extract and Catechol-O-Methyltransferase Genotype Modify Fasting Serum Insulin and Plasma Adiponectin Concentrations in a Randomized Controlled Trial of Overweight and Obese Postmenopausal Women. J. Nutr. 2016, 146, 38–45. [Google Scholar] [CrossRef]
- CRN Survey Shows Consistent Supplement Usage with Increase of Specialty Product Use Over Time. Available online: https://www.crnusa.org/newsroom/crn-survey-shows-consistent-supplement-usage-increase-specialty-product-use-over-time (accessed on 7 December 2025).

| Characteristic | GTE (n = 50) | Placebo (n = 47) |
|---|---|---|
| Age (years) 1 | 60.4 ± 5.2 | 60.4 ± 5.5 |
| BMI (kg/m2) 1 | 29.1 ± 3.1 | 28.7 ± 2.7 |
| Alcohol (g/day) 2 | 2.6 (0.9, 7.6) | 3.4 (0.8, 10.8) |
| Physical activity (MET-h/week) 2 | 40.3 (12.0, 58.0) | 24.5 (12.0, 40.5) |
| Smoking status, n (%) | ||
| Never | 34 (68.0) | 38 (83.0) |
| Former | 16 (32.0) | 9 (17.0) |
| Vitamin supplement use, n (%) | ||
| No | 5 (10.0) | 5 (11.0) |
| Yes | 45 (90) | 42 (89.0) |
| COMT genotype, n (%) | ||
| Low/intermediate activity (A/A)/(A/G) | 25 (50.0) | 26 (55.0) |
| High activity (G/G) | 25 (50.0) | 21 (45.0) |
| Component | GTE 1 (n = 50) | Placebo 1 (n = 47) |
|---|---|---|
| Energy (kcals/day) | ||
| Baseline | 1380.9 (977.3, 1993,6) | 1376.4 (1108.2, 1752.2) |
| 12 months | 1404.6 (833.3, 1847.8) | 1220.3 (1004.3, 1602.1) |
| Protein (% kcals) | ||
| Baseline | 16.3 (14.1, 18.0) | 16.2 (15.0, 17.8) |
| 12 months | 16.1 (14.6, 18.0) | 16.6 (14.9, 19.1) |
| Carbohydrate (% kcals) | ||
| Baseline | 48.6 (43.7, 56.6) | 52.2 (46.6, 55.3) |
| 12 months | 48.2 (43.0, 52.9) | 51.3 (44.7, 55.4) |
| Fat (% kcals) | ||
| Baseline | 33.2 (28.6, 36.9) | 31.4 (27.7, 35.5) |
| 12 months | 35.7 (31.1, 39.8) | 31.2 (27.6, 36.5) |
| Saturated fat (% kcals) | ||
| Baseline | 10.2 (9.5, 12.3) | 10.2 (8.8, 11.2) |
| 12 months | 11.6 (9.4, 12.8) | 10.6 (8.8, 12.7) |
| Monounsaturated fat (% kcals) | ||
| Baseline | 12.7 (10.4, 14.6) | 11.9 (10.6, 13.2) |
| 12 months | 13.5 (11.7, 15.4) | 12.2 (10.3, 14.6) |
| Polyunsaturated fat (% kcals) | ||
| Baseline | 7.1 (5.9, 9.1) | 6.5 (5.5, 8.2) |
| 12 months | 7.7 (6.1, 9.4) | 6.5 (5.6, 7.7) |
| Total n-3 fatty acids (g) | ||
| Baseline | 1.0 (0.7, 1.4) | 1.0 (0.7, 1.2) |
| 12 months | 1.0 (0.6, 1.3) | 0.9 (0.7, 1.2) |
| Trans fat (g) | ||
| Baseline | 2.3 (1.8, 3.8) | 2.8 (2.0, 3.6) |
| 12 months | 2.4 (1.7, 3.4) | 2.2 (1.7, 3.7) |
| Fiber (g) | ||
| Baseline | 16.2 (10.9, 21.4) | 15.3 (12.2, 19.0) |
| 12 months | 16.0 (9.2, 20.6) | 13.4 (10.8, 19.6) |
| Added sugar (% kcals) | ||
| Baseline | 9.6 (7.2, 12.6) | 10.0 (8.2, 13.7) |
| 12 months | 9.2 (7.6, 11.2) | 9.7 (7.6, 12.7) |
| Inflammatory Cytokines | n | GTE | n | Placebo | p-Value a | p-Value b | p-Value c |
|---|---|---|---|---|---|---|---|
| CRP (mg/L) | |||||||
| Baseline | 50 | 2.03 (1.58,2.62) | 47 | 1.76 (1.36, 2.29) | 0.44 | 0.24 | 0.97 |
| Month 6 | 48 | 2.00 (1.54, 2.60) | 44 | 1.79 (1.36, 2.34) | 0.43 | ||
| Month 12 | 50 | 2.09 (1.62, 2.70) | 47 | 1.92 (1.48, 2.50) | 0.65 | ||
| Δ 0–12 m | 50 | −0.17 (−0.66, 0.31) | 47 | 0.31 (−0.52, 1.15) | 0.37 | ||
| IL-6 (pg/mL) | |||||||
| Baseline | 38 | 1.88 (1.32, 2.66) | 38 | 1.36 (0.96, 1.93) | 0.24 | 0.59 | 0.43 |
| Month 6 | 38 | 1.85 (1.30, 2.62) | 35 | 1.95 (1.35, 2.80) | 0.95 | ||
| Month 12 | 36 | 2.11 (1.47, 3.02) | 43 | 2.00 (1.44, 2.78) | 0.77 | ||
| Δ 0–12 m | 30 | −0.65 (−1.73, 0.43) | 36 | 0.69 (−0.29, 1.67) | 0.24 | ||
| TNF-α (pg/mL) | |||||||
