Dietary Patterns and Major Depression: Results from 15,262 Participants (International ALIMENTAL Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethical and Regulatory Aspects
2.3. Inclusion and Exclusion Criteria
2.4. Collected Variables
2.4.1. Depression Group
2.4.2. Dietary Pattern
2.4.3. Sociodemographic, Health, and Lifestyle Variables
- −
- sex (binary);
- −
- body mass index (kg/m2) (calculated based on the self-reported height and weight, with obesity being defined by a body mass index ≥ 30);
- −
- presence of a partner living at home (binary);
- −
- presence of children at home (binary);
- −
- education level (university/tertiary vs. high school or lower degree) (binary);
- −
- unemployment (binary);
- −
- number of cigarettes smoked daily. Participants were classified in the “current daily smoking” group if they answered that they currently smoked one or more cigarette per day;
- −
- phototype using the Fitzpatrick classification. Phototypes were included because they can influence vitamin D status and sun exposure, which are potential confounding factors that may affect depressive status. Phototypes 1 and 2 (redheads and blondes) were grouped together and compared to the other 4 combined phototypes;
- −
- subjective nutritional knowledge. Participants answered the question “Do you consider yourself to have good knowledge of nutrition?” They were classified in the “good knowledge” group if they answered “yes” or “rather yes,” and in the other group if they answered “no” or “rather no.”;
- −
- physical activity. Participants were classified in the “physically inactive” group according to the Moderate to Vigorous Physical Activity (MVPA) score on the validated “Observatoire National de l’Activité Physique et de la Sédentarité” (National Observatory of Physical Activity and Sedentary Behavior) Physical Activity Questionnaire (ONAPS-PAQ). The questionnaire measures, based on self-reported values, the volume of physical activity and sedentary time of the respondent during a typical week.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gianfredi, V.; Dinu, M.; Nucci, D.; Eussen, S.J.P.M.; Amerio, A.; Schram, M.T.; Schaper, N.; Odone, A. Association between Dietary Patterns and Depression: An Umbrella Review of Meta-Analyses of Observational Studies and Intervention Trials. Nutr. Rev. 2023, 81, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Xu, Y.; Li, K.; Liu, L. Increased Fruit Intake Is Associated with Reduced Risk of Depression: Evidence from Cross-Sectional and Mendelian Randomization Analyses. Front. Public Health 2023, 11, 1276326. [Google Scholar] [CrossRef] [PubMed]
- Carnegie, R.; Zheng, J.; Sallis, H.M.; Jones, H.J.; Wade, K.H.; Evans, J.; Zammit, S.; Munafò, M.R.; Martin, R.M. Mendelian Randomisation for Nutritional Psychiatry. Lancet Psychiatry 2020, 7, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Bizzozero-Peroni, B.; Martínez-Vizcaíno, V.; Fernández-Rodríguez, R.; Jiménez-López, E.; Núñez de Arenas-Arroyo, S.; Saz-Lara, A.; Díaz-Goñi, V.; Mesas, A.E. The Impact of the Mediterranean Diet on Alleviating Depressive Symptoms in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2025, 83, 29–39. [Google Scholar] [CrossRef]
- Dai, S.; Wellens, J.; Yang, N.; Li, D.; Wang, J.; Wang, L.; Yuan, S.; He, Y.; Song, P.; Munger, R.; et al. Ultra-Processed Foods and Human Health: An Umbrella Review and Updated Meta-Analyses of Observational Evidence. Clin. Nutr. Edinb. Scotl. 2024, 43, 1386–1394. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra-Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- Werneck, A.O.; Steele, E.M.; Delpino, F.M.; Lane, M.M.; Marx, W.; Jacka, F.N.; Stubbs, B.; Touvier, M.; Srour, B.; Louzada, M.L.; et al. Adherence to the Ultra-Processed Dietary Pattern and Risk of Depressive Outcomes: Findings from the NutriNet Brasil Cohort Study and an Updated Systematic Review and Meta-Analysis. Clin. Nutr. Edinb. Scotl. 2024, 43, 1190–1199. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Travica, N.; Dissanayaka, T.; Ashtree, D.N.; Gauci, S.; Lotfaliany, M.; O’Neil, A.; Jacka, F.N.; Marx, W. Ultra-Processed Food Consumption and Mental Health: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2022, 14, 2568. [Google Scholar] [CrossRef]
