The Meal Type Rather than the Meal Sequence Affects the Meal Duration, Number of Chews, and Chewing Tempo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement of Meal Duration, Numbers of Chews and Bites, and Chewing Tempo
2.3. Brief-Type Self-Administered Diet History Questionnaire (BDHQ)
2.4. Handgrip Strength
2.5. Experiments
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BDHQ | Brief-Type Self-Administered Diet History Questionnaire |
References
- González-Muniesa, P.; Mártinez-González, M.-A.; Hu, F.B.; Després, J.-P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.; Martinez, J.A. Obesity. Nat. Rev. Dis. Primers 2017, 3, 17034. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Wharton, S.; Lau, D.C.; Vallis, M.; Sharma, A.M.; Biertho, L.; Campbell-Scherer, D.; Adamo, K.; Alberga, A.; Bell, R.; Boulé, N.; et al. Obesity in adults: A clinical practice guideline. CMAJ 2020, 192, E875–E891. [Google Scholar] [CrossRef] [PubMed]
- Overweight and Obesity Management. NICE Guideline Reference Number: NG246. 14 January 2025. Available online: https://www.nice.org.uk/guidance/ng246 (accessed on 1 April 2025).
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R.; Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for Medical Care of Patients with Obesity. Endocr. Pract. 2016, 22 (Suppl. 3), 1–203. [Google Scholar] [CrossRef]
- Mohammadbeigi, A.; Asgarian, A.; Moshir, E.; Heidari, H.; Afrashteh, S.; Khazaei, S.; Ansari, H. Fast food consumption and overweight/obesity prevalence in students and its association with general and abdominal obesity. J. Prev. Med. Hyg. 2018, 59, E236–E240s. [Google Scholar] [CrossRef]
- Thike, T.Z.; Saw, Y.M.; Lin, H.; Chit, K.; Tun, A.B.; Htet, H.; Cho, S.M.; Khine, A.T.; Saw, T.N.; Kariya, T.; et al. Association between body mass index and ready-to-eat food consumption among sedentary staff in Nay Pyi Taw union territory, Myanmar. BMC Public Health 2020, 20, 206. [Google Scholar] [CrossRef]
- Del Moral, A.M.; Calvo, C.; Martínez, A. Consumo de alimentos ultraprocesados y obesidad: Una revisión sistemática [Ultra-processed food consumption and obesity—A systematic review]. Nutr. Hosp. 2021, 38, 177–185. [Google Scholar] [CrossRef]
- Juul, F.; Hemmingsson, E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr. 2015, 18, 3096–3107. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef]
- Colantuoni, C.; Schwenker, J.; McCarthy, J.; Rada, P.; Ladenheim, B.; Cadet, J.-L.; Schwartz, G.J.; Moran, T.H.; Hoebel, B.G. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 2001, 12, 3549–3552. [Google Scholar] [CrossRef]
- Thanarajah, S.E.; Backes, H.; DiFeliceantonio, A.G.; Albus, K.; Cremer, A.L.; Hanssen, R.; Lippert, R.N.; Cornely, O.A.; Small, D.M.; Brüning, J.C.; et al. Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans. Cell Metab. 2019, 29, 695–706.e4. [Google Scholar] [CrossRef] [PubMed]
- Martínez-López, M.F.; López-Gil, J.F. Meal Duration and Obesity-Related Indicators among Adolescents: Insights from the EHDLA Study. Nutrients 2024, 16, 2769. [Google Scholar] [CrossRef] [PubMed]
- Smit, H.J.; Kemsley, E.K.; Tapp, H.S.; Henry, C.J.K. Does prolonged chewing reduce food intake? Fletcherism revisited. Appetite 2011, 57, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Garcidueñas-Fimbres, T.E.; Paz-Graniel, I.; Nishi, S.K.; Salas-Salvadó, J.; Babio, N. Eating Speed, Eating Frequency, and Their Relationships with Diet Quality, Adiposity, and Metabolic Syndrome, or Its Components. Nutrients 2021, 13, 1687. [Google Scholar] [CrossRef]
