Anti-Obesity and Diuretic Effects of Immature Watermelon Rind Extract in HFD-Induced Obese Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Citrulline Analysis
2.3. Experimental Animals
2.4. Experimental Groups
2.5. Measurement of Body Weight and Food Intake
2.6. Organ Weight Measurement
2.7. Serum Lipid Profile and Sodium Ion Concentration
2.8. Histopathological Analysis
2.9. Statistical Analysis
3. Results
3.1. Citrulline Analysis in WM and WMS
3.2. Change in Body Weight
3.3. Body Weight Gain, Food Intake, and Food Efficiency Ratio
3.4. Liver Weight and Adipose Tissue Weight
3.5. Triglycerides and Total Cholesterol
3.6. Serum Sodium Ion Concentration
3.7. Histological Effects of WM on Liver and Epididymal Adipose Tissue in High-Fat Diet-Induced Obese Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mokdad, A.H.; Bowman, B.A.; Ford, E.S.; Vinicor, F.; Marks, J.S.; Koplan, J.P. The continuing epidemics of obesity and diabetes in the United States. JAMA 2001, 286, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Statistics of Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 20 May 2023).
- Cardel, M.I.; Atkinson, M.A.; Taveras, E.M.; Holm, J.C.; Kelly, A.S. Obesity treatment among adolescents: A review of current evidence and future directions. JAMA Pediatr. 2020, 174, 609–617. [Google Scholar] [CrossRef]
- Bray, G.A. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 2004, 89, 2583–2589. [Google Scholar] [CrossRef]
- Sharma, A.M. Adipose tissue: A mediator of cardiovascular risk. Int. J. Obes. 2002, 4, 5–7. [Google Scholar] [CrossRef]
- Björntorp, P. The associations between obesity, adipose tissue distribution and disease. Acta Med. Scand. Suppl. 1988, 723, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Na, S.Y.; Myung, S.J. Obesity and colorectal cancer. Korean J. Gastroenterol. 2012, 59, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Kyung, M.G.; Lim, J.Y.; Lee, K.S.; Jung, S.W.; Choe, K.B.; Yang, C.K.; Kim, Y.R. Effects of short-term supplementation of erythritol-salt on urinary electrolyte excretion in rats. J. Nutr. Health 2014, 47, 99–105. [Google Scholar] [CrossRef]
- Fonseca-Alaniz, M.H.; Brito, L.C.; Borges-Silva, C.N.; Takada, J.; Andreotti, S.; Lima, F.B. High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats. Obesity 2007, 15, 2200–2208. [Google Scholar] [CrossRef]
- Park, J.S.; Akbar, H.; Yim, J.-E. Correlation between sodium intake and obesity with related factors among Koreans: A cross-sectional study on dietary intake and eating habits. J. Nutr. Health 2024, 57, 65–74. [Google Scholar] [CrossRef]
- Ministry for Health; Welfare and Family Affairs; Korea Centers for Disease Control and Prevention. National Health Nutrition Examination Survey Report; Korea Centers for Disease Control and Prevention: Cheongwon, Republic of Korea, 2012.
- Choi, J.; Moon, H.K. Nutrients and dish intake by fasting blood glucose level. Korean J. Nutr. 2010, 43, 463–474. [Google Scholar] [CrossRef]
- Yon, M.; Lee, Y.; Kim, D.; Lee, J.; Koh, E.; Nam, E.; Shin, H.; Kang, B.W.; Kim, J.W.; Heo, S.; et al. Major sources of sodium intake of the Korean population at prepared dish level: Based on the KNHANES 2008 & 2009. Korean J. Community Nutr. 2011, 16, 473–487. [Google Scholar] [CrossRef]
- Kang, J.G.; Park, C.Y. Anti-obesity drugs: A review about their effects and safety. Diabetes Metab. J. 2012, 36, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Park, S.W. Drug therapy for obesity. Korean J. Obes. 2012, 21, 197–202. [Google Scholar] [CrossRef]
- Wang, Y.M.; van Eys, J. Nutritional significance of fructose and sugar alcohols. Annu. Rev. Nutr. 1981, 1, 437–475. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.P.; Lim, J.Y.; Jeong, E.J.; Shin, D.H. Physicochemical properties of watermelon according to cultivars. Korean J. Food Preserv. 2008, 15, 706–710. Available online: https://koreascience.kr/article/JAKO200835062474433.pub (accessed on 23 December 2025).