- Mazloomi, S.N.; Talebi, S.; Mehrabani, S.; Bagheri, R.; Ghavami, A.; Zarpoosh, M.; Mohammadi, H.; Wong, A.; Nordvall, M.; Kermani, M.A.H.; et al. The Association of Ultra-Processed Food Consumption with Adult Mental Health Disorders: A Systematic Review and Dose-Response Meta-Analysis of 260,385 Participants. Nutr. Neurosci. 2023, 26, 913–931. [Google Scholar] [CrossRef]
- Hyde, J.S.; Mezulis, A.H.; Abramson, L.Y. The ABCs of Depression: Integrating Affective, Biological, and Cognitive Models to Explain the Emergence of the Gender Difference in Depression. Psychol. Rev. 2008, 115, 291–313. [Google Scholar] [CrossRef]
- Konttinen, H. Emotional Eating and Obesity in Adults: The Role of Depression, Sleep and Genes. Proc. Nutr. Soc. 2020, 79, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, F.; Liu, Z.; Li, M.; Wang, Y.; Shang, Y.; Li, Y. Prevalence and Associated Factors of Depression in Postmenopausal Women: A Systematic Review and Meta-Analysis. BMC Psychiatry 2024, 24, 431. [Google Scholar] [CrossRef] [PubMed]
- Metin, Z.E.; Bayrak, N.; Mengi Çelik, Ö.; Akkoca, M. The Relationship between Emotional Eating, Mindful Eating, and Depression in Young Adults. Food Sci. Nutr. 2025, 13, e4028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jia, J.; Yang, Y.; Ye, D.; Li, Y.; Li, D.; Wang, J. Estradiol Metabolism by Gut Microbiota in Women’s Depression Pathogenesis: Inspiration from Nature. Front. Psychiatry 2025, 16, 1505991. [Google Scholar] [CrossRef]
- Nikniaz, L.; Abbasalizad-Farhangi, M.; Vajdi, M.; Nikniaz, Z. The Association between Sugars Sweetened Beverages (SSBs) and Lipid Profile among Children and Youth: A Systematic Review and Dose-Response Meta-Analysis of Cross-Sectional Studies. Pediatr. Obes. 2021, 16, e12782. [Google Scholar] [CrossRef]
- Villalobos-Gallegos, L.; Trejo-García, S.; Toledo-Fernández, A.; Ochoa-Ruiz, E. Anxiety, Depression, Perceived Executive Function and Sugar Sweetened Beverages: A Causal Mediation Analysis in Mexican Young Adults. Psychol. Health Med. 2023, 28, 2234–2248. [Google Scholar] [CrossRef]
- Farooqi, A.; Gillies, C.; Sathanapally, H.; Abner, S.; Seidu, S.; Davies, M.J.; Polonsky, W.H.; Khunti, K. A Systematic Review and Meta-Analysis to Compare the Prevalence of Depression between People with and without Type 1 and Type 2 Diabetes. Prim. Care Diabetes 2022, 16, 1–10. [Google Scholar] [CrossRef]
- Van Dam, N.T.; Earleywine, M. Validation of the Center for Epidemiologic Studies Depression Scale—Revised (CESD-R): Pragmatic Depression Assessment in the General Population. Psychiatry Res. 2011, 186, 128–132. [Google Scholar] [CrossRef]
- Vilagut, G.; Forero, C.G.; Barbaglia, G.; Alonso, J. Screening for Depression in the General Population with the Center for Epidemiologic Studies Depression (CES-D): A Systematic Review with Meta-Analysis. PLoS ONE 2016, 11, e0155431. [Google Scholar] [CrossRef]
- Estaquio, C.; Kesse-Guyot, E.; Deschamps, V.; Bertrais, S.; Dauchet, L.; Galan, P.; Hercberg, S.; Castetbon, K. Adherence to the French Programme National Nutrition Santé Guideline Score Is Associated with Better Nutrient Intake and Nutritional Status. J. Am. Diet. Assoc. 2009, 109, 1031–1041. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.L.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Germany, 2019; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/5277b379-0acb-4d97-a6a3-602774104629/content (accessed on 29 April 2025).
