Recent Advances in Gut Microbiota in Psoriatic Arthritis
Abstract
:1. Psoriatic Arthritis
1.1. Clinical Manifestations
- -
- Peripheral Arthritis: characterized by peripheral joint inflammation with synovitis typically presenting as asymmetric oligoarthritis before progressing to a polyarticular form [5];
- -
- Dactylitis: characterized by uniform swelling of an entire digit due to inflammation of joints, soft tissues, and tendon sheaths [6];
- -
- Enthesitis: characterized by inflammation of entheses i.e., sites where ligaments or tendons attach to bone [7];
- -
- Axial involvement: symptoms include spinal pain and stiffness that improve with movement, present in up to 50% of PsA patients [8].
1.2. Diagnosis
1.3. Risks Factors and Pathogenesis
1.3.1. Biomarkers
1.3.2. Innate Immune System
1.3.3. Adaptive Immune System
1.4. Pharmacological Treatment for Psoriatic Arthritis
1.4.1. Conventional Pharmacological Treatments
1.4.2. Biologic Drugs
1.4.3. Small Molecules in the Treatment of Psoriatic Arthritis
2. Gut Microbiota
2.1. Development, Diversity and Functions
2.1.1. Metabolic Function
2.1.2. Structural Function
2.1.3. Protective Function
2.1.4. Neurological Function
2.2. Microbiota and Disease
2.3. Gut Dysbiosis
Factors Contributing to Dysbiosis and Consequences
2.4. Gut Microbiota Dysbiosis and Autoimmune Diseases
2.5. Gut Microbiota in Psoriatic Arthritis
3. Future Perspectives: The Microbiota as a Therapeutic Target
3.1. Probiotics
3.2. Prebiotics
3.3. Fecal Microbiota Transplantation
3.4. Phage Therapy
3.5. Diet
3.6. Challenges in Microbiota-Based Therapy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stolwijk, C.; Boonen, A.; van Tubergen, A.; Reveille, J.D. Epidemiologia della spondiloartrite. Reum. Dis. Clin. N. Am. 2012, 38, 441–476. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.P.; Rouzaud, M.; Sevrain, M. Prevalence of undiagnosed psoriatic arthritis among psoriasis patients: Systematic review and meta-analysis. J. Am. Acad. Dermatol. 2015, 73, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Stolwijk, C.; van Onna, M.; Boonen, A.; van Tubergen, A. The global prevalence of spondyloarthritis: A systematic review and meta-regression analysis. Arthritis Care Res. 2016, 68, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Chandran, V.; Raychaudhuri, S.P. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J. Autoimmun. 2010, 34, J314–J321. [Google Scholar] [CrossRef]
- Chandran, V. Patterns of peripheral joint involvement in psoriatic arthritissymmetric, ray and/or row? Semin. Arthritis Rheum. 48 2018, 3, 430–435. [Google Scholar] [CrossRef]
- Carriero, A.; Lubrano, E.; Picerno, V.; Padula, A.; D’Angelo, S. Paradoxical psoriatic arthritis in a patient with psoriasis treated with guselkumab. Clin. Exp. Dermatol. 2021, 47, 783–785. [Google Scholar] [CrossRef]
- Picerno, V.; Scarano, E.; Tataranni, M.; Peruz, G.; Esposito, C.; Padula, A.; D’Angelo, S. Proximal patellar enthesitis treatment with ustekinumab in a patient with psoriatic arthritis: Significant response documented by ultrasound and magnetic resonance imaging. Br. J. Rheumatol. 2019, 58, 1879–1882. [Google Scholar] [CrossRef]
- D’Angelo, S.; Atzeni, F.; Benucci, M.; Bianchi, G.; Cantini, F.; Caporali, R.F.; Carlino, G.; Caso, F.; Cauli, A.; Ciccia, F.; et al. Management of psoriaticarthritis: A consensus opinion by expertrheumatologists. Front. Med. 2023, 10, 1327931. [Google Scholar] [CrossRef]
- Solmaz, D.; Eder, L.; Aydin, S.Z. Update on the epidemiology, risk factors, and disease outcomes of psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2018, 32, 295–311. [Google Scholar] [CrossRef]
- Talotta, R.; Atzeni, F.; Sarzi-Puttini, P.; Masala, I.F. Psoriatic arthritis: From pathogenesis to pharmacologic management. Pharmacol. Res. 2019, 148, 104394. [Google Scholar] [CrossRef]
- Stober, C. Pathogenesis of psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101694. [Google Scholar] [CrossRef] [PubMed]
- Rouzaud, M.; Sevrain, M.; Villani, A.P.; Barnetche, T.; Paul, C.; Richard, M.A.; Jullien, D.; Misery, L.; Le Maître, M.; Aractingi, S.; et al. Is there a psoriasis skin phenotype associated with psoriatic arthritis? Systematic literature review. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Eder, L.; Shanmugarajah, S.; Thavaneswaran, A.; Chandran, V.; Rosen, C.F.; Cook, R.J.; Gladman, D.D. The association between smoking and the development of psoriatic arthritis among psoriasis patients. Ann. Rheum. Dis. 2012, 71, 219–224. [Google Scholar] [CrossRef]
- Ocampo, D.V.; Gladman, D. Psoriatic arthritis. F1000Research 2019, 8, F1000 Faculty Rev-1665. [Google Scholar] [CrossRef]
