Abilities of Rare Sugar Members to Release Glucagon-like Peptide-1 and Suppress Food Intake in Mice
Abstract
:1. Introduction
2. Materials & Methods
2.1. Materials
2.2. Animals
2.3. Measurement of Plasma GLP-1 Concentration in the Portal Vein
2.4. Measurements of Food Intake
2.5. Statistical Analysis
3. Results
3.1. Single Peroral Administration of Ketohexoses, but Not Aldohexose, Elevates Plasma GLP-1 Concentrations in a Dose-Dependent Manner
3.2. Po Administration of Four Ketohexoses and D-Allose, but Not D-Glucose, Results in Short-Term Suppression of Food Intake
3.3. GLP-1 Receptor Antagonism Blunts the Anorexigenic Effects of Ketohexoses but Not That of D-Allose
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayashi, N.; Yamada, T.; Takamine, S.; Iida, T.; Okuma, K.; Tokuda, M. Weight Reducing Effect and Safety Evaluation of Rare Sugar Syrup by a Randomized Double-Blind, Parallel-Group Study in Human. J. Funct. Foods 2014, 11, 152–159. [Google Scholar] [CrossRef]
- Van Laar, A.D.E.; Grootaert, C.; Van Camp, J. Rare Mono- and Disaccharides as Healthy Alternative for Traditional Sugars and Sweeteners? Crit. Rev. Food Sci. Nutr. 2021, 61, 713–741. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Khan, T.A.; Dan Ramdath, D.; Kendall, C.W.C.; Sievenpiper, J.L. Rare Sugars and Their Health Effects in Humans: A Systematic Review and Narrative Synthesis of the Evidence from Human Trials. Nutr. Rev. 2022, 80, 255–270. [Google Scholar] [CrossRef]
- Yoshihara, A.; Kozakai, T.; Shintani, T.; Matsutani, R.; Ohtani, K.; Iida, T.; Akimitsu, K.; Izumori, K.; Gullapalli, P.K. Purification and Characterization of D-Allulose 3-Epimerase Derived from Arthrobacter Globiformis M30, a GRAS Microorganism. J. Biosci. Bioeng. 2017, 123, 170–176. [Google Scholar] [CrossRef]
- Morimoto, K.; Park, C.-S.; Ozaki, M.; Takeshita, K.; Shimonishi, T.; Granström, T.B.; Takata, G.; Tokuda, M.; Izumori, K. Large Scale Production of D-Allose from d-Psicose Using Continuous Bioreactor and Separation System. Enzyme Microb. Technol. 2006, 38, 855–859. [Google Scholar] [CrossRef]
- Seo, M.-J.; Choi, J.-H.; Kang, S.-H.; Shin, K.-C.; Oh, D.-K. Characterization of L-Rhamnose Isomerase from Clostridium Stercorarium and Its Application to the Production of D-Allose from D-Allulose (D-Psicose). Biotechnol. Lett. 2018, 40, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-W.; Jang, H.-J.; Choe, E.-A.; Kim, B.-C.; Lee, S.-J.; Kim, S.-B.; Hong, Y.-H.; Pyun, Y.-R. Characterization of a Thermostable l Arabinose (d-Galactose) Isomerase from the Hyperthermophilic Eubacterium Thermotoga maritima. Appl. Environ. Microbiol. 2004, 70, 1397–1404. [Google Scholar] [CrossRef]
- Mori, H.; Kobayashi, T.; Shimizu, S. High Density Production of Sorbose from Sorbitol by Fed-Batch Culture with DO-Stat. J. Chem. Eng. Jpn. 1981, 14, 65–70. [Google Scholar] [CrossRef]
- Takamine, S.; Nakamura, M.; Iida, T.; Okuma, K.; Izumori, K. [Regular Paper] Manufacturing Method of Rare Sugar Syrup through Alkali Isomerization and Its Inhibitory Effect of α-Glucosidase. Bull. Appl. Glycosci. 2015, 5, 44–49. [Google Scholar] [CrossRef]
- Shintani, T.; Yamada, T.; Hayashi, N.; Iida, T.; Nagata, Y.; Ozaki, N.; Toyoda, Y. Rare Sugar Syrup Containing D-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats. J. Agric. Food Chem. 2017, 65, 2888–2894. [Google Scholar] [CrossRef]