- You, Y.; Wang, R.; Li, J.; Cao, F.; Zhang, Y.; Ma, X. The Role of Dietary Intake of Live Microbes in the Association between Leisure-Time Physical Activity and Depressive Symptoms: A Population-Based Study. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2024, 49, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Pearson: Boston, MA. USA, 2007. [Google Scholar]
- Marx, W.; Visser, M.; Wallace, C.; Jacka, F.N.; Bayes, J.; Francis, H.; Opie, R.; Hockey, M.; Teasdale, S.B.; Sanchez Villegas, A.; et al. Methodological and Reporting Recommendations for Clinical Trials in Nutritional Psychiatry: Guidelines from the International Society for Nutritional Psychiatry Research. Br. J. Nutr. 2024, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Travica, N.; Gamage, E.; Marshall, S.; Trakman, G.L.; Young, C.; Teasdale, S.B.; Dissanayaka, T.; Dawson, S.L.; Orr, R.; et al. Sugar-Sweetened Beverages and Adverse Human Health Outcomes: An Umbrella Review of Meta-Analyses of Observational Studies. Annu. Rev. Nutr. 2024, 44, 383–404. [Google Scholar] [CrossRef]
- Berk, M.; Williams, L.J.; Jacka, F.N.; O’Neil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; et al. So Depression Is an Inflammatory Disease, but Where Does the Inflammation Come From? BMC Med. 2013, 11, 200. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Toledo, E.; de Irala, J.; Ruiz-Canela, M.; Pla-Vidal, J.; Martínez-González, M.A. Fast-Food and Commercial Baked Goods Consumption and the Risk of Depression. Public Health Nutr. 2012, 15, 424–432. [Google Scholar] [CrossRef]
- Petracco, G.; Faimann, I.; Reichmann, F. Inflammatory Bowel Disease and Neuropsychiatric Disorders: Mechanisms and Emerging Therapeutics Targeting the Microbiota-Gut-Brain Axis. Pharmacol. Ther. 2025, 269, 108831. [Google Scholar] [CrossRef]
- Zinöcker, M.K.; Lindseth, I.A. The Western Diet-Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018, 10, 365. [Google Scholar] [CrossRef]
- Paans, N.P.G.; Gibson-Smith, D.; Bot, M.; van Strien, T.; Brouwer, I.A.; Visser, M.; Penninx, B.W.J.H. Depression and Eating Styles Are Independently Associated with Dietary Intake. Appetite 2019, 134, 103–110. [Google Scholar] [CrossRef]
- Dicken, S.J.; Qamar, S.; Batterham, R.L. Who Consumes Ultra-Processed Food? A Systematic Review of Sociodemographic Determinants of Ultra-Processed Food Consumption from Nationally Representative Samples. Nutr. Res. Rev. 2024, 37, 416–456. [Google Scholar] [CrossRef]