- Gisondi, P.; Bellinato, F.; Maurelli, M.; Geat, D.; Zabotti, A.; McGonagle, D.; Girolomoni, G. Reducing the Risk of Developing Psoriatic Arthritis in Patients with Psoriasis. Psoriasis 2022, 12, 213–220. [Google Scholar] [CrossRef]
- Veale, D.J.; Fearon, U. The pathogenesis of psoriatic arthritis. Lancet 2018, 391, 2273–2284. [Google Scholar] [CrossRef]
- Kurowska-Stolarska, M.; Alivernini, S. Synovial tissue macrophages: Friend or foe? RMD 2017, 3, e00052. [Google Scholar] [CrossRef] [PubMed]
- Menon, B.; Gullick, N.J.; Walter, G.J.; Rajasekhar, M.; Garrood, T.; Evans, H.G.; Taams, L.S.; Kirkham, B.W. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 2014, 66, 1272–1281. [Google Scholar] [CrossRef]
- Noordenbos, T.; Yeremenko, N.; Gofita, I.; van de Sande, M.; Tak, P.P.; Caňete, J.D.; Baeten, D. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 2012, 64, 99–109. [Google Scholar] [CrossRef]
- Belasco, J.; Louie, J.S.; Gulati, N.; Wei, N.; Nograles, K.; Fuentes-Duculan, J. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthrit. Rheumatol. 2015, 67, 934–944. [Google Scholar] [CrossRef]
- Koenders, M.I.; Marijnissen, R.J.; Devesa, I.; Lubberts, E.; Joosten, L.A.; Roth, J. Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1beta, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis. Arthrit. Rheum. 2011, 63, 2329–2339. [Google Scholar] [CrossRef]
- Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat. Rev. Immunol. 2014, 14, 585–600. [Google Scholar]
- Sherlock, J.P.; Cua, D.J. Interleukin-23 in perspective. Rheumatology 2021, 60, iv1–iv3. [Google Scholar] [CrossRef]
- Gracey, E.; Vereecke, L.; McGovern, D.; Frohling, M.; Schett, G.; Danese, S.; De Vos, M.; Van den Bosch, F.; Elewaut, D. Publisher correction: Revisiting the gut-joint axis: Links between gut inflammation and spondyloarthritis. Nat. Rev. Rheumatol. 2020, 16, 536. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Rahman, P.; Ritchlin, C.; McInnes, I.B.; Elewaut, D.; Scher, J.U. Psoriatic arthritis from a mechanistic perspective. Nat. Rev. Rheumatol. 2022, 18, 311–325. [Google Scholar]
- Stuart, P.E.; Nair, R.P.; Tsoi, L.C. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am. J. Hum. Genet. 2015, 97, 816–836. [Google Scholar] [PubMed]
- Karason, A.; Love, T.J.; Gudbjornsson, B. A strong heritability of psoriatic arthritis over four generations—The Reykjavik Psoriatic Arthritis Study. Rheumatology 2009, 48, 1424–1428. [Google Scholar] [CrossRef] [PubMed]
- Bowes, J.; Budu-Aggrey, A.; Huffmeieret, U. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat. Commun. 2015, 6, 6046. [Google Scholar] [CrossRef]
- Camargo, C.M.; Brotas, A.M.; Ramos-e-Silva, M.; Carneiro, S. Isomorphic phenomenon of Koebner: Facts and controversies. Clin. Dermatol. 2013, 31, 741–749. [Google Scholar] [CrossRef]
- Ma, D.A.; Palazzi, C.; Olivieri, I. Entheseal involvement. Clin. Exp. Rheumatol. 2009, 27 (Suppl. 55), S50e5. [Google Scholar]
- Adamopoulos, I.E.; Suzuki, E.; Chao, C.C. IL-17A gene transfer induces bone loss and epidermal hyperplasia associated with psoriatic arthritis. Ann. Rheum. Dis. 2015, 74, 1284e92. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.; Tramontano, G.; Gilio, M.; Leccese, P.; Olivieri, I. Review of the treatment of psoriatic arthritis with biological agents: Choice of drug for initial therapy and switch therapy for non-responders. Open Access Rheumatol. 2017, 9, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Watson, L.; Coyle, C.; Whately-Smith, C. An international multicentre analysis of current prescribing practices and shared decision-making in psoriatic arthritis. Rheumatology 2024, 63, 3449–3456. [Google Scholar] [CrossRef]
- Yeoh, N.; Burton, J.P.; Suppiah, P.; Reid, G.; Stebbings, S. The role of the microbiome in rheumatic diseases. Curr. Rheumatol. Rep. 2013, 15, 314. [Google Scholar] [CrossRef] [PubMed]
- Sedzikowska, A.; Szablewski, L. Human Gut Microbiota in Health and Selected Cancers. Int. J. Mol. Sci. 2021, 22, 13440. [Google Scholar] [CrossRef]
- Jimenez, E.; Fernandez, L.; Marin, M.L.; Martin, R.; Odriozola, J.M.; Nueno-Palop, C.; Narbad, A.; Olivares, M.; Xaus, J.; Rodriguez, J.M. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 2005, 51, 270–274. [Google Scholar] [CrossRef]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015, 26, 26050. [Google Scholar] [CrossRef]
- Backhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; Lyte, M.; Meyer, E.; Cryan, J.F. Gut Microbiota and Brain Function: An Evolving Field in Neuroscience. Int. J. Neuropsychopharm. 2016, 19, pyv114. [Google Scholar] [CrossRef]
- Coyte, K.Z.; Schluter, J.; Foster, K.R. The ecology of the microbiome: Networks, competition, and stability. Science 2015, 350, 663–666. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef]