- Kim, K.S.; Lee, H.J.; Kim, S.M. Volatile flavor components in watermelon and oriental melon. Korean J. Food Sci. Technol. 1999, 31, 322–328. Available online: https://koreascience.kr/article/JAKO199903042090883.page (accessed on 23 December 2025).
- Hwang, Y.; Lee, K.K.; Jung, G.T.; Ko, B.R.; Choi, D.C.; Choi, J.S.; Eun, J.B. Manufacturing of watermelon beverage added with natural color extracts. Korean J. Food Sci. Technol. 2004, 36, 226–232. Available online: https://koreascience.kr/article/JAKO200404637339780.page (accessed on 23 December 2025).
- Hwang, Y.; Lee, K.K.; Jung, G.T.; Ko, B.R.; Choi, D.C.; Choi, Y.G.; Eun, J.B. Manufacturing of wine with watermelon. Korean J. Food Sci. Technol. 2004, 36, 50–57. Available online: https://koreascience.kr/article/JAKO200404637337981.pub (accessed on 23 December 2025).
- Suh, J.Y.; Kang, H.A.; Chang, K.S. Concentration of watermelon juice by reverse osmosis. Food Eng. Prog. 2001, 5, 160–164. [Google Scholar] [CrossRef]
- Sohn, J.Y.; Ban, S.C.; Shin, J.S.; Hong, S.H. Distribution of free sugars in the various portions of watermelon (Citrullus vuigaris L.) and muskmelon (Cucumis meio var. reticulatus Naud.). Appl. Biol. Chem. 1996, 39, 200–205. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO199603042991999 (accessed on 23 December 2025).
- Kikuchi, T.; Ikedaya, A.; Toda, A.; Ikushima, K.; Yamakawa, T.; Okada, R.; Yamada, T.; Tanaka, R. Pyrazole alkaloids from watermelon (Citrullus lanatus) seeds. Phytochem. Lett. 2015, 12, 94. [Google Scholar] [CrossRef]
- Madhavi, P.; Rao, M.; Vakati, K.; Rahman, H.; Eswaraiah, M.C. Evaluation of anti-inflammatory activity of Citrullus lanatus Seed Oil by In-vivo and In-vitro Models. Int. J. Pharm. Sci. Rev. Res. 2012, 6, 129–132. Available online: https://www.semanticscholar.org/paper/a04366d71373b2d4c28694d797cd6641c1cb4750 (accessed on 23 December 2025).
- Siddig, I.A.; Loiy, E.A.H.; Hasnah, M.S.; Sakina, M.A.Y.; Waleed, S.K.; Syam, M.; Manal, M.E.T.; Syahida, A.; Cheah, S.C.; Putri, N.; et al. Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: Role of reactive nitrogen species and cyclooxygenase enzyme inhibition. Fitoterapia 2011, 82, 1190–1197. [Google Scholar] [CrossRef]
- Kang, H.M.; Park, S.Y.; Kim, J.E.; Lee, K.W.; Hwang, D.Y.; Choi, Y.W. Citrullus mucosospermus Extract Reduces Weight Gain in High-Fat Diet-Induced Obese C57BL/6N Mice. Nutrients 2024, 16, 2171. [Google Scholar] [CrossRef] [PubMed]
- Daughtry, J.; Rasmussen, C.; Rosas, M., Jr.; Zhang, L.; Lu, S.; Hooshmand, S.; Liu, C.; Kern, M.; Hong, M.Y. Blenderized watermelon consumption decreases body mass index, body mass index percentile, body fat and HbA1c in children with overweight or obesity. Pediatr. Obes. 2023, 18, e13038. [Google Scholar] [CrossRef] [PubMed]
- Baião, D.D.S.; Da Silva, D.V.T.; Paschoalin, V.M.F. Watermelon Nutritional Composition with a Focus on L-Citrulline and Its Cardioprotective Health Effects—A Narrative Review. Nutrients 2025, 17, 3221. [Google Scholar] [CrossRef]