- Adjibade, M.; Julia, C.; Allès, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective Association between Ultra-Processed Food Consumption and Incident Depressive Symptoms in the French NutriNet-Santé Cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Ejtahed, H.-S.; Mardi, P.; Hejrani, B.; Mahdavi, F.S.; Ghoreshi, B.; Gohari, K.; Heidari-Beni, M.; Qorbani, M. Association between Junk Food Consumption and Mental Health Problems in Adults: A Systematic Review and Meta-Analysis. BMC Psychiatry 2024, 24, 438. [Google Scholar] [CrossRef]
Sociodemographic Characteristics | N = 15,262 | % |
---|---|---|
Sex (woman) | 13,107 | 85.9 |
Age (Years, mean ± SD) | 33 ± 12.8 | |
Age min–max value | 18–92 | |
Obesity | 1514 | 9.9% |
Current daily smoking | 2690 | 17.6% |
Education level (academic level) | 8672 | 56.8% |
Nutrition knowledge | 11,971 | 78.4% |
Partner living at home | 7634 | 50.0% |
Children at home | 5395 | 35.3% |
Unemployment | 2368 | 15.5% |
Phototype 1 and 2 vs. other phototypes | 3912 | 25.6% |
Physically inactive | 2149 | 14.1% |
Age Category | Number of Persons (% of the Whole Sample) | Men (% of the Age Group) | Women (% of the Age Range) |
---|---|---|---|
18–34 years | 9099 (60%) | 1187 (13%) | 7912 (87%) |
35–54 years | 5049 (33%) | 776 (15%) | 4273 (85%) |
≥55 years | 1114 (7%) | 192 (17%) | 922 (83%) |
Factor 1 Healthy diet | Fruit |
Nuts, almonds, or hazelnuts (handful of about six units) | |
Green vegetables (green beans, broccoli, asparagus, etc.) | |
Tablespoon of olive oil, rapeseed oil, or soybean oil | |
Green salad or endives | |
Tea (cup) | |
Whole-grain bread | |
Cheese | |
Factor 2 Ultra-processed foods | Chips, savory biscuits |
Fried foods (frozen or non-frozen fries, fish sticks, nuggets, cordon bleu) | |
Pastries, cakes, French baked goods, sweet biscuits | |
“Junk food” (McDonald’s, KFC, Burger King, Quick, sandwich, kebab, quiches, etc.) | |
Pre-cooked meals (canned, packaged, frozen meals) | |
Industrially processed meat (salting, maturation, fermentation, smoking): ham, slices of chicken breast, turkey, hotdogs (Frankfurt sausages), corned beef, dried beef, canned meats, sausages | |
Roasted snack seeds (peanuts, almonds, roasted pistachios) | |
Factor 3 Starchy foods | Whole or semi-whole rice |
Whole or semi-whole pasta | |
Quinoa, bulgur, semolina | |
Legumes (lentils, chickpeas, white beans, red beans) | |
Factor 4 Alcohol and coffee | Beer (half-pint or 25cl) |
Red wine (glass) | |
Other wine (glass) | |
Spirits (1 glass or 3cl) | |
Coffee (cup) | |
Factor 5 Eggs | Egg yolk |
Egg white | |
Factor 6 Meat | Unprocessed white meat (chicken, turkey, rabbit) |
Red meat (beef, veal, pork, lamb, mutton, horse, goat, duck) | |
Factor 7 High-glycemic-index foods and processed fat | Potato (baked, boiled), white pasta, fresh pasta (= non-whole and non-semi-whole), white rice |
