Effects of B Vitamins on Homocysteine Lowering and Thrombotic Risk Reduction—A Review of Randomized Controlled Trials Published Since January 1996
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Eligibility Criteria
- Population: adult patients (greater or equal to 18 years of age).
- Intervention: oral, enteral, or parenteral folic acid (Vitamin B9) and/or cobalamin (or vitamin B12) and/or pyridoxine (vitamin B6) with or without standard therapy.
- Outcomes: Incidence of any thrombotic events, including (but not limited to) myocardial infarction (MI), stroke or transient ischemic attack (TIA), cardiovascular accident (CVA), deep vein thrombosis (DVT), pulmonary embolism (PE). Trials reporting only biochemical outcomes or surrogate markers were excluded.
2.3. Eligibility Review and Data Abstraction
2.4. Qualitative Analysis
3. Results
3.1. Summary of Trials on Arterial Thrombosis Events
3.2. Summary of Trials on Venous Thrombotic Events
3.3. Summary of Homocysteine-Lowering Effects
4. Discussion
4.1. Effects of Vitamin B Supplements on Arterial Thrombotic Events
4.2. Effects of Vitamin B Supplements on Venous Thrombotic Events (VTEs)
4.3. Effects of Vitamin B Supplements on Other Vascular Outcomes
4.4. Effects of Vitamin B Supplements and tHcy Lowering
4.5. Potential Cofounders on Clinical Trial Outcomes
4.5.1. Dietary Fortification and Nutritional Deficiencies
4.5.2. Concurrent Medication Treatment
4.5.3. Genetic Mutations
4.5.4. 5-Methyltetrahydrofolate
4.5.5. Safety of Vitamin B Supplement
4.6. Limitations and Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Koklesova, L.; Mazurakova, A.; Samec, M.; Biringer, K.; Samuel, S.M.; Büsselberg, D.; Kubatka, P.; Golubnitschaja, O. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021, 12, 477–505. [Google Scholar] [CrossRef] [PubMed]
- Menezo, Y.; Elder, K.; Clement, A.; Clement, P. Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles. Biomolecules 2022, 12, 197. [Google Scholar] [CrossRef]
- Pushpakumar, S.; Kundu, S.; Sen, U. Endothelial dysfunction: The link between homocysteine and hydrogen sulfide. Curr. Med. Chem. 2014, 21, 3662–3672. [Google Scholar] [CrossRef]
- Kataria, N.; Yadav, P.; Kumar, R.; Kumar, N.; Singh, M.; Kant, R.; Kalyani, V. Effect of Vitamin B6, B9, and B12 Supplementation on Homocysteine Level and Cardiovascular Outcomes in Stroke Patients: A Meta-Analysis of Randomized Controlled Trials. Cureus 2021, 13, 14958. [Google Scholar] [CrossRef]
- Collaboration, H.L.T. Lowering blood homocysteine with folic acid based supplements: Meta-analysis of randomised trials. Homocysteine Lowering Trialists’ Collaboration. BMJ 1998, 316, 894–898. [Google Scholar]
- Eichinger, S. Homocysteine, vitamin B6 and the risk of recurrent venous thromboembolism. Pathophysiol. Haemost. Thromb. 2003, 33, 342–344. [Google Scholar] [CrossRef]
- Ray, J.G.; Kearon, C.; Yi, Q.; Sheridan, P.; Lonn, E. Heart Outcomes Prevention Evaluation 2 (HOPE-2) Investigators. Homocysteine-lowering therapy and risk for venous thromboembolism: A randomized trial. Ann. Intern. Med. 2007, 146, 761–767. [Google Scholar] [CrossRef]
- Makris, M. Hyperhomocysteinemia and thrombosis. Clin. Lab. Haematol. 2000, 22, 133–143. [Google Scholar] [CrossRef]
- Guéant, J.L.; Guéant-Rodriguez, R.M.; Oussalah, A.; Zuily, S.; Rosenberg, I. Hyperhomocysteinemia in Cardiovascular Diseases: Revisiting Observational Studies and Clinical Trials. Thromb. Haemost. 2023, 123, 270–282. [Google Scholar] [CrossRef]
- Guieu, R.; Ruf, J.; Mottola, G. Hyperhomocysteinemia and cardiovascular diseases. Ann. Biol. Clin. 2022, 80, 7–14. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Li, H.; Li, J.; Zhang, Y.; Liang, M.; Nie, J.; Wang, B.; Wang, X.; Huo, Y.; et al. Interaction of serum calcium and folic acid treatment on first stroke in hypertensive males. Clin. Nutr. 2021, 40, 2381–2388. [Google Scholar] [CrossRef]