- Volino-Souza, M.; Foureaux, G.; dos Santos, A.G.; Rocha, K.S.; Cella, P.S.; da Mota, M.M.P.; da Costa, D.P.B.; Lins, E.S.D.S.; de Carvalho, T.F.; da Silva, J.J.S.; et al. Current Evidence of Watermelon (Citrullus lanatus) Ingestion on Vascular Health: A Food Science and Technology Perspective. Nutrients 2022, 14, 2913. [Google Scholar] [CrossRef]
- Arulselvan, P.; Senthilkumar, G.P.; Kaur, J.; Sreepriya, M.; Thangam, E.B.; Somasundaram, S. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: Cellular and molecular mechanisms in mice. PLoS ONE 2012, 7, e44658. [Google Scholar] [CrossRef] [PubMed]
- Benkeblia, N.; Shiomi, N. Fructooligosaccharides of edible alliums: Occurrence, chemistry and health benefits. Curr. Nutr. Food Sci. 2006, 2, 181–191. Available online: https://www.researchgate.net/publication/233665130 (accessed on 23 December 2025). [CrossRef]
- He, F.J.; MacGregor, G.A. Reducing population salt intake worldwide: From evidence to implementation. Prog. Cardiovasc. Dis. 2010, 52, 363–382. [Google Scholar] [CrossRef]
- Bahri, S.; Curis, E.; El Wafi, F.; Cerutti, C.; Crenn, P.; Chaumeil, J.-C.; Cynober, L.; Béziel, K. Mechanisms and kinetics of citrulline uptake in a model of human intestinal epithelial cells. Clin. Nutr. 2008, 27, 872–880. [Google Scholar] [CrossRef]
- Moinard, C.; Nicolis, I.; Neveux, N.; Darquy, S.; Benazeth, S.; Cynober, L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: The Citrudose pharmacokinetic study. Br. J. Nutr. 2008, 99, 855–862. [Google Scholar] [CrossRef]
- Joffin, N.; Jaubert, A.-M.; Bamba, J.; Barouki, R.; Noirez, P.; Forest, C. Acute induction of uncoupling protein 1 by citrulline in cultured explants of white adipose tissue from lean and high-fat-diet-fed rats. Adipocyte 2015, 4, 129–134. [Google Scholar] [CrossRef]
- Joffin, N.; Jaubert, A.-M.; Durant, S.; Bastin, J.; De Bandt, J.-P.; Cynober, L.; Moinard, C.; Coumoul, X.; Forest, C.; Noirez, P. Citrulline reduces glyceroneogenesis and induces fatty acid release in visceral adipose tissue from overweight rats. Mol. Nutr. Food Res. 2015, 58, 2320–2330. [Google Scholar] [CrossRef]
- He, F.J.; MacGregor, G.A. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens. 2009, 23, 363–384. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Neuenschwander, B.; Capkun-Niggli, G.; Branson, M.; Spiegelhalter, D.J. Summarizing historical information on controls in clinical trials. Clin. Trials 2010, 7, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Wadden, T.A.; Butryn, M.L.; Hong, P.S.; Tsai, A.G. Behavioral treatment of obesity in patients encountered in primary care settings: A systematic review. JAMA 2014, 312, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.Y.; Jang, J.Y.; Lee, Y.H.; Lee, G.Y.; Lee, H.J.; Hwang, K.T.; Kim, Y.J.; Jun, Y.J.; Lee, J.M. Lipolytic effect of methanol extracts from Luffa cylindrica in mature 3T3-L1 adipocytes. J. Korean Soc. Food Sci. Nutr. 2010, 39, 813–819. [Google Scholar] [CrossRef]
