Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SWH | Social Welfare Home |
CRI-I | Castelli’s Risk Index I |
CRI-II | Castelli’s Risk Index II |
TG | Triacylglycerols |
TC | Total cholesterol |
HDL-C | High-density lipoprotein cholesterol fraction |
LDL-C | Low-density lipoprotein cholesterol fraction |
BMI | Body Mass Index |
WC | Waist circumference |
HC | Hip circumference |
WHR | Waist-to-hip ratio |
WHtR | Waist-to-height ratio |
FA | Fatty acids |
GPR120 | G protein-coupled receptor 120 |
R27OH | Variant of the GPR120 gene |
HOMA-IR | Homeostatic Model Assessment |
References
- Kahl, K.G. Direct and indirect effects of psychopharmacological treatment on the cardiovascular system. Horm. Mol. Biol. Clin. Investig. 2018, 36, 20180054. [Google Scholar] [CrossRef]
- Dayabandara, M.; Hanwella, R.; Ratnatunga, S.; Seneviratne, S.; Suraweera, C.; de Silva, V.A. Antipsychotic-associated weight gain: Management strategies and impact on treatment adherence. Neuropsychiatr. Dis. Treat. 2017, 13, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- Osborn, D.P.; Hardoon, S.; Omar, R.Z.; Holt, R.I.; King, M.; Larsen, J.; Marston, L.; Morris, R.W.; Nazareth, I.; Walters, K.; et al. Cardiovascular risk prediction models for people with severe mental illness: Results from the prediction and management of cardiovascular risk in people with severe mental illnesses (PRIMROSE) research program. JAMA Psychiatry 2015, 72, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.; Fugiel, J.; Sadowska, J. Assessing Effects of Diet Alteration on Carbohydrate-Lipid Metabolism of Antipsychotic-Treated Schizophrenia Patients in Interventional Study. Nutrients 2023, 15, 1871. [Google Scholar] [CrossRef]
- Friedrich, M.E.; Fugiel, J.; Bruszkowska, M. Assessing effects of diet alteration on selected parameters of chronically mentally ill residents of a 24-hour Nursing Home. Part I: Effects of diet modification on carbohydrate-lipid metabolism. Psychiatr. Pol. 2020, 54, 915–933. [Google Scholar] [CrossRef]
- Friedrich, M.; Fugiel, J.; Goluch, Z.; Dziaduch, I. Assessing effects of diet alteration on selected parameters of chronically mentally ill residents of a 24-hour Nursing Home. Part 2. Effects of nutritional changes on anthropometric parameters and composition of the body. Psychiatr. Pol. 2022, 56, 1365–1380. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.E.; Fugiel, J.; Dziaduch, I. Assessing effects of diet alteration on selected parameters of chronically mentally ill residents of a 24-hour Nursing Home. Part 3: Effects of diet modification on selected health indicators. Psychiatr. Pol. 2023, 57, 1195–1211. [Google Scholar] [CrossRef]
- Raaj, I.; Thalamati, M.; Gowda, V.; Rao, A. The Role of the Atherogenic Index of Plasma and the Castelli Risk Index I and II in Cardiovascular Disease. Cureus 2024, 16, e74644. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Rodriguez Polanco, S.; Bousvarou, M.D.; Papakonstantinou, E.J.; Peña Genao, E.; Guzman, E.; Kostara, C.E. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023, 13, 929. [Google Scholar] [CrossRef]