- Allesina, S.; Tang, S. Stability criteria for complex ecosystems. Nature 2012, 483, 205–208. [Google Scholar] [CrossRef] [PubMed]
- McNally, L.; Brown, S.P. Building the microbiome in health and disease: Niche construction and social conflict in bacteria. Phil. Trans. R. Soc. B. 2015, 370, 20140298. [Google Scholar] [CrossRef] [PubMed]
- McNally, L.; Brown, S.P. Microbiome: Ecology of stable gut communities. Nat. Microbiol. 2016, 11, 15016. [Google Scholar] [CrossRef]
- Baas-Becking, L.G.M. Geobiologie of Inleiding tot de Milieukunde; WP Van Stockum and Zoon: The Hague, The Netherlands, 1934. [Google Scholar]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Schnorr, S.L.; Candela, M.; Rampelli, S.; Centanni, M.; Consolandi, C.; Basaglia, G. Gut microbiome of the Hadza huntergatherers. Nat. Commun. 2014, 5, 3654. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.; Xue, Z.; Sun, Z.; Zhang, M.; Wang, L. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 2015, 9, 1979–1990. [Google Scholar] [CrossRef]
- Adak, A.; Maity, C.; Ghosh, K.; Pati, B.R.; Mondal, K.C. Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation. Folia Microbiol. 2013, 58, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Adak, A.; Ghosh, K.; Mondal, K.C. Modulation of small intestinal homeostasis along with its microflora during acclimatization at simulated hypobaric hypoxia. Indian J. Exp. Biol. 2014, 52, 1098–1105. [Google Scholar] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Lombard, V.; Golaconda, R.H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013, 42, D490–D495. [Google Scholar] [CrossRef]
- Bonomo, M.G.; Cafaro, C.; Guerrieri, A.; Crispo, F.; Milella, L.; Calabrone, L.; Salzano, G. Flow cytometry and capillary electrophoresis analyses in ethanol-stressed oenococcus oeni strains and changes assessment of membrane fatty acid composition. J. Appl. Microbiol. 2017, 122, 1615–1626. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W. Host-gut microbiota metabolic interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2017, 4, D624–D632. [Google Scholar] [CrossRef]
- Portune, K.J.; Beaumont, M.; Davila, A.M.; Tome, D.; Blachier, F.; Sanz, Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci. Technol. 2016, 57, 213–232. [Google Scholar] [CrossRef]
- Hentges, D.J.; Maier, B.R.; Burton, G.C.; Flynn, M.A.; Tsutakawa, R.K. Effect of a high-beef diet on the fecal bacterial flora of humans. Cancer Res. 1977, 37, 568–571. [Google Scholar]
- Swiatecka, D.; Narbad, A.; Ridgway, K.P.; Kostyra, H. The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol. 2011, 145, 267–272. [Google Scholar]
- Meddah, A.T.; Yazourh, A.; Desmet, I.; Risbourg, B.; Verstraete, W.; Romond, M.B. The regulatory effects of whey retentate from bifidobacteria fermented milk on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). J. Appl. Microbiol. 2001, 91, 1110–1117. [Google Scholar] [PubMed]
- Leitao-Goncalves, R.; Carvalho-Santos, Z.; Francisco, A.P.; Fioreze, G.T.; Anjos, M.; Baltazar, C. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 2017, 15, e2000862. [Google Scholar]
- Bonomo, M.G.; Milella, L.; Martelli, G.; Salzano, G. Stress response assessment of Lactobacillus sakei strains selected as potential autochthonous starter cultures by flow cytometry and nucleic acid double-staining analyses. J. Appl. Microbiol. 2013, 115, 786–795. [Google Scholar] [PubMed]
- Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A. Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice. Gastroenterology 2012, 142, S-12. [Google Scholar]
- Benítez-Páez, A.; Del Pulgar, E.M.G.; Kjølbæk, L.; Brahe, L.K.; Astrup, A.; Larsen, L. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends Food Sci. Technol. 2016, 57, 201–212. [Google Scholar]
- Vaughn, A.C.; Cooper, E.M.; DiLorenzo, P.M.; O’Loughlin, L.J.; Konkel, M.E.; Peters, J.H. Energy-dense diet triggers changes in gut microbiota, reorganization of gut-brain vagal communication and increases body fat accumulation. Acta Neurobiol. Exp. 2017, 77, 18–30. [Google Scholar]
- Marin, L.; Miguelez, E.M.; Villar, C.J.; Lombo, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int. 2015, 2015, 905215. [Google Scholar]
- Romo-Vaquero, M.; Garcia-Villalba, R.; Gonzalez-Sarrias, A.; Beltran, D.; Tomas-Barberan, F.A.; Espin, J.C. Interindividual variability in the human metabolism of ellagic acid: Contribution of Gordonibacter to urolithin production. J. Funct. Foods 2015, 17, 785–791. [Google Scholar]
- Johansson, M.E.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 2008, 105, 15064–15069. [Google Scholar]
- Derrien, M.; Belzer, C.; de Vos, W.M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 2017, 106, 171–181. [Google Scholar] [PubMed]