- Tao, L.; Yang, K.; Huang, F.; Liu, X.; Li, X.; Luo, Y.; Wu, L.; Guo, X. Association between self-reported eating speed and metabolic syndrome in a Beijing adult population: A cross-sectional study. BMC Public Health 2018, 18, 855. [Google Scholar] [CrossRef]
- Aoshima, M.; Deguchi, K.; Yamamoto-Wada, R.; Ushiroda, C.; Hiraiwa, E.; Yokoi, M.; Ono, C.; Yoshida, M.; Iizuka, K. Greater Numbers of Chews and Bites and Slow External Rhythmic Stimulation Prolong Meal Duration in Healthy Subjects. Nutrients 2025, 17, 962. [Google Scholar] [CrossRef]
- Kuwata, H.; Iwasaki, M.; Shimizu, S.; Minami, K.; Maeda, H.; Seino, S.; Nakada, K.; Nosaka, C.; Murotani, K.; Kurose, T.; et al. Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes: A randamised, controlled crossover, exploratory trial. Diabetologia 2016, 59, 453–461. [Google Scholar] [CrossRef]
- Shukla, A.P.; Dickison, M.; Coughlin, N.; Karan, A.; Mauer, E.; Truong, W.; Casper, A.; Emiliano, A.B.; Kumar, R.B.; Saunders, K.H.; et al. The impact of food order on postprandial glycemic excursions in prediabetes. Diabetes Obes. Metab. 2019, 21, 377–381. [Google Scholar] [CrossRef]
- Shukla, A.P.; Iliescu, R.G.; Thomas, C.E.; Aronne, L.J. Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels. Diabetes Care 2015, 38, e98–e99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shukla, A.P.; Andono, J.; Touhamy, S.H.; Casper, A.; Iliescu, R.G.; Mauer, E.; Zhu, Y.S.; Ludwig, D.S.; Aronne, L.J. Carbohydrate-last meal pattern lowers postprandial glucose and insulin excursions in type 2 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000440. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ii, S.T.; Palepu, K.; Karan, A.; Hootman, K.C.; Riad, J.; Sripadrao, S.; Zhao, A.S.; Giannita, A.; D’angelo, D.; Alonso, L.C.; et al. Carbohydrates-Last Food Order Improves Time in Range and Reduces Glycemic Variability. Diabetes Care 2025, 48, e15–e16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, T.; Sakamoto, H.; Matsuoka, R.; Utsunomiya, K. Ingestion of vegetable salads before rice inhibits the increase in postprandial serum glucose levels in healthy subjects. Biosci. Biotechnol. Biochem. 2023, 87, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Fukui, M.; Ozasa, N.; Ozeki, T.; Kurokawa, M.; Komatsu, T.; Kajiyama, S. Eating vegetables before carbohydrates improves postprandial glucose excursions. Diabet. Med. 2013, 30, 370–372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ida, S.; Imataka, K.; Morii, S.; Murata, K. The “vegetables first” dietary habit correlates with higher-level functional capacity in older adults with diabetes. BMC Nutr. 2024, 10, 126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Westenhoefer, J. Age and gender dependent profile of food choice. Forum Nutr. 2005, 57, 44–51. [Google Scholar] [CrossRef]
- Iizuka, K.; Yanagi, K.; Deguchi, K.; Ushiroda, C.; Yamamoto-Wada, R.; Kobae, K.; Yamada, Y.; Naruse, H. Sex and Age Differences in the Effects of Food Frequency on Metabolic Parameters in Japanese Adults. Nutrients 2024, 16, 2931. [Google Scholar] [CrossRef] [PubMed]
- Grzymisławska, M.; Puch, E.A.; Zawada, A.; Grzymisławski, M. Do nutritional behaviors depend on biological sex and cultural gender? Adv. Clin. Exp. Med. 2020, 29, 165–172. [Google Scholar] [CrossRef]
- Japanese Ministry of Agriculture, Forestry, and Fisheries (Written in Japanese). Available online: https://www.maff.go.jp/j/syokuiku/wpaper/r1/r1_h/book/part1/chap1/b1_c1_1_03.html (accessed on 1 April 2025).