- Zuccoli, G.S.; Saia-Cereda, V.M.; Nascimento, J.M.; Martins-de-Souza, D. The Energy Metabolism Dysfunction in Psychiatric Disorders Postmortem Brains: Focus on Proteomic Evidence. Front. Neurosci. 2017, 11, 493. [Google Scholar] [CrossRef]
- Andreassen, O.A.; Djurovic, S.; Thompson, W.K.; Schork, A.J.; Kendler, K.S.; O’Donovan, M.C.; Rujescu, D.; Werge, T.; van de Bunt, M.; Morris, A.P.; et al. Improved Detection of Common Variants Associated with Schizophrenia by Leveraging Pleiotropy with Cardiovascular-Disease Risk Factors. Am. J. Hum. Genet. 2013, 92, 197–209. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Kwan, A.T.H.; Rosenblat, J.D.; Teopiz, K.M.; Mansur, R.B. Psychotropic Drug-Related Weight Gain and Its Treatment. Am. J. Psychiatry 2024, 181, 26–38. [Google Scholar] [CrossRef]
- Ho-Palma, A.C.; Toro, P.; Rotondo, F.; Romero, M.D.M.; Alemany, M.; Remesar, X.; Fernández-López, J.A. Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis. Nutrients 2019, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Siafis, S.; Tzachanis, D.; Samara, M.; Papazisis, G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr. Neuropharmacol. 2018, 16, 1210–1223. [Google Scholar] [CrossRef] [PubMed]
- Raben, A.T.; Marshe, V.S.; Chintoh, A.; Gorbovskaya, I.; Müller, D.J.; Hahn, M.K. The Complex Relationship between Antipsychotic-Induced Weight Gain and Therapeutic Benefits: A Systematic Review and Implications for Treatment. Front. Neurosci. 2018, 11, 741. [Google Scholar] [CrossRef]
- Hudson, B.D.; Shimpukade, B.; Milligan, G.; Ulven, T. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J. Biol. Chem. 2014, 289, 20345–20358. [Google Scholar] [CrossRef]
- Konno, Y.; Ueki, S.; Takeda, M.; Kobayashi, Y.; Tamaki, M.; Moritoki, Y.; Oyamada, H.; Itoga, M.; Kayaba, H.; Omokawa, A.; et al. Functional analysis of free fatty acid receptor GPR120 in human eosinophils: Implications in metabolic homeostasis. PLoS ONE 2015, 10, e0120386. [Google Scholar] [CrossRef]
- Rog, J.; Błażewicz, A.; Juchnowicz, D.; Ludwiczuk, A.; Stelmach, E.; Kozioł, M.; Karakula, M.; Niziński, P.; Karakula-Juchnowicz, H. The Role of GPR120 Receptor in Essential Fatty Acids Metabolism in Schizophrenia. Biomedicines 2020, 8, 243. [Google Scholar] [CrossRef]
- Vestmar, M.A.; Andersson, E.A.; Christensen, C.R.; Hauge, M.; Glümer, C.; Linneberg, A.; Witte, D.R.; Jørgensen, M.E.; Christensen, C.; Brandslund, I.; et al. Functional and genetic epidemiological characterisation of the FFAR4 (GPR120) p.R270H variant in the Danish population. J. Med. Genet. 2016, 53, 616–623. [Google Scholar] [CrossRef]
- Satapati, S.; Qian, Y.; Wu, M.S.; Petrov, A.; Dai, G.; Wang, S.P.; Zhu, Y.; Shen, X.; Muise, E.S.; Chen, Y.; et al. GPR120 suppresses adipose tissue lipolysis and synergizes with GPR40 in antidiabetic efficacy. J. Lipid Res. 2017, 58, 1561–1578. [Google Scholar] [CrossRef]
- Bonnefond, A.; Lamri, A.; Leloire, A.; Vaillant, E.; Roussel, R.; Lévy-Marchal, C.; Weill, J.; Galan, P.; Hercberg, S.; Ragot, S.; et al. Contribution of the low-frequency, loss-of-function p.R270H mutation in FFAR4 (GPR120) to increased fasting plasma glucose levels. J. Med. Genet. 2015, 52, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Gozal, D.; Kheirandish-Gozal, L.; Carreras, A.; Khalyfa, A.; Peris, E. Obstructive sleep apnea and obesity are associated with reduced GPR 120 plasma levels in children. Sleep 2014, 37, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Karakuła-Juchnowicz, H.; Róg, J.; Juchnowicz, D.; Morylowska-Topolska, J. GPR120: Mechanism of action, role and potential for medical applications. Postep. Hig. Med. Dosw. (Online) 2017, 71, 942–953. [Google Scholar] [CrossRef]