- Cani, P.D.; Geurts, L.; Matamoros, S.; Plovier, H.; Duparc, T. Glucose metabolism: Focus on gut microbiota, the endocannabinoid system and beyond. Diabetes Metab. 2014, 40, 246–257. [Google Scholar]
- Donohoe, D.R.; Garge, N.; Zhang, X.; Sun, W.; O’Connell, T.M.; Bunger, M.K. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011, 13, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Peters, B.A.; Friedlander, C.; Freiman, H.J.; Goedert, J.J.; Sinha, R.; Miller, G.; Bernstein, M.A.; Hayes, R.B.; Ahn, J. Association of dietary fibre intake and gut microbiota in adults. Br. J. Nutr. 2018, 120, 1014–1022. [Google Scholar] [CrossRef]
- Corr, S.C.; Li, Y.; Riedel, C.U.; O’Toole, P.W.; Hill, C.; Gahan, C.G. From the Cover: Bacteriocin production as a mechanism for the anti-infective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 2007, 104, 7617–7621. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004, 12, 1662–1665. [Google Scholar] [CrossRef] [PubMed]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar]
- Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int. 2016, 99, 110–132. [Google Scholar] [CrossRef]
- Olejniczak-Staruch, I.; Ciążyńska, M.; Sobolewska-Sztychny, D.; Narbutt, J.; Skibińska, M.; Lesiak, A. Alterations of the Skin and Gut Microbiome in Psoriasis and Psoriatic Arthritis. Int. J. Mol. Sci. 2021, 22, 3998. [Google Scholar] [CrossRef] [PubMed]
- Myers, B.; Brownstone, N.; Reddy, V.; Chan, S.; Thibodeaux, Q.; Truong, A.; Bhutani, T.; Chang, H.-W.; Liao, W. The gut microbiome in psoriasis and psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2019, 33, 101494. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef] [PubMed]
- Thye, A.Y.-K.; Bah, Y.-R.; Law, J.W.-F.; Tan, L.T.-H.; He, Y.-W.; Wong, S.-H.; Thurairajasingam, S.; Chan, K.-G.; Lee, L.-H.; Letchumanan, V. Gut–Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 2022, 10, 1037. [Google Scholar] [CrossRef]
- Eppinga, H.; Konstantinov, S.R.; Peppelenbosch, M.P.; Thio, H.B. The Microbiome and Psoriatic Arthritis. Curr. Rheumatol. Rep. 2014, 16, 407. [Google Scholar] [CrossRef] [PubMed]
- Scher, J.U.; Ubeda, C.; Artacho, A.; Mukundan, A.; Isaac, S.; Reddy, S.M.; Marmon, S.; Neimann, A.; Brusca, S.; Patel, T.; et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015, 67, 128–139. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Hsu, C.-Y.; He, H.-R.; Chiang, W.-Y.; Lin, S.-H.; Huang, Y.-L.; Kuo, Y.-H.B.; Su, Y.-J. Gut microbiota differences between psoriatic arthritis and other undifferentiated arthritis: A pilot study. Medicine 2022, 101, e29870. [Google Scholar] [CrossRef]
- Lupp, C.; Robertson, M.L.; Wickham, M.E.; Sekirov, I.; Champion, O.L.; Gaynor, E.C.; Finlay, B.B. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007, 2, 119–129. [Google Scholar] [CrossRef]
- Wlodarska, M.; Kostic, A.D.; Xavier, R.J. An Integrative View of Microbiome-Host Interactions in Inflammatory Bowel Diseases. Cell Host Microbe 2015, 17, 577–591. [Google Scholar] [CrossRef]
- Gérard, P. Gut microbiota and obesity. Cell. Mol. Life Sci. 2016, 73, 147–162. [Google Scholar] [CrossRef]
- Mirza, A.; Forbes, J.D.; Zhu, F.; Bernstein, C.N.; Van Domselaar, G.; Graham, M.; Waubant, E.; Tremlett, H. The multiple sclerosis gut microbiota: A systematic review. Mult. Scler. Relat. Disord. 2020, 37, 101427. [Google Scholar] [CrossRef]
- Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci. 2017, 74, 2959–2977. [Google Scholar] [CrossRef]
- Lecronier, M.; Tashk, P.; Tamzali, Y.; Tenaillon, O.; Denamur, E.; Barrou, B. Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients. PLoS ONE 2020, 15, e0227373. [Google Scholar] [CrossRef] [PubMed]
- Scotti, E.; Boué, S.; Lo Sasso, G.; Zanetti, F.; Belcastro, V.; Poussin, C.; Sierro, N.; Battey, J.; Gimalac, A. Exploring the microbiome in health and disease: Implications for toxicology. Toxicol. Res. Appl. 2017, 1, 2397847317741884. [Google Scholar] [CrossRef]
- Pflughoeft, K.J.; Versalovic, J. Human microbiome in health and disease. Ann. Rev. Pathol. 2012, 7, 99–122. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, K.S.; Maier, T.V.; Walker, A. Challenges of metabolomics in human gut microbiota research. Int. J. Med. Microbiol. 2016, 306, 266–279. [Google Scholar] [CrossRef]
- Vernocchi, P.; Del Chierico, F.; Putignani, L. Gut microbiota profiling: Metabolomics-based approach to unravel compounds affecting human health. Front. Microbiol. 2016, 7, 1144. [Google Scholar] [CrossRef]
- Klingensmith, N.J.; Coopersmith, C.M. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness. Crit. Care Clin. 2016, 32, 203–212. [Google Scholar] [CrossRef]
- Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Nat. Acad. Sci. USA 2010, 107, 147–152. [Google Scholar] [CrossRef]
- Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007, 1, 56–66. [Google Scholar] [PubMed]
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010, 5, e9836. [Google Scholar]
- Isaac, S.; Scher, J.U.; Djukovic, A.; Jiménez, N.; Littman, D.R.; Abramson, S.B.; Pamer, E.G.; Ubeda, C. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J. Antimicrob. Chemother. 2016, 72, 128–136. [Google Scholar]
- Visser, L.; de Vos, W.M.; Nieuwdorp, M. Obesity and the gut microbiota: Expected changes and their therapeutic potential. Endocrinology 2019, 160, 75–82. [Google Scholar]
- Forbes, J.D.; Van Domselaar, G.; Bernstein, C.N. The gut microbiota in immune-mediated inflammatory diseases. Front. Microbiol. 2016, 7, 1081. [Google Scholar]
- Shapiro, H.; Suez, J.; Elinav, E. Personalized microbiota tailoring: Rationale, opportunities, and current shortcomings. Cell Host Microbe 2019, 25, 214–224. [Google Scholar]
- Kim, D.; Zeng, M.Y.; Núñez, G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp. Mol. Med. 2014, 46, e223. [Google Scholar]
- Shen, Z.H. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2017, 23, 862–872. [Google Scholar]
- Lopez-Siles, M.; Khan, T.M.; Duncan, S.H.; Harmsen, H.J.; Garcia-Gil, L.J.; Flint, H.J. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl. Environ. Microbiol. 2012, 78, 420–428. [Google Scholar]
- Miyazaki, K.; Masuoka, N.; Kano, M.; Iizuka, R. Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Benef. Microbes 2014, 5, 121–128. [Google Scholar]
- Sikora, M.; Chrabąszcz, M.; Waśkiel-Burnat, A. Gut microbiome in psoriasis: An updated review. Pathogens 2020, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef]
- Codoñer, F.M.; Ramírez-Bosca, A.; Climent, E.; Carrión-Gutiérrez, M.; Guerrero, M.; Ortiz-Muñoz, L.; Navarro-López, V. “Gut microbial composition in patients with psoriasis. Sci. Rep. 2018, 8, 3812. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Gen. 2017, 13, 260–270. [Google Scholar] [CrossRef]
- Gaur, M.; Karki, S.; Venkatesan, S.; Bhatia, D.; Subramanian, A.; Sharma, A.; Kumar, A. Bleomycin-induced senescence in human adipose-derived stem cells. J. Stem Cell Res. Ther. 2017, 7, 1000394. [Google Scholar]
- Sharma, R.; Balanehru, S.; Krishnan, S. Isolation and Characterization of Aerobic Gut Microbiome of Psoriatic Arthritic and Psoriasis Patients. SBV J. Basic Clin. Appl. Health Sci. 2019, 2, 5. [Google Scholar]
- Hammad, D.B.M.; Rahoma, G.B.; Hassan, M.R.; Saad, H.A. Gut microbiota and immune system crosstalk in the context of malnutrition. Front. Immunol. 2019, 10, 287. [Google Scholar]
- Jones, R.B.; Mulle, J.G.; Powers, J.B. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2020, 12, 193. [Google Scholar]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the human male reproductive tract. Front. Microbiol. 2018, 9, 2191. [Google Scholar]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2018, 121, 91–119. [Google Scholar]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef]
- Collado, M.C.; Isolauri, E.; Laitinen, K.; Salminen, S. Gut microbiota in children is determined by age and breastfeeding practices. J. Nutr. 2007, 137, 444–450. [Google Scholar]
- Song, M.; Garrett, W.S.; Chan, A.T. Dietary walnut altered the gut microbiota, enhanced microbial-derived urolithin A levels and suppressed colon tumorigenesis in mice. Cancer Prev. Res. 2016, 9, 751–762. [Google Scholar]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.J.; Wells, J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2019, 14, 189. [Google Scholar] [CrossRef]
- Zhou, Y.; He, F.; Liu, H. Gut microbiota composition and fecal metabolic phenotype in patients with gout. Front. Microbiol. 2018, 9, 272. [Google Scholar]
- Zhai, Q.; Feng, S.; Arjan, N.; Chen, W. A next generation probiotic, Akkermansia muciniphila. Crit. Rev. Food Sci. Nutr. 2019, 59, 3227–3236. [Google Scholar] [CrossRef] [PubMed]
- Eppinga, H.; Sperna Weiland, C.J.; Thio, H.B.; van der Woude, C.J.; Nijsten, T.E.C.; Peppelenbosch, M.P.; Konstantinov, S.R. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in rosacea. J. Crohn’s Colitis 2016, 10, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek 2019, 113, 2019–2040. [Google Scholar] [CrossRef]
- Tathode, M.S.; Bonomo, M.G.; Zappavigna, S.; Mang, S.M.; Bocchetti, M.; Camele, I.; Caraglia, M.; Salzano, G. Whole-genome analysis suggesting probiotic potential and safety properties of Pediococcus pentosaceus DSPZPP1, a promising LAB strain isolated from traditional fermented sausages of the Basilicata region (Southern Italy). Front. Microbiol. 2024, 15, 1268216. [Google Scholar] [CrossRef]