- Araghi, O. Long-term effects of folic acid and vitamin-B12 supplementation on fracture risk and cardiovascular disease: Extended follow-up of the B-PROOF trial. Clin. Nutr. 2021, 40, 1199–1206. [Google Scholar] [CrossRef]
- Kong, X.; Huang, X.; Zhao, M.; Xu, B.; Xu, R.; Song, Y.; Yu, Y.; Yang, W.; Zhang, J.; Liu, L.; et al. Platelet Count Affects Efficacy of Folic Acid in Preventing First Stroke. J. Am. Coll. Cardiol. 2018, 71, 2136–2146. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, X.; He, M.; Qin, X.; Tang, G.; Huo, Y.; Li, J.; Fu, J.; Huang, X.; Cheng, X.; et al. Homocysteine and Stroke Risk: Modifying Effect of Methylenetetrahydrofolate Reductase C677T Polymorphism and Folic Acid Intervention. Stroke 2017, 48, 1183–1190. [Google Scholar] [CrossRef]
- Huo, Y.; Li, J.; Qin, X.; Huang, Y.; Wang, X.; Gottesman, R.F.; Tang, G.; Wang, B.; Chen, D.; He, M.; et al. CSPPT Investigators. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: The CSPPT randomized clinical trial. JAMA 2015, 313, 1325–1335. [Google Scholar] [CrossRef]
- Kotwal, J.; Kotwal, A.; Bhalla, S.; Singh, P.K.; Nair, V. Effectiveness of homocysteine lowering vitamins in prevention of thrombotic tendency at high altitude area: A randomized field trial. Thromb. Res. 2015, 136, 758–762. [Google Scholar] [CrossRef]
- Arshi, B.; Ovbiagele, B.; Markovic, D.; Saposnik, G.; Towfighi, A. Differential effect of B-vitamin therapy by antiplatelet use on risk of recurrent vascular events after stroke. Stroke 2015, 46, 870–873. [Google Scholar] [CrossRef]
- Hankey, G.J.; Eikelboom, J.W.; Yi, Q.; Lees, K.R.; Chen, C.; Xavier, D.; Navarro, J.C.; Ranawaka, U.K.; Uddin, W.; Ricci, S.; et al. VITATOPS trial study group. Antiplatelet therapy and the effects of B vitamins in patients with previous stroke or transient ischaemic attack: A post-hoc subanalysis of VITATOPS, a randomised, placebo-controlled trial. Lancet Neurol. 2012, 11, 512–520. [Google Scholar] [CrossRef]
- Bostom, A.G.; Carpenter, M.A.; Kusek, J.W.; Levey, A.S.; Hunsicker, L.; Pfeffer, M.A.; Selhub, J.; Jacques, P.F.; Cole, E.; Gravens-Mueller, L.; et al. Homocysteine-lowering and cardiovascular disease outcomes in kidney transplant recipients: Primary results from the Folic Acid for Vascular Outcome Reduction in Transplantation trial. Circulation 2011, 123, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Galan, P.; Kesse-Guyot, E.; Czernichow, S.; Briancon, S.; Blacher, J.; Hercberg, S.S.; SU.FOL.OM3 Collaborative Group. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: A randomised placebo controlled trial. BMJ 2010, 341, 6273. [Google Scholar] [CrossRef] [PubMed]
- House, A.A.; Eliasziw, M.; Cattran, D.C.; Churchill, D.N.; Oliver, M.J.; Fine, A.; Dresser, G.K.; Spence, J.D. Effect of B-vitamin therapy on progression of diabetic nephropathy: A randomized controlled trial. JAMA 2010, 303, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- VITATOPS Trial Study Group. B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: A randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol. 2010, 9, 855–865. [Google Scholar] [CrossRef]
- Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group*. Effects of Homocysteine-Lowering with Folic Acid Plus Vitamin B12 vs. Placebo on Mortality and Major Morbidity in Myocardial Infarction Survivors: A Randomized Trial. JAMA 2010, 303, 2486–2494. [Google Scholar] [CrossRef]
- Heinz, J.; Kropf, S.; Domröse, U.; Westphal, S.; Borucki, K.; Luley, C.; Neumann, K.H.; Dierkes, J. B vitamins and the risk of total mortality and cardiovascular disease in end-stage renal disease: Results of a randomized controlled trial. Circulation 2010, 121, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.M.; Cook, N.R.; Gaziano, J.M.; Zaharris, E.; MacFadyen, J.; Danielson, E.; Buring, J.E.; Manson, J.E. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: A randomized trial. JAMA 2008, 299, 2027–2036. [Google Scholar] [CrossRef]