- Friedrich, M. The effects of diet enrichment with a new hull-less oat cultivar on glucose, lipid, lipoprotein, fibrinogen and estradiol contents in the blood of post-mastectomy women. Pol. J. Food. Nutr. Sci. 2003, 12, 69–74. [Google Scholar]
- Yang, S.Y.; Kim, Y.S.; Lee, J.E.; Seol, J.; Song, J.H.; Chung, G.E.; Yim, J.Y.; Lim, S.H.; Kim, J.S. Dietary protein and fat intake in relation to risk of colorectal adenoma in Korean. Medicine 2016, 95, e5453. [Google Scholar] [CrossRef]
Trait | Women, n = 3 | |
---|---|---|
Before | After | |
Glucose (mmol/L) | 5.49 5.27 5.05 5.27 ± 0.22 | 4.11 3.66 4.38 4.05 ± 0.36 |
TG (mmol/L) | 0.61 0.63 0.91 0.72 ± 0.17 | 0.68 0.84 1.30 0.94 ± 0.32 |
TC (mmol/L) | 4.3 4.27 5.49 4.69 ± 0.70 | 5.10 5.36 5.83 5.44 ± 0.38 |
HDL-C (mmol/L) | 1.42 1.36 1.34 1.38 ± 0.04 | 1.27 1.25 1.36 1.30 ± 0.06 |
LDL-C (mmol/L) | 2.59 2.61 3.73 2.98 ± 0.65 | 3.39 3.78 4.22 3.80 ± 0.41 |
Trait | Women, n = 12 | Women, n = 3 | ||
---|---|---|---|---|
Before | After | Before | After | |
TC/HDL-C | 4.93 ± 1.66 b | 4.14 ± 1.52 a | 3.03 3.13 4.09 3.41 ± 0.59 | 4.0 4.29 4.30 4.19 ± 0.17 |
LDL-C/HDL-C | 3.25 ± 1.14 | 2.81 ± 0.79 | 1.82 1.92 2.79 2.17 ± 0.53 | 2.66 3.02 3.10 2.93 ± 0.23 |
TG/HDL-C | 4.24 ± 2.21 | 3.24 ± 2.05 | 0.98 1.06 1.56 1.20 ± 0.31 | 1.22 1.53 2.19 1.64 ± 0.49 |
Trait | Women, n = 3 | |
---|---|---|
Before | After | |
Body weight (kg) | 81.0 67.0 83.0 77.0 ± 8.72 | 80.5 70.5 82.4 76.8 ± 8.61 |
BMI (kg/m2) | 29.8 24.3 31.4 28.5 ± 3.72 | 29.6 25.6 31.2 28.8 ± 2.88 |
WC (cm) | 100 89 110 99.7 ± 10.5 | 92 91 109 97.3 ± 10.1 |
HC (cm) | 112 99 112 107.7 ± 7.51 | 106 98 102 102.0 ± 4.0 |
WHR | 0.89 0.90 0.98 0.92 ± 0.05 | 0.87 0.93 1.07 0.96 ± 0.10 |
WHtR | 0.61 0.54 0.68 0.61 ± 0.07 | 0.56 0.55 0.67 0.59 ± 0.07 |
Trait | Women, n = 12 | Women, n = 3 | ||
---|---|---|---|---|
Before | After | Before | After | |
Total body fat (%) | 47.2 ± 12.1 | 47.0 ± 10.2 | 63.5 62.3 55.7 60.5 ± 4.2 | 58.3 57.8 58.4 58.2 ± 0.32 |
Lean body mass (%) | 52.7 ± 12.0 | 53.0 ± 10.2 | 36.5 37.7 44.3 39.5 ± 4.2 | 41.7 42.2 41.6 41.8 ± 0.32 |
Total body water (%) | 47.9 ± 6.5 | 48.1 ± 4.5 | 43.5 45.2 47.8 45.5 ± 2.17 | 46.5 48.4 46.2 47.0 ± 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, M.; Sadowska, J. Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients. Nutrients 2025, 17, 1198. https://doi.org/10.3390/nu17071198
Friedrich M, Sadowska J. Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients. Nutrients. 2025; 17(7):1198. https://doi.org/10.3390/nu17071198
Chicago/Turabian StyleFriedrich, Mariola, and Joanna Sadowska. 2025. "Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients" Nutrients 17, no. 7: 1198. https://doi.org/10.3390/nu17071198
APA StyleFriedrich, M., & Sadowska, J. (2025). Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients. Nutrients, 17(7), 1198. https://doi.org/10.3390/nu17071198