- Iida, T.; Yamada, T.; Hayashi, N.; Okuma, K.; Izumori, K.; Ishii, R.; Matsuo, T. Reduction of Abdominal Fat Accumulation in Rats by 8-Week Ingestion of a Newly Developed Sweetener Made from High Fructose Corn Syrup. Food Chem. 2013, 138, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like Peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Sendo, M.; Dezaki, K.; Hira, T.; Sato, T.; Nakata, M.; Goswami, C.; Aoki, R.; Arai, T.; Kumari, P.; et al. GLP-1 Release and Vagal Afferent Activation Mediate the Beneficial Metabolic and Chronotherapeutic Effects of D-Allulose. Nat. Commun. 2018, 9, 113. [Google Scholar] [CrossRef]
- Krieger, J.-P.; Arnold, M.; Pettersen, K.G.; Lossel, P.; Langhans, W.; Lee, S.J. Knockdown of GLP-1 Receptors in Vagal Afferents Affects Normal Food Intake and Glycemia. Diabetes 2016, 65, 34–43. [Google Scholar] [CrossRef]
- Kuhre, R.E.; Gribble, F.M.; Hartmann, B.; Reimann, F.; Windeløv, J.A.; Rehfeld, J.F.; Holst, J.J. Fructose Stimulates GLP-1 but Not GIP Secretion in Mice, Rats, and Humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G622–G630. [Google Scholar] [CrossRef]
- Teysseire, F.; Bordier, V.; Budzinska, A.; Weltens, N.; Rehfeld, J.F.; Holst, J.J.; Hartmann, B.; Beglinger, C.; Van Oudenhove, L.; Wölnerhanssen, B.K.; et al. The Role of D-Allulose and Erythritol on the Activity of the Gut Sweet Taste Receptor and Gastrointestinal Satiation Hormone Release in Humans: A Randomized, Controlled Trial. J. Nutr. 2022, 152, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, M.; Hira, T.; Nakamura, M.; Iida, T.; Kishimoto, Y.; Hara, H. Secretion of GLP-1 but Not GIP Is Potently Stimulated by Luminal d-Allulose (d-Psicose) in Rats. Biochem. Biophys. Res. Commun. 2018, 496, 898–903. [Google Scholar] [CrossRef]
- Kishida, K.; Iida, T.; Yamada, T.; Toyoda, Y. Intestinal Absorption of D-Fructose Isomers, D-Allulose, D-Sorbose and D-Tagatose, via Glucose Transporter Type 5 (GLUT5) but Not Sodium-Dependent Glucose Cotransporter 1 (SGLT1) in Rats. Br. J. Nutr. 2023, 130, 1852–1858. [Google Scholar] [CrossRef]
- Bai, L.; Mesgarzadeh, S.; Ramesh, K.S.; Huey, E.L.; Liu, Y.; Gray, L.A.; Aitken, T.J.; Chen, Y.; Beutler, L.R.; Ahn, J.S.; et al. Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell 2019, 179, 1129–1143.e23. [Google Scholar] [CrossRef]
- Ohbayashi, K.; Oyama, Y.; Yamaguchi, C.; Asano, T.; Yada, T.; Iwasaki, Y. Gastrointestinal Distension by Pectin-Containing Carbonated Solution Suppresses Food Intake and Enhances Glucose Tolerance via GLP-1 Secretion and Vagal Afferent Activation. Front. Endocrinol. 2021, 12, 676869. [Google Scholar] [CrossRef]
- Mizuma, S.; Hayakawa, M.; Hira, T. Intestinal Distension Induced by Luminal D-Allulose Promotes GLP-1 Secretion in Male Rats. Endocrinology 2025, 166, bqaf002. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Z.; Empie, M.W. Fructose Metabolism in Humans—What Isotopic Tracer Studies Tell Us. Nutr. Metab. 2012, 9, 89. [Google Scholar] [CrossRef]
- Windeløv, J.A.; Wewer Albrechtsen, N.J.; Kuhre, R.E.; Jepsen, S.L.; Hornburg, D.; Pedersen, J.; Jensen, E.P.; Galsgaard, K.D.; Winther-Sørensen, M.; Ørgaard, A.; et al. Why Is It So Difficult to Measure Glucagon-like Peptide-1 in a Mouse? Diabetologia 2017, 60, 2066–2075. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.M.; Galsgaard, K.D.; Jepsen, S.L.; Albrechtsen, N.W.; Hartmann, B.; Holst, J.J. In Vivo Inhibition of Dipeptidyl Peptidase 4 Allows Measurement of GLP-1 Secretion in Mice. Diabetes 2024, 73, 671–681. [Google Scholar] [CrossRef]
- Gorboulev, V.; Schürmann, A.; Vallon, V.; Kipp, H.; Jaschke, A.; Klessen, D.; Friedrich, A.; Scherneck, S.; Rieg, T.; Cunard, R.; et al. Na+-D-Glucose Cotransporter SGLT1 Is Pivotal for Intestinal Glucose Absorption and Glucose-Dependent Incretin Secretion. Diabetes 2012, 61, 187–196. [Google Scholar] [CrossRef]