Jam, spread (teaspoon) | |
White bread, cereal toast (excluding oat flakes) | |
Butter (including cooking) | |
Margarine (including cooking) | |
Factor 8 Supplements (PUFAs and proteins), chia seeds and oat flakes | Protein dietary supplements (powders, tablets, protein bars, or other forms) |
Chia seeds | |
Omega-3 (in capsules or syrup) | |
Oat flakes | |
Factor 9 Dairy foods and fruit juice | Fruit yogurt or flavored yogurt or fromage blanc with fruits or flavored |
Plain yogurt or plain fromage blanc | |
Dessert cream, mousse, sweet dessert, ice cream | |
Glass of milk (whole, skimmed, or semi-skimmed) | |
Fruit juice (pressed, industrial) excluding lemon juice | |
Factor 10 Canned and frozen foods | Uncooked canned foods (e.g., corn, white beans) excluding meat and fish |
Uncooked frozen foods (e.g., peas, green beans) excluding meat and fish | |
Factor 11 Fish (fatty and lean) | Other fish and seafood (not listed above) including canned and frozen |
Raw fatty fish (sardines, salmon, mackerel, tuna (only fresh or canned, not frozen)) | |
Factor 12 Sugary or sweetened sodas | Diet or zero-calorie soda |
Sugary sodas | |
Factor 13 Decaffeinated coffee | Decaffeinated coffee (cup) |
Whole Sample (n = 15,262) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Women (n = 13,107; 85.9%) | Men (n = 2155; 14.1%) | |||||||||||||||||||||||
18–34 y | 35–54 y | ≥55 y | 18–34 y | 35–54 y | ≥55 y | |||||||||||||||||||
n = 7912 | n = 4273 | n = 922 | n = 1187 | n = 776 | n = 192 | |||||||||||||||||||
n (CES D ≥ 20) = 3201 (40%) | n (CES D ≥ 20) = 1050 (25%) | n (CES D ≥ 20) = 179 (19%) | n (CES D ≥ 20) = 321 (27%) | n (CES D ≥ 20) = 151 (19%) | n (CES D ≥ 20) = 21 (11%) | |||||||||||||||||||
OR | (95% IC) | p | OR | (95% IC) | p | OR | (95% IC) | p | OR | (95% IC) | p | OR | (95% IC) | p | OR | (95% IC) | p | |||||||
Dietary pattern factors derived from principal component analysis | ||||||||||||||||||||||||
F1 Healthy diet | 0.84 | 0.80; | 0.89 | <0.001 | 0.82 | 0.75; | 0.89 | <0.001 | 0.79 | 0.64 | 0.97 | 0.084 | 0.91 | 0.76; | 1.08 | 0.474 | 1.18 | 0.93; | 1.48 | 0.346 | 0.77 | 0.38; | 1.52 | 0.675 |
F2 Ultra-processed foods | 1.21 | 1.15; | 1.27 | <0.001 | 1.30 | 1.20; | 1.42 | <0.001 | 1.41 | 1.11 | 1.79 | 0.027 | 1.21 | 1.07; | 1.18 | 0.018 | 0.93 | 0.74; | 1.15 | 0.692 | 1.19 | 0.45; | 3.03 | 0.825 |
F3 Starchy foods | 1.02 | 0.97; | 1.07 | 0.610 | 1.11 | 1.02; | 1.20 | 0.053 | 1.07 | 0.87 | 1.30 | 0.695 | 1.02 | 0.89; | 1.18 | 0.833 | 0.89 | 0.72; | 1.09 | 0.474 | 0.39 | 0.14; | 0.92 | 0.093 |