- Japanese Ministry of Helath, Labor and Welfare (Written in Japanese). Available online: https://www.mhlw.go.jp/toukei/list/62-17.html (accessed on 1 April 2025).
- Hori, K.; Uehara, F.; Yamaga, Y.; Yoshimura, S.; Okawa, J.; Tanimura, M.; Ono, T. Reliability of a novel wearable device to measure chewing frequency. J. Prosthodont. Res. 2021, 65, 340–345. [Google Scholar] [CrossRef]
- Hori, S.; Hori, K.; Yoshimura, S.; Uehara, F.; Sato, N.; Hasegawa, Y.; Akazawa, K.; Ono, T. Masticatory Behavior Change with a Wearable Chewing Counter: A Randomized Controlled Trial. J. Dent. Res. 2023, 102, 21–27. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef]
- Iizuka, K.; Deguchi, K.; Ushiroda, C.; Yanagi, K.; Seino, Y.; Suzuki, A.; Yabe, D.; Sasaki, H.; Sasaki, S.; Saitoh, E.; et al. A Study on the Compatibility of a Food-Recording Application with Questionnaire-Based Methods in Healthy Japanese Individuals. Nutrients 2024, 16, 1742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamano, S.; Sawada, M.; Aihara, M.; Sakurai, Y.; Sekine, R.; Usami, S.; Kubota, N.; Yamauchi, T. Ultra-processed foods cause weight gain and increased energy intake associated with reduced chewing frequency: A randomized, open-label, crossover study. Diabetes Obes. Metab. 2024, 26, 5431–5443. [Google Scholar] [CrossRef]
- Sun, L.; Ranawana, D.V.; Tan, W.J.K.; Quek, Y.C.R.; Henry, C.J. The impact of eating methods on eating rate and glycemic response in healthy adults. Physiol. Behav. 2015, 139, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Kajiyama, S.; Kitta, K.; Miyawaki, T.; Matsumoto, S.; Ozasa, N.; Kajiyama, S.; Hashimoto, Y.; Fukui, M. Eating Vegetables First Regardless of Eating Speed Has a Significant Reducing Effect on Postprandial Blood Glucose and Insulin in Young Healthy Women: Randomized Controlled Cross-Over Study. Nutrients 2023, 15, 1174. [Google Scholar] [CrossRef]
- Westberg, K.-G.; Kolta, A. The trigeminal circuits responsible for chewing. Int. Rev. Neurobiol. 2011, 97, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Migliavada, R.; Luceri, F.; Torri, L. Chew that beat! How music tempo influences eating behaviors and emotions. Food Qual. Prefer. 2024, 118, 105195. [Google Scholar] [CrossRef]
- Inukai, M.; John, M.T.; Igarashi, Y.; Baba, K. Association between perceived chewing ability and oral health-related quality of life in partially dentate patients. Health Qual. Life Outcomes 2010, 8, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, Y.; Shu, X.; Leung, K.C.M.; Lo, E.C.M. Association between masticatory performance and oral conditions in adults: A systematic review and meta-analysis. J Dent. 2023, 129, 104395. [Google Scholar] [CrossRef]
- Macht, M.; Simons, G. Emotions and eating in everyday life. Appetite 2000, 35, 65–71. [Google Scholar] [CrossRef]
- Van Strien, T.; Frijters, J.E.; Bergers, G.P.; Defares, P.B. The Dutch Eating Behavior Questionnaire (DEBQ) for Assessment of Restrained Emotional, and External Eating Behavior. Int. J. Eat. Disord. 1986, 5, 295–315. [Google Scholar] [CrossRef]