- Raman, M.; Ambalam, P.; Kondepudi, K.K.; Pithva, S.; Kothari, C.; Patel, A.T.; Vyas, B.R.M. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microb. 2013, 4, 181–192. [Google Scholar] [CrossRef]
- La Fata, G.; Weber, P.; Mohajeri, M.H. Probiotics and the gut immune system: Indirect regulation. Nutrients 2017, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, N.B.; Bryrup, T.; Allin, K.H.; Nielsen, T.; Hansen, T.; Pedersen, O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: A systematic review of randomized controlled trials. Gen. Med. 2016, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Ray, K. Gut microbiota: Balancing the microbiota to prevent IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 312. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Osaka, T.; Moriyama, E.; Date, Y.; Kikuchi, J.; Tsuneda, S. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol. Rep. 2014, 3, e12327. [Google Scholar] [CrossRef]
- Reis, S.A.; Conceição, L.L.; Rosa, D.D.; Siqueira, N.P.; Peluzio, M. Intestinal microbiota and probiotics in celiac disease. Clin. Microbiol. Rev. 2017, 30, 181–192. [Google Scholar]
- Cani, P.D.; de Vos, W.M. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front. Microbiol. 2017, 8, 1765. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, H.; Wu, P.; Yang, S.; Xue, W.; Xu, B.; Zhang, S.; Tang, B.; Xu, D. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024, 15, 2375555. [Google Scholar] [CrossRef]
- Breyner, N.M.; Michon, C.; de Sousa, C.S.; Vilas Boas, P.B.; Chain, F.; Azevedo, V.A.; Langella, P.; Chatel, J.M. Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-κB Pathway. Front. Microbiol. 2017, 8, 114. [Google Scholar] [CrossRef]
- Shin, J.-H.; Lee, Y.; Song, E.-J.; Lee, D.; Jang, S.-Y.; Byeon, H.R.; Hong, M.-G.; Lee, S.-N.; Kim, H.-J.; Seo, J.-G.; et al. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet. Front. Microbiol. 2023, 14, 1123547. [Google Scholar] [CrossRef]
- Fernández-Murga, M.L.; Sanz, Y. Safety Assessment of Bacteroides uniformis CECT 7771 Isolated from Stools of Healthy Breast-Fed Infants. PLoS ONE 2016, 11, e0145503. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, J.; Chen, L.; Yu, J.; Zhang, J.; Yin, H.; Shang, Q.; Yu, G. Discovery of Bacteroides uniformis F18-22 as a Safe and Novel Probiotic Bacterium for the Treatment of Ulcerative Colitis from the Healthy Human Colon. Int. J. Mol. Sci. 2023, 24, 14669. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilić-Stojanović, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017, 66, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Lovering, A.L.; Sockett, R.E. Microbe Profile: Bdellovibrio bacteriovorus: A specialized bacterial predator of bacteria. Microbiol. 2021, 167, 001043. [Google Scholar] [CrossRef]
- Patel, R.; DuPont, H.L. New Approaches for Bacteriotherapy: Prebiotics, New-Generation Probiotics, and Synbiotics. Clin. Infect. Dis. 2015, 60, S108–S121. [Google Scholar] [CrossRef]
- Cammarota, G.; Masucci, L.; Ianiro, G. Randomised clinical trial: Faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment. Pharmacol. Ther. 2015, 41, 835–843. [Google Scholar] [CrossRef]
- Cammarota, G.; Ianiro, G.; Gasbarrini, A. Fecal Microbiota Transplantation for the Treatment of Clostridium difficile Infection: A Systematic Review. J. Clin. Gastroenterol. 2014, 48, 693–702. [Google Scholar] [CrossRef]
- Sawa, T.; Moriyama, K.; Kinoshita, M. Current status of bacteriophage therapy for severe bacterial infections. J. Intensiv. Care 2024, 12, 44. [Google Scholar] [CrossRef]
- Alesa, D.I.; Alshammari, M.K.; Alzahrani, F.S.; Alzahrani, A.M.; Aljuaid, N.M. The role of probiotics in the management of inflammatory bowel disease: A clinical perspective. Saudi J. Gastroenterol. 2019, 25, 208–214. [Google Scholar]
- Vijayashankar, M.; Raghunath, N. Role of probiotics in various diseases: A review. J. Pharm. Biomed. Sci. 2012, 23, 1–6. [Google Scholar]
- Groeger, D.; O’Mahony, L.; Murphy, E.F.; Bourke, J.F.; Dinan, T.G.; Kiely, B.; Shanahan, F.; Quigley, E.M.M. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microb. 2013, 4, 325–339. [Google Scholar] [CrossRef]
- Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Paz Soldan, M.M.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016, 6, 28484. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Farinas, M.; Arbeit, R.; Jiang, W.; Ortenzio, F.S.; Sullivan, T. Suppression of psoriasis/human skin grafts in the AGR mouse model by a novel IL-15 antagonist. J. Clin. Investig. 2013, 123, 812–820. [Google Scholar]
- Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 2015, 74, 13–22. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Williams, S.; Chen, L.; Savignac, H.M.; Tzortzis, G.; Anthony, D.C.; Burnet, P.W. Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus. Synapse 2016, 70, 121–124. [Google Scholar] [CrossRef] [PubMed]