- Ebbing, M.; Bleie, Ø.; Ueland, P.M.; Nordrehaug, J.E.; Nilsen, D.W.; Vollset, S.E.; Refsum, H.; Pedersen, E.K.R.; Nygård, O. Mortality and Cardiovascular Events in Patients Treated with Homocysteine-Lowering B Vitamins After Coronary Angiography: A Randomized Controlled Trial. JAMA 2008, 300, 795–804. [Google Scholar] [CrossRef]
- Jamison, R.L.; Hartigan, P.; Kaufman, J.S.; Goldfarb, D.S.; Warren, S.R.; Guarino, P.D.; Gaziano, J.M. Effect of Homocysteine Lowering on Mortality and Vascular Disease in Advanced Chronic Kidney Disease and End-stage Renal Disease: A Randomized Controlled Trial. JAMA 2007, 298, 1163–1170. [Google Scholar] [CrossRef]
- Lonn, E.; Held, C.; Arnold, J.M.; Probstfield, J.; McQueen, M.; Micks, M.; Pogue, J.; Sheridan, P.; Bosch, J.; Genest, J.; et al. HOPE-2 Investigators. Rationale, design and baseline characteristics of a large, simple, randomized trial of combined folic acid and vitamins B6 and B12 in high-risk patients: The Heart Outcomes Prevention Evaluation (HOPE)-2 trial. Can. J. Cardiol. 2006, 22, 47–53. [Google Scholar] [CrossRef]
- Bønaa, K.H.; Njølstad, I.; Ueland, P.M.; Schirmer, H.; Tverdal, A.; Steigen, T.; Wang, H.; Nordrehaug, J.E.; Arnesen, E.; Rasmussen, K. NORVIT Trial Investigators. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N. Engl. J. Med. 2006, 354, 1578–1588. [Google Scholar] [CrossRef] [PubMed]
- Zoungas, S.; McGrath, B.P.; Branley, P.; Kerr, P.G.; Muske, C.; Wolfe, R.; Atkins, R.C.; Nicholls, K.; Fraenkel, M.; Hutchison, B.G.; et al. Cardiovascular morbidity and mortality in the Atherosclerosis and Folic Acid Supplementation Trial (ASFAST) in chronic renal failure: A multicenter, randomized, controlled trial. J. Am. Coll. Cardiol. 2006, 47, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Liem, A.; Reynierse-Buitenwerf, G.H.; Zwinderman, A.H.; Jukema, J.W.; van Veldhuisen, D.J. Secondary prevention with folic acid: Results of the Goes extension study. Heart 2005, 91, 1213–1214. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.D.; Bang, H.; Chambless, L.E.; Stampfer, M.J. Vitamin Intervention for Stroke Prevention trial: An efficacy analysis. Stroke 2005, 36, 2404–2409. [Google Scholar] [CrossRef] [PubMed]
- Wrone, E.M.; Hornberger, J.M.; Zehnder, J.L.; McCann, L.M.; Coplon, N.S.; Fortmann, S.P. Randomized trial of folic acid for prevention of cardiovascular events in end-stage renal disease. J. Am. Soc. Nephrol. 2004, 15, 420–426. [Google Scholar] [CrossRef]
- Toole, J.F.; Malinow, M.R.; Chambless, L.E.; Spence, J.D.; Pettigrew, L.C.; Howard, V.J.; Sides, E.G.; Wang, C.H.; Stampfer, M. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: The Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004, 291, 565–575. [Google Scholar] [CrossRef]
- Liem, A.H.; van Boven, A.J.; Veeger, N.J.; Withagen, A.J.; Robles de Medina, R.M.; Tijssen, J.; van Veldhuisen, D. Efficacy of folic acid when added to statin therapy in patients with hypercholesterolemia following acute myocardial infarction: A randomised pilot trial. Int. J. Cardiol. 2004, 93, 175–179. [Google Scholar] [CrossRef]
- Shu, X.J.; Li, Z.F.; Chang, Y.W.; Liu, S.Y.; Wang, W.H. Effects of folic acid combined with vitamin B12 on DVT in patients with homocysteine cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2538–2544. [Google Scholar]
- den Heijer, M.; Willems, H.P.; Blom, H.J.; Gerrits, W.B.; Cattaneo, M.; Eichinger, S.; Rosendaal, F.R.; Bos, G.M. Homocysteine lowering by B vitamins and the secondary prevention of deep vein thrombosis and pulmonary embolism: A randomized, placebo-controlled, double-blind trial. Blood 2007, 109, 139–144. [Google Scholar] [CrossRef]
- van Dijk, S.C.; Enneman, A.W.; Swart, K.M.; van Wijngaarden, J.P.; Ham, A.C.; Brouwer-Brolsma, E.M.; van der Zwaluw, N.L.; Blom, H.J.; Feskens, E.J.; Geleijnse, J.M.; et al. Effects of 2-year vitamin B12 and folic acid supplementation in hyperhomocysteinemic elderly on arterial stiffness and cardiovascular outcomes within the B-PROOF trial. J. Hypertens. 2015, 33, 1897–1906. [Google Scholar] [CrossRef]
- Liem, A.; Reynierse-Buitenwerf, G.H.; Zwinderman, A.H