F4 Alcohol and coffee | 0.93 | 0.88; | 0.99 | 0.053 | 1.09 | 1.01; | 1.18 | 0.098 | 1.13 | 0.95 | 1.35 | 0.353 | 0.94 | 0.83; | 1.06 | 0.533 | 1.10 | 0.95; | 1.27 | 0.385 | 1.10 | 0.72; | 1.66 | 0.778 |
F5 Eggs | 1.01 | 0.96; | 1.06 | 0.859 | 1.11 | 1.03; | 1.20 | 0.029 | 1.04 | 0.85 | 1.26 | 0.815 | 1.06 | 0.93; | 1.20 | 0.603 | 1.01 | 0.83; | 1.21 | 0.947 | 0.63 | 0.29; | 1.21 | 0.358 |
F6 Meat | 1.01 | 0.96; | 1.05 | 0.890 | 0.95 | 0.87; | 1.03 | 0.406 | 0.94 | 0.76 | 1.16 | 0.726 | 1.03 | 0.90; | 1.17 | 0.815 | 1.19 | 0.98; | 1.45 | 0.197 | 0.74 | 0.29; | 1.67 | 0.683 |
F7 High-glycemic-index foods and processed fat | 0.92 | 0.87; | 0.96 | 0.005 | 1.01 | 0.94; | 1.09 | 0.815 | 1.06 | 0.90 | 1.24 | 0.683 | 0.85 | 0.73; | 0.99 | 0.105 | 1.00 | 0.81; | 1.21 | 0.959 | 0.84 | 0.45; | 1.48 | 0.718 |
F8 Supplements (PUFAs and proteins), chia seeds and oat flakes | 1.06 | 1.01; | 1.12 | 0.074 | 1.14 | 1.06; | 1.23 | 0.004 | 1.09 | 0.93 | 1.27 | 0.517 | 0.96 | 0.84; | 1.09 | 0.720 | 0.99 | 0.81; | 1.18 | 0.931 | 1.34 | 0.74; | 2.36 | 0.540 |
F9 Dairy foods and fruit juice | 0.92 | 0.87; | 0.96 | 0.003 | 0.93 | 0.87; | 1.01 | 0.197 | 0.95 | 0.79 | 1.14 | 0.754 | 0.89 | 0.77; | 1.02 | 0.223 | 1.03 | 0.83; | 1.26 | 0.867 | 0.82 | 0.45; | 1.41 | 0.683 |
F10 Canned and frozen foods | 1.10 | 1.04; | 1.15 | 0.002 | 1.02 | 0.95; | 1.10 | 0.726 | 1.05 | 0.87 | 1.27 | 0.726 | 1.17 | 1.02; | 1.34 | 0.092 | 1.07 | 0.87; | 1.32 | 0.692 | 0.67 | 0.28; | 1.46 | 0.540 |
F11 Fish (fatty and lean) | 0.93 | 0.88; | 0.98 | 0.025 | 0.91 | 0.85; | 0.99 | 0.070 | 1.17 | 0.99 | 1.39 | 0.165 | 0.88 | 0.76; | 1.02 | 0.208 | 1.08 | 0.89; | 1.31 | 0.647 | 2.17 | 1.15; | 4.46 | 0.059 |
F12 Sugary or sweetened sodas | 1.07 | 1.03; | 1.13 | 0.012 | 1.04 | 0.96; | 1.13 | 0.540 | 0.94 | 0.75 | 1.17 | 0.726 | 1.14 | 1.00; | 1.30 | 0.152 | 0.92 | 0.74; | 1.14 | 0.654 | 1.56 | 0.56; | 3.91 | 0.597 |
F13 Decaffeinated coffee | 1.05 | 0.99; | 1.11 | 0.249 | 1.01 | 0.95; | 1.09 | 0.815 | 0.92 | 0.79 | 1.06 | 0.461 | 0.99 | 0.83; | 1.17 | 0.935 | 1.13 | 0.94; | 1.36 | 0.366 | 0.91 | 0.39; | 1.77 | 0.867 |
Confounding factors | ||||||||||||||||||||||||
Obesity | 1.38 | 1.16; | 1.64 | 0.002 | 1.32 | 1.07; | 1.62 | 0.037 | 1.02 | 0.55 | 1.83 | 0.947 | 1.54 | 0.82; | 2.83 | 0.361 | 1.25 | 0.66; | 2.28 | 0.683 | 0.87 | 0.08; | 7.69 | 0.935 |
Current daily smoking | 1.48 | 1.30; | 1.69 | <0.001 | 1.23 | 1.02; | 1.49 | 0.097 | 1.42 | 0.87 | 2.28 | 0.342 | 1.44 | 0.99; | 2.09 | 0.150 | 0.81 | 0.49; | 1.32 | 0.619 | 0.47 | 0.02; | 3.50 | 0.685 |
Education level (academic level) | 0.79 | 0.71; | 0.88 | <0.001 | 0.87 | 0.72; | 1.04 | 0.265 | 1.12 | 0.71 | 1.83 | 0.778 | 0.94 | 0.69; | 1.28 | 0.815 | 0.52 | 0.33; | 0.84 | 0.035 | 0.92 | 0.18; | 6.08 | 0.947 |