- De Cossío, L.F.; Fourrier, C.; Sauvant, J.; Everard, A.; Capuron, L.; Cani, P.D.; Layé, S.; Castanon, N. Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain Behav. Imm. 2017, 64, 33–49. [Google Scholar] [CrossRef]
- Li, S.S.; Zhu, A.; Benes, V.; Costea, P.I.; Hercog, R.; Hildebrand, F.; Huerta-Cepas, J.; Nieuwdorp, M.; Salojärvi, J.; Voigt, A.Y.; et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 2016, 352, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, T.; Joossens, M.; Wang, J.; Boelens, J.; Verhasselt, B.; Laukens, D.; van Vlierberghe, H.; Hindryckx, P.; De Vos, M.; De Looze, D.; et al. Assessment of faecal microbial transfer in irritable bowel syndrome with severe bloating. Gut 2017, 66, 980–982. [Google Scholar] [CrossRef]
- Aroniadis, O.C.; Brandt, L.J.; Oneto, C.; Feuerstadt, P.; Sherman, A.; Wolkoff, A.W.; Downs, I.A.; Zanetti-Yabur, A.; Ramos, Y.; Cotto, C.L.; et al. A double-blind, randomized, placebo-controlled trial of fecal microbiota transplantation capsules (FMTC) for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D). Gastroenterology 2018, 154, 154–155. [Google Scholar] [CrossRef]
- Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016, 8, 8–17. [Google Scholar] [CrossRef]
- Scarpellini, E.; Ianiro, G.; Attili, F.; Bassanelli, C.; De Santis, A.; Gasbarrini, A. The human gut microbiota and virome: Potential therapeutic implications. Dig. Liver Dis. 2015, 47, 1007–1012. [Google Scholar] [PubMed]
- Parracho, H.; Burrowes, B.; Enright, M.; McConville, M.; Harper, D. The role of regulated clinical trials in the development of bacteriophage therapeutics. J. Mol. Genet. Med. 2012, 6, 279–286. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Pellegrini, N.; Vannini, L. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [PubMed]
- Marietta, E.V.; Murray, J.A.; Luckey, D.H. Impact of the Mediterranean Diet on Gut Microbiota and Inflammatory Diseases. Nutrients 2019, 11, 1234. [Google Scholar]
- Tomas-Barberan, F.A.; Espín, J.C. Effect of dietary polyphenols on the gut microbiota: Implications for human health. J. Nutr. Biochem. 2019, 61, 1–14. [Google Scholar]
- Watson, H.; Mitra, S.; Croden, F.C. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 2018, 67, 1974–1983. [Google Scholar] [CrossRef]
- Vieira, A.T.; Teixeira, M.M.; Martins, F.S. The role of probiotics and prebiotics in inducing gut immunity. Front. Immunol. 2013, 4, 445. [Google Scholar]
- Scher, J.U.; Nayak, R.R.; Ubeda, C. Gut microbiota in autoimmune and inflammatory diseases. Ann. Rev. Immunol. 2020, 38, 291–313. [Google Scholar]
Category | Risk Factor | Details |
---|---|---|
Non-modifiable Factors | Family history of PsA | Genetic predisposition |
Genetics | Inherited risk | |
Psoriasis-related factors | -Age of psoriasis onset -Severity -Localization -Nail involvement | |
Modifiable Factors | Environmental factors | -Physical trauma -Bacterial infections |
-Vaccination | ||
Metabolic abnormalities | -Obesity -Hyperlipidemia -Hyperuricemia | |
Smoking | Increased inflammation risk | |
Medications | NSAIDs (non-steroidal anti-inflammatory drugs) |
Cytokine | Expression Site | Source | Key Functions |
---|---|---|---|
TNF-α | Synovial tissue, synovial fluid | Macrophages, T cells, fibroblast-like synoviocytes, B cells | Activates immune cells, induces cytokine and matrix metalloproteinase (MMP) production, promotes cartilage resorption. |
Interleukin-23 (IL-23) | Synovial tissue, synovial fluid, enthesis | Macrophages, dendritic cells | Promotes Th17 cell differentiation and production of granulocyte-macrophage colony-stimulating factors (GM-CSF). |
Interleukin-17A/F (IL-17) | Synovial tissue, synovial fluid, enthesis | T cells, mast cells, natural killer cells | Stimulates fibroblast-like synoviocytes, chondrocytes, osteoclasts, and production of inflammatory cytokines and MMPs; recruits neutrophils. |
Interleukin-22 (IL-22) | Synovial tissue, synovial fluid, enthesis | T cells, innate lymphoid cells | Activates fibroblast-like synoviocytes, induces osteoclastogenesis, and promotes bone resorption through RANKL expression. |
Bacterial Species | Basic Features | Associated Physiological Changes | Associated Disease States | References |
---|---|---|---|---|
Akkermansia muciniphila | Gram-negative obligate anaerobe | Anti-inflammatory effects | ↓ in IBD, obesity, and T2D (↑ after metformin treatment); ↑ in fish-oil-fed mice; ↓ after cold exposure | [96,97] |
Bacteroides spp. | Gram-negative obligate anaerobe | Activate CD4+ T cells | ↑ with animal-based diet and obesity; Bacteroides vulgatus positively correlates with IR | [90] |