- Curis, E.; Nicolis, I.; Moinard, C.; Osowska, S.; Zerrouk, N.; Bénazeth, S.; Cynober, L. Almost all about citrulline in mammals. Amino Acids 2005, 29, 177–205. [Google Scholar] [CrossRef]
- Wu, G.; Meininger, C.J. Regulation of nitric oxide synthesis by dietary factors. Annu. Rev. Nutr. 2002, 22, 61–86. [Google Scholar] [CrossRef]
- Causon, R.C.; Carruthers, M.E. Measurement of catecholamines in biological fluids by high-performance liquid chromatography: A comparison of fluorimetric with electrochemical detection. J. Chromatogr. 1982, 229, 301–309. [Google Scholar] [CrossRef]
- Rimando, A.M.; Perkins-Veazie, P.M. Determination of citrulline of watermelon rind. J. Chromatogr. A 2005, 1078, 196–201. [Google Scholar] [CrossRef]
- Allerton, T.D.; Proctor, D.N.; Stephens, J.M. L-Citrulline Supplementation: Impact on Cardiometabolic Health. Nutrients 2018, 10, 921. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Park, S.Y.; Kang, H.M.; Kang, N.J.; Hwang, D.Y.; Choi, Y.-W. Edible Vitalmelon Fruit Extract Inhibits Adipogenesis and Ameliorates High-Fat Diet-Induced Obesity. Biomed Res. Int. 2022, 2022, 2369650. [Google Scholar] [CrossRef]
- Miyai, S.; Hashizume, T.; Okazaki, T. Effects of a Watermelon Extract Beverage on Canine Lipid Metabolism and Urine Crystals. Anim. Vet. Sci. 2018, 6, 74–79. [Google Scholar] [CrossRef]
- Takeda, K.; Machida, M.; Kohara, A.; Omi, N.; Takemasa, T. Effects of citrulline supplementation on fatigue and exercise performance in mice. J. Nutr. Biochem. 2016, 32, 67–75. [Google Scholar] [CrossRef]
- Blanco, G.; Mercer, R.W. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am. J. Physiol.-Cell Physiol. 1998, 275, F633–F650. [Google Scholar] [CrossRef]
- Lee, H.S.; Choi, J.H.; Kim, Y.E.; Lee, C.H. Effect of dietary intake of Salicornia herbacea L. hot water extract on anti-obesity in diet-induced obese rats. J. Korean Soc. Food Sci. Nutr. 2012, 41, 950–956. [Google Scholar] [CrossRef]
- Drenjančević-Perić, I.; Jelaković, B.; Lombard, J.H.; Kunert, M.P.; Kibel, A.; Gros, M. High-salt diet and hypertension: Focus on the renin–angiotensin system. Kidney Blood Press. Res. 2010, 34, 1–11. [Google Scholar] [CrossRef]
- Becraft, A.R.; Sturm, M.L.; Mendez, R.L.; Park, S.H.; Lee, S.I.; Shay, N.F. Intake of watermelon or its byproducts alters glucose metabolism, the microbiome, and hepatic proinflammatory metabolites in high-fatfed male C57BL/6 J mice. J. Nutr. 2020, 150, 434–442. [Google Scholar] [CrossRef]
- Wu, Q.; Burley, G.; Li, L.C.; Lin, S.; Shi, Y.C. The role of dietary salt in metabolism and energy balance: Insights beyond cardiovascular disease. Diabetes Obes. Metab. 2023, 25, 1147–1161. [Google Scholar] [CrossRef]
- Jeong, H.S.; Jeong, J.C. Anti-adipogencic effect of Piper nigrum Linne. Korean J. Orient. Physiol. Pathol. 2010, 24, 118–123. Available online: https://www.kci.go.kr/kciportal/landing/article.kci?arti_id=ART001420955 (accessed on 23 December 2025).