Nutrition knowledge | 0.80 | 0.72; | 0.90 | 0.002 | 0.69 | 0.55; | 0.87 | 0.012 | 0.91 | 0.46 | 1.95 | 0.867 | 0.69 | 0.48; | 0.99 | 0.114 | 0.94 | 0.54; | 1.71 | 0.885 | 0.76 | 0.13; | 4.92 | 0.855 |
Partner living at home | 0.66 | 0.59; | 0.74 | <0.001 | 0.77 | 0.65; | 0.92 | 0.022 | 0.68 | 0.47 | 0.99 | 0.121 | 0.49 | 0.34; | 0.70 | 0.001 | 0.54 | 0.33; | 0.87 | 0.045 | 1.37 | 0.30; | 8.35 | 0.815 |
Children at home | 0.64 | 0.54; | 0.76 | <0.001 | 0.90 | 0.74; | 1.10 | 0.529 | 1.33 | 0.90; | 1.95 | 0.323 | 0.75 | 0.39; | 1.37 | 0.578 | 0.74 | 0.47; | 1.18 | 0.385 | 0.83 | 0.19; | 3.18 | 0.867 |
Unemployment | 1.25 | 1.11; | 1.41 | 0.002 | 1.46 | 1.17; | 1.81 | 0.006 | 2.45 | 1.23 | 4.76 | 0.047 | 1.95 | 1.35; | 2.79 | 0.003 | 1.67 | 0.94; | 2.89 | 0.193 | 6.68 | 0.91; | 45.6 | 0.154 |
Phototype 1 and 2 vs. other phototypes | 1.25 | 1.12; | 1.39 | 0.001 | 1.11 | 0.93; | 1.31 | 0.449 | 1.16 | 0.75 | 1.76 | 0.685 | 1.47 | 1.04; | 2.06 | 0.088 | 2.08 | 1.32; | 3.24 | 0.011 | 5.93 | 1.24; | 28.5 | 0.086 |
Physically inactive | 1.02 | 0.89; | 1.18 | 0.855 | 1.42 | 1.18; | 1.70 | 0.002 | 1.84 | 1.10 | 3.03 | 0.070 | 1.19 | 0.73; | 1.93 | 0.683 | 2.19 | 1.27; | 3.70 | 0.025 | 2.20 | 0.35; | 12.0 | 0.603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achour, Y.; Lucas, G.; Iceta, S.; Boucekine, M.; Rahmati, M.; Berk, M.; Akbaraly, T.; Aouizerate, B.; Capuron, L.; Marx, W.; et al. Dietary Patterns and Major Depression: Results from 15,262 Participants (International ALIMENTAL Study). Nutrients 2025, 17, 1583. https://doi.org/10.3390/nu17091583
Achour Y, Lucas G, Iceta S, Boucekine M, Rahmati M, Berk M, Akbaraly T, Aouizerate B, Capuron L, Marx W, et al. Dietary Patterns and Major Depression: Results from 15,262 Participants (International ALIMENTAL Study). Nutrients. 2025; 17(9):1583. https://doi.org/10.3390/nu17091583
Chicago/Turabian StyleAchour, Yannis, Guillaume Lucas, Sylvain Iceta, Mohamed Boucekine, Masoud Rahmati, Michael Berk, Tasnime Akbaraly, Bruno Aouizerate, Lucile Capuron, Wolfgang Marx, and et al. 2025. "Dietary Patterns and Major Depression: Results from 15,262 Participants (International ALIMENTAL Study)" Nutrients 17, no. 9: 1583. https://doi.org/10.3390/nu17091583
APA StyleAchour, Y., Lucas, G., Iceta, S., Boucekine, M., Rahmati, M., Berk, M., Akbaraly, T., Aouizerate, B., Capuron, L., Marx, W., Lane, M. M., Nguyen, C. D., Do, H., Tran, B. X., Yon, D. K., Boyer, L., & Fond, G. (2025). Dietary Patterns and Major Depression: Results from 15,262 Participants (International ALIMENTAL Study). Nutrients, 17(9), 1583. https://doi.org/10.3390/nu17091583