Bifidobacterium spp. | Gram-positive obligate anaerobe | SCFA production; improve gut mucosal barrier; lower intestinal LPS levels | ↓ in obesity and smokers; ↑ in RTT syndrome; used as probiotic | [98,99] |
Bilophila spp. | Gram-negative obligate anaerobe | Promote pro-inflammatory immunity | ↑ in colitis; ↑ in lard-fed mice; ↓ in autism | [96] |
Christensenella spp. | Gram-negative anaerobe | Negative correlation with BMI | Christensenella minuta decreased weight gain after transplant | [97] |
Clostridium spp. | Gram-positive obligate anaerobe | Promote generation TH17 cells | Several spp. cause botulism, tetanus, and other diseases; ↑ after sidestream smoke exposure; ↓ in IBD; ↑ in autism, RTT syndrome, T2D | [96,97] |
Dialister spp. | Gram-positive obligate anaerobe | Some spp. are pathogenic | ↑ in obesity and periodontitis; ↓ in autism | [96] |
Enterobacter spp. | Gram-negative facultative anaerobe | Several spp. are pathogenic | ↓ after side-stream smoke exposure; Enterobacter cloacae induces obesity in germ-free mice | [90] |
Escherichia coli | Gram-negative facultative anaerobe | TLR activation | ↑ in IBD and T2D | [98] |
Eubacterium spp. | Gram-positive obligate anaerobe | SCFA and phenolic acids production | ↓ in IBD, atherosclerosis, and T2D; Eubacterium saphenum ↑ in periodontitis | [99] |
Faecalibacterium prausnitzii | Gram-positive obligate anaerobe | SCFA production and anti-inflammatory effects | ↓ in IBD, obesity, T2D, and overweight | [96] |
Lactobacillus spp. | Gram-positive facultative anaerobe | SCFA production; anti-inflammatory activity | Attenuate IBD; ↑ in fish oil-fed mice; used as probiotic; linked to obesity, stress, and autism | [97] |
Roseburia spp. | Gram-positive obligate anaerobe | SCFA production | ↓ in IBD, obesity, T2D, and atherosclerosis | [96] |
Streptococcus spp. | Gram-positive facultative anaerobe | Some spp. are pathogenic | S. mutans ↑ in oral cavity after high-carb diet, linked to caries; S. salivarius used as probiotic for periodontitis | [97] |
Veillonella spp. | Gram-negative obligate anaerobe | Fermentation of lactate to propionate and acetate | ↑ in oral cavity after smoking; ↓ in autism | [96] |
Prevotella spp. | Gram-negative obligate anaerobe | Some spp. cause infections in oral and respiratory tract | ↑ with high-fiber diet; P. copri linked to insulin resistance; ↓ in autism and Parkinson’s disease | [98] |
Porphyromonas spp. | Gram-negative obligate anaerobe | Some spp. are pathogenic | P. gingivalis and P. endodontalis linked to periodontitis; ↓ in smokers; ↑ in obesity | [96] |
Neisseria spp. | Gram-negative obligate aerobe | Sugar fermentation | Only N. meningitidis and N. gonorrhoeae are pathogenic; ↓ in smokers | [97] |
Therapeutic Strategy | Disease | Achieved Results | References |
---|---|---|---|
Akkermansia muciniphila | -Obesity -Metabolism disorders -Diabetic subjects | -Re-equilibration of gut microbiota dysbiosis -Reversion of atherosclerotic lesions | [137,138] |
Faecalibacterium prausnitzii | -Gut microbiota dysbiosis | -Re-equilibration of gut microbiota dysbiosis -Protective effects -Production of short fatty acids (SCFAs) | [139,140] |
Bacteroides uniformis | -High fat diet -Ulcerative colitis | -Enhancement of lipid profiles, leptine and glucose level -Reduction in colon contraction -Improvement of gut bleending -Attenuation of mucosal damage | [141,142] |
Bdellovibrio bacteriovorus: a specialized bacterial predator | -Gram-negativeGram-negative infections -Gut microbiota dysbiosis (with overgrowth of Gram negative bacteria) | Re-equilibration of gut microbiota dysbiosis | [143,144] |
Bacteriotherapy | -Gut microbiota dysbiosis -Clostridioides difficile infections -Ulcerative colitis | Re-equilibration of gut microbiota dysbiosis | [145,146] |
Phage therapy | -Bacterial infections -Gut microbiota dysbiosis | Re-equilibration of gut microbiota dysbiosis | [147,148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonomo, M.G.; D’Angelo, S.; Picerno, V.; Carriero, A.; Salzano, G. Recent Advances in Gut Microbiota in Psoriatic Arthritis. Nutrients 2025, 17, 1323. https://doi.org/10.3390/nu17081323
Bonomo MG, D’Angelo S, Picerno V, Carriero A, Salzano G. Recent Advances in Gut Microbiota in Psoriatic Arthritis. Nutrients. 2025; 17(8):1323. https://doi.org/10.3390/nu17081323
Chicago/Turabian StyleBonomo, Maria Grazia, Salvatore D’Angelo, Valentina Picerno, Antonio Carriero, and Giovanni Salzano. 2025. "Recent Advances in Gut Microbiota in Psoriatic Arthritis" Nutrients 17, no. 8: 1323. https://doi.org/10.3390/nu17081323
APA StyleBonomo, M. G., D’Angelo, S., Picerno, V., Carriero, A., & Salzano, G. (2025). Recent Advances in Gut Microbiota in Psoriatic Arthritis. Nutrients, 17(8), 1323. https://doi.org/10.3390/nu17081323