| Baseline | 49 | 8.99 (7.85, 10.29) | 45 | 9.01 (7.82, 10.37) | 0.89 | 0.36 | 0.70 |
| Month 6 | 48 | 9.16 (7.99, 10.50) | 44 | 9.36 (8.12, 10.80) | 0.85 | ||
| Month 12 | 50 | 8.36 (7.32, 9.56) | 47 | 9.33 (8.12, 10.71) | 0.27 | ||
| Δ 0–12 m | 49 | −0.36 (−1.67, 0.95) | 45 | 0.34 (−1.00, 1.68) | 0.55 | ||
| Inflammatory Cytokines | COMT Genotype | |||||||
|---|---|---|---|---|---|---|---|---|
| High Activity (G/G) | Low/Intermediate Activity (A/A or G/A) | |||||||
| n | GTE | n | Placebo | n | GTE | n | Placebo | |
| CRP (mg/L) | ||||||||
| Baseline | 25 | 2.17 (1.52, 3.10) | 21 | 2.35 (1.59, 3.47) | 25 | 1.91 (1.34, 2.73) | 26 | 1.40 (0.98, 1.98) |
| Month 6 | 23 | 2.20 (1.51, 3.19) | 20 | 2.27 (1.52, 3.39) | 25 | 1.84 (1.29, 2.63) | 24 | 1.46 (1.02, 2.11) |
| Month 12 | 25 | 2.56 (1.79, 3.66) | 21 | 2.16 (1.47, 3.20) | 25 | 1.71 (1.20, 2.45) | 26 | 1.75 (1.23, 2.48) |
| Δ 0–12 m | 25 | 0.09 (−0.26, 0.43) | 21 | −0.26 (−0.93, 0.41) | 25 | −0.44 (−0.86, −0.01) | 26 | 0.78 (0.12, 1.43) |
| p-value 1 | 0.671 | |||||||
| IL-6 (pg/mL) | ||||||||
| Baseline | 19 | 2.08 (1.27, 3.41) | 18 | 1.28 (0.77, 2.13) | 19 | 1.70 (1.03, 2.78) | 20 | 1.44 (0.89, 2.32) |
| Month 6 | 18 | 2.45 (1.47, 4.07) | 17 | 2.45 (1.45, 4.14) | 20 | 1.43 (0.88, 2.32) | 18 | 1.57 (0.94, 2.61) |
| Month 12 | 19 | 2.33 (1.42, 3.82) | 19 | 1.75 (1.07, 2.61) | 17 | 1.88 (1.12, 3.17) | 24 | 2.23 (1.43, 3.46) |
| Δ 0–12 m | 16 | −0.44 (−1.15, 0.28) | 17 | 0.98 (−0.04, 2.01) | 14 | −0.89 (−1.91, 0.12) | 19 | 0.43 (−0.09, 0.95) |
| p-value 1 | 0.316 | |||||||
| TNF-α (pg/mL) | ||||||||
| Baseline | 24 | 11.24 (9.35, 13.51) | 20 | 8.78 (7.17, 10.73) | 25 | 7.26 (6.06, 8.69) | 25 | 9.20 (7.68, 11.02) |
| Month 6 | 23 | 10.94 (9.06, 13.20) | 20 | 9.26 (7.57, 11.33) | 25 | 7.78 (6.50, 9.33) | 24 | 9.45 (7.86, 11.36) |
| Month 12 | 25 | 10.74 (8.97, 12.86) | 21 | 10.35 (8.50, 12.60) | 25 | 6.52 (5.44, 7.80) | 26 | 8.58 (7.19, 10.23) |
| Δ 0–12 m | 24 | 0.14 (−0.96, 1.24) | 20 | 1.37 (0.25, 2.48) | 25 | −0.84 (−1.49, 0.52) | 25 | −0.48 (−1.49, 0.52) |
| p-value 1 | 0.307 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cunningham, A.; Gomes, A.; Meng, L.; Shapses, S.; Byham-Gray, L.; Samavat, H. Effects of Green Tea Extract Supplementation on Inflammatory Cytokines Among Postmenopausal Women with Overweight or Obesity—A Secondary Analysis of a Randomized Controlled Trial. Nutrients 2026, 18, 143. https://doi.org/10.3390/nu18010143
Cunningham A, Gomes A, Meng L, Shapses S, Byham-Gray L, Samavat H. Effects of Green Tea Extract Supplementation on Inflammatory Cytokines Among Postmenopausal Women with Overweight or Obesity—A Secondary Analysis of a Randomized Controlled Trial. Nutrients. 2026; 18(1):143. https://doi.org/10.3390/nu18010143
Chicago/Turabian StyleCunningham, Anca, Allison Gomes, Lingqiong Meng, Sue Shapses, Laura Byham-Gray, and Hamed Samavat. 2026. "Effects of Green Tea Extract Supplementation on Inflammatory Cytokines Among Postmenopausal Women with Overweight or Obesity—A Secondary Analysis of a Randomized Controlled Trial" Nutrients 18, no. 1: 143. https://doi.org/10.3390/nu18010143
APA StyleCunningham, A., Gomes, A., Meng, L., Shapses, S., Byham-Gray, L., & Samavat, H. (2026). Effects of Green Tea Extract Supplementation on Inflammatory Cytokines Among Postmenopausal Women with Overweight or Obesity—A Secondary Analysis of a Randomized Controlled Trial. Nutrients, 18(1), 143. https://doi.org/10.3390/nu18010143