Total (n = 41) | Male (n = 18) | Female (n = 23) | p | |
---|---|---|---|---|
Age (years) | 41.1 (10.1) | 40.3 (10.2) | 41.8 (10.3) | 0.66 |
BMI (kg/m2) | 22.6 (3.0) | 23.9 (3.6) | 21.6 (2.1) | 0.026 |
Body fat percentage (%) | 27.2 (7.9) | 22.3 (7.0) | 31.2 (6.3) | <0.001 |
SMI (kg/m2) | 8.9 (1.4) | 10.3 (1.0) | 7.9 (0.6) | <0.001 |
Average handgrip strength (kg) | 31.8 (9.5) | 41.1 (5.4) | 24.5 (4.0) | <.0001 |
Estimated Energy Requirements (kcal) | 2240.9 (311.6) | 2581.1 (98.1) | 1974.6 (16.5) | <0.001 |
Total energy (kcal) | 1640.4 (475.4) | 1761.1 (619.6) | 1545.9 (304.8) | 0.19 |
Water (mL) | 1595.8 (426.4) | 1757.7 (386.2) | 1469.1 (420.5) | 0.028 |
Protein (g) | 60.3 (17.8) | 62.5 (21.9) | 58.5 (13.9) | 0.5 |
Fat (g) | 52.2 (15.1) | 52.5 (18.8) | 51.9 (11.9) | 0.9 |
Carbohydrate (g) | 213.7 (74.6) | 236.5 (97.4) | 195.8 (44.9) | 0.12 |
Dietary fiber (g) | 10.0 (3.7) | 10.0 (3.6) | 10.0 (3.9) | 0.99 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
β (95%CI) | p | β (95%CI) | p | β (95%CI) | p | |
Number of chews (times) | 0.6 [0.5, 0.6] | <0.001 | ||||
Chewing tempo (bpm) | 0.6 [−2.6, 3.8] | 0.73 | ||||
Number of bites (times) | 6.8 [4.6, 9.0] | <0.001 | ||||
Meal types Pizza:1; Bento (vegetables first):2; Bento (vegetables last):3 | −1.4 [−20.6, 17.9] | 0.89 | 105.8 [65.1, 146.4] | <0.001 | 107 [73.4, 140.6] | <0.001 |
Sex (Male:1) | −42.6 [−73.8, −11.4] | 0.008 | −132.1 [−202.2, −62.2] | <0.001 | −67.7 [131.9, −3.5] | 0.039 |
Age (years) | −1.1 [−2.6, 0.4] | 0.16 | −5.3 [−8.6, −2.0] | 0.002 | −4.6 [−7.6, −1.7] | 0.002 |
BMI (kg/m2) | 0.5 [−4.7, 5.8] | 0.85 | 8.0 [−4.1, 20.1] | 0.19 | 5.6 [−4.9, 16.1] | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deguchi, K.; Aoshima, M.; Hiraiwa, E.; Ono, C.; Ushiroda, C.; Yamamoto-Wada, R.; Yoshida, M.; Iizuka, K. The Meal Type Rather than the Meal Sequence Affects the Meal Duration, Number of Chews, and Chewing Tempo. Nutrients 2025, 17, 1576. https://doi.org/10.3390/nu17091576
Deguchi K, Aoshima M, Hiraiwa E, Ono C, Ushiroda C, Yamamoto-Wada R, Yoshida M, Iizuka K. The Meal Type Rather than the Meal Sequence Affects the Meal Duration, Number of Chews, and Chewing Tempo. Nutrients. 2025; 17(9):1576. https://doi.org/10.3390/nu17091576
Chicago/Turabian StyleDeguchi, Kanako, Megumi Aoshima, Eri Hiraiwa, Chisato Ono, Chihiro Ushiroda, Risako Yamamoto-Wada, Mitsuyoshi Yoshida, and Katsumi Iizuka. 2025. "The Meal Type Rather than the Meal Sequence Affects the Meal Duration, Number of Chews, and Chewing Tempo" Nutrients 17, no. 9: 1576. https://doi.org/10.3390/nu17091576
APA StyleDeguchi, K., Aoshima, M., Hiraiwa, E., Ono, C., Ushiroda, C., Yamamoto-Wada, R., Yoshida, M., & Iizuka, K. (2025). The Meal Type Rather than the Meal Sequence Affects the Meal Duration, Number of Chews, and Chewing Tempo. Nutrients, 17(9), 1576. https://doi.org/10.3390/nu17091576