- An, S.M.; Kim, J.-H. Adipose tissue and metabolic health. Diabetes Metab. J. 2023, 47, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Zotti, T.; Giacco, A.; Cuomo, A.; Cerulo, L.; Petito, G.; Iervolino, S.; Roperto, A.P.; Gnoni, A.; Gnoni, G.V.; Cioffi, F. Exercise equals the mobilization of visceral versus subcutaneous adipose fatty acid molecules in fasted rats associated with modulation of the AMPK/ATGL/HSL axis. Nutrients 2023, 15, 3095. [Google Scholar] [CrossRef] [PubMed]
- Shinde, A.B.; Song, A.; Wang, Q.A. Brown adipose tissue heterogeneity, energy metabolism, and beyond. Front. Endocrinol. 2021, 12, 651763. [Google Scholar] [CrossRef]
- Carpentier, A.C.; Blondin, D.P.; Nedergaard, J. Brown adipose tissue—A translational perspective. Endocr. Rev. 2023, 44, 143–175. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, Z.; Yun, X.; Chen, S.; Jiang, H.; Chen, W.; Lin, L. High-salt intake induced visceral adipose tissue hypoxia and its association with circulating monocyte subsets in humans. Am. J. Clin. Nutr. 2014, 99, 113–122. [Google Scholar] [CrossRef]
- Shin, H.S.; Kim, G.Y.; Seo, I.B.; Kim, H.H. Preventive effects of Typhae pollen on the diet-induced hyperlipidemia in rats. J. Korean Orient. Med. 2003, 24, 32–39. Available online: https://koreascience.kr/article/JAKO200311923035896.pdf (accessed on 23 December 2025).
- Figueroa, A.; Wong, A.; Kalfon, R.; Hooshmand, S.; Sanchez-Gonzalez, M.A. Effects of watermelon supplementation on arterial stiffness and wave reflection amplitude in postmenopausal women. Menopause 2019, 26, 1065–1071. [Google Scholar] [CrossRef]
- Fonseca-Alaniz, M.H.; Takada, J.; Andreotti, S.; de Campos, T.B.; Campaña, A.B.; Borges-Silva, C.N.; Lima, F.B. High sodium intake enhances insulin-stimulated glucose uptake in rat epididymal adipose tissue. Obesity 2008, 16, 1186–1192. [Google Scholar] [CrossRef]
- Neeland, I.J.; Turer, A.T.; Ayers, C.R.; Powell-Wiley, T.M.; Vega, G.L.; Farzaneh-Far, R.; Grundy, S.M.; Khera, A.; McGuire, D.K.; de Lemos, J.A. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012, 308, 1150–1159. [Google Scholar] [CrossRef]
- Collins, J.K.; Wu, G.; Perkins-Veazie, P.; Spears, K.; Claypool, P.L.; Baker, R.A.; Clevidence, B.A. Watermelon consumption increases plasma arginine concentrations in adults. Food Funct. 2017, 8, 3643–3651. [Google Scholar] [CrossRef] [PubMed]
- Shaik Mohamed Sayed, U.F.; Moshawih, S.; Goh, H.P.; Kifli, N.; Gupta, G.; Singh, S.K.; Chellappan, D.K.; Dua, K.; Hermansyah, A.; Ser, H.L.; et al. Natural products as novel anti-obesity agents: Insights into mechanisms of action and potential for therapeutic management. Front. Pharmacol. 2023, 14, 1182937. [Google Scholar] [CrossRef] [PubMed]
- Min, O.J.; Sharma, B.R.; Park, C.M.; Rhyu, D.Y. Effect of Myadis stigma water extract on adipogenesis and blood glucose in 3T3-L1 adipocytes and db/db mice. Korean J. Pharmacogn. 2011, 42, 201–208. Available online: https://koreascience.kr/article/JAKO201121055566730.pdf (accessed on 23 December 2025).