- Kim, K.-S.; Jung Yang, H.; Lee, I.-S.; Kim, K.-H.; Park, J.; Jeong, H.-S.; Kim, Y.; Seok Ahn, K.; Na, Y.-C.; Jang, H.-J. The Aglycone of Ginsenoside Rg3 Enables Glucagon-like Peptide-1 Secretion in Enteroendocrine Cells and Alleviates Hyperglycemia in Type 2 Diabetic Mice. Sci. Rep. 2015, 5, 18325. [Google Scholar] [CrossRef]
- Furuse, M.; Tamura, Y.; Matsuda, S.; Shimizu, T.; Okumura, J. Feeding Behavior in Growing Rats Fed Diets Containing Sorbose. Physiol. Behav. 1991, 49, 1247–1250. [Google Scholar] [CrossRef]
- Buemann, B.; Toubro, S.; Raben, A.; Blundell, J.; Astrup, A. The Acute Effect of D-Tagatose on Food Intake in Human Subjects. Br. J. Nutr. 2000, 84, 227–231. [Google Scholar] [CrossRef]
- Tordoff, M.G.; Friedman, M.I. Hepatic Control of Feeding: Effect of Glucose, Fructose, and Mannitol Infusion. Am. J. Physiol. 1988, 254, R969–R976. [Google Scholar] [CrossRef]
- Rodin, J.; Reed, D.; Jamner, L. Metabolic Effects of Fructose and Glucose: Implications for Food Intake. Am. J. Clin. Nutr. 1988, 47, 683–689. [Google Scholar] [CrossRef]
- Kong, M.F.; Chapman, I.; Goble, E.; Wishart, J.; Wittert, G.; Morris, H.; Horowitz, M. Effects of Oral Fructose and Glucose on Plasma GLP-1 and Appetite in Normal Subjects. Peptides 1999, 20, 545–551. [Google Scholar] [CrossRef]
- Warwick, Z.S.; Weingarten, H.P. Dynamics of Intake Suppression after a Preload: Role of Calories, Volume, and Macronutrients. Am. J. Physiol. 1994, 266, R1314–R1318. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, I.; Hossain, A.; Yamaguchi, F.; Hirata, Y.; Dong, Y.; Kamitori, K.; Sui, L.; Nonaka, M.; Ueno, M.; Nishimoto, K.; et al. Intestinal Absorption, Organ Distribution, and Urinary Excretion of the Rare Sugar D-Psicose. Drug Des. Dev. Ther. 2014, 8, 1955–1964. [Google Scholar] [CrossRef]
- Toyohara, J.; Yamamoto, H.; Tago, T. Searching for Diagnostic Properties of Novel Fluorine-18-Labeled D-Allose. Ann. Nucl. Med. 2019, 33, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Cirillo, P.; Sautin, Y.; McCall, S.; Bruchette, J.L.; Diehl, A.M.; Johnson, R.J.; Abdelmalek, M.F. Fructose Consumption as a Risk Factor for Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2008, 48, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A. Fructose and Risk of Cardiometabolic Disease. Curr. Atheroscler. Rep. 2012, 14, 570–578. [Google Scholar] [CrossRef]
- Tanaka, M.; Hayashi, N.; Iida, T. Safety Evaluation of 12-Week Continuous Ingestion of D-Allulose in Borderline Diabetes and Type 2 Diabetes. Fundam. Toxicol. Sci. 2019, 6, 225–234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masuda, Y.; Ohbayashi, K.; Iba, K.; Kitano, R.; Kimura, T.; Yamada, T.; Hira, T.; Yada, T.; Iwasaki, Y. Abilities of Rare Sugar Members to Release Glucagon-like Peptide-1 and Suppress Food Intake in Mice. Nutrients 2025, 17, 1221. https://doi.org/10.3390/nu17071221
Masuda Y, Ohbayashi K, Iba K, Kitano R, Kimura T, Yamada T, Hira T, Yada T, Iwasaki Y. Abilities of Rare Sugar Members to Release Glucagon-like Peptide-1 and Suppress Food Intake in Mice. Nutrients. 2025; 17(7):1221. https://doi.org/10.3390/nu17071221
Chicago/Turabian StyleMasuda, Yuta, Kento Ohbayashi, Kengo Iba, Rika Kitano, Tomonori Kimura, Takako Yamada, Tohru Hira, Toshihiko Yada, and Yusaku Iwasaki. 2025. "Abilities of Rare Sugar Members to Release Glucagon-like Peptide-1 and Suppress Food Intake in Mice" Nutrients 17, no. 7: 1221. https://doi.org/10.3390/nu17071221
APA StyleMasuda, Y., Ohbayashi, K., Iba, K., Kitano, R., Kimura, T., Yamada, T., Hira, T., Yada, T., & Iwasaki, Y. (2025). Abilities of Rare Sugar Members to Release Glucagon-like Peptide-1 and Suppress Food Intake in Mice. Nutrients, 17(7), 1221. https://doi.org/10.3390/nu17071221