- Beaumont, M.; Portune, K.J.; Steuer, N.; Lan, A.; Cerrudo, V.; Audebert, M.; Dumont, F.; Mancano, G.; Khodorova, N.; Andriamihaja, M.; et al. Selective nourishing of gut microbiota with amino acids: A novel prebiotic approach? Front. Nutr. 2022, 9, 1066898. [Google Scholar] [CrossRef] [PubMed]








| Component | Normal Diet | High-Fat Diet (60%) | ||
|---|---|---|---|---|
| Product | (gm %) | (kcal %) | (gm %) | (kcal %) |
| Protein | 19.2 | 20 | 26.2 | 20 |
| Carbohydrate | 67.3 | 70 | 26.3 | 20 |
| Fat | 4.3 | 10 | 34.9 | 60 |
| Total | 100 | 100 | ||
| Ingredient | (gm) | (kcal) | (gm) | (kcal) |
| Casein, 80Mesh | 200 | 800 | 200 | 800 |
| L-Cystin | 3 | 12 | 3 | 12 |
| Corn Starch | 315 | 1260 | 0 | 0 |
| Maltodextrin 10 | 35 | 140 | 125 | 500 |
| Sucrose | 350 | 1400 | 68.8 | 275.2 |
| Cellulose, BW200 | 50 | 0 | 50 | 0 |
| Soybean Oil | 25 | 225 | 25 | 225 |
| Lard | 20 | 180 | 245 | 2205 |
| Mineral Mix S10026 | 10 | 0 | 10 | 0 |
| DiCalcium Phosphate | 13 | 0 | 13 | 0 |
| Calcium Carbonate | 5.5 | 0 | 5.5 | 0 |
| Potassium Citrate, 1 H20 | 16.5 | 0 | 16.5 | 0 |
| Vitamin Mix V10001 | 10 | 40 | 10 | 40 |
| Choline Bitartrate | 2 | 0 | 2 | 0 |
| FD&C Yellow Dye#5 | 0.05 | 0 | 0 | 0 |
| FD&C Blue Dye#1 | 0 | 0 | 0.05 | 0 |
| Total | 1055.05 | 4057 | 773.85 | 4057 |
| Group | Material | Dose | n | |
|---|---|---|---|---|
| 1 | CON | Normal Diet + DW | - | 5 |
| 2 | HFD-C | High-Fat Diet + DW | - | 5 |
| 3 | HFD-WM | High-Fat Diet + WM | 380 mg/kg/day | 5 |
| 4 | HFD-WMS | High-Fat Diet + WMS | 380 mg/kg/day | 5 |
| 5 | HFD-S | High-Fat Diet + Salt | 380 mg/kg/day | 5 |
| Measurements | CON | HFD-C | HFD-WM | HFD-WMS | HFD-S |
|---|---|---|---|---|---|
| Initial body weight (g) | 20.06 | 19.28 | 19.00 | 18.82 | 18.88 |
| Final body weight (g) | 30.58 | 43.22 | 33.78 | 35.88 | 39.72 |
| Feed intakes (g/day) | 28.38 | 24.44 | 22.96 | 23.24 | 24.26 |
| Water intakes (mL/day) | 32.30 | 23.24 | 22.18 | 30.49 | 23.49 |
| Weight gain (g/6 week) | 10.52 | 23.94 | 14.96 | 16.88 | 20.84 |
| FER | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 |
| Measurement | Group | ||||
|---|---|---|---|---|---|
| DW | S | WM | WMS | ||
| Serum sodium (mmol/L) | 0 min | 85.0 ± 5.2 | 95.0 ± 10.8 | 82.7 ± 21.4 | 95.7 ± 14.7 |
| 60 min | 101 ± 2.6 | 131.0 ± 2.0 | 99.0 ± 10.1 | 111.7 ± 8.7 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lee, Y.-s.; Kim, J.y.; So, S.; Lee, B.-Y. Anti-Obesity and Diuretic Effects of Immature Watermelon Rind Extract in HFD-Induced Obese Mice. Nutrients 2026, 18, 128. https://doi.org/10.3390/nu18010128
Lee Y-s, Kim Jy, So S, Lee B-Y. Anti-Obesity and Diuretic Effects of Immature Watermelon Rind Extract in HFD-Induced Obese Mice. Nutrients. 2026; 18(1):128. https://doi.org/10.3390/nu18010128
Chicago/Turabian StyleLee, Yun-seong, Ji yong Kim, Sunju So, and Bo-Young Lee. 2026. "Anti-Obesity and Diuretic Effects of Immature Watermelon Rind Extract in HFD-Induced Obese Mice" Nutrients 18, no. 1: 128. https://doi.org/10.3390/nu18010128
APA StyleLee, Y.-s., Kim, J. y., So, S., & Lee, B.-Y. (2026). Anti-Obesity and Diuretic Effects of Immature Watermelon Rind Extract in HFD-Induced Obese Mice. Nutrients, 18(1), 128. https://doi.org/10.3390/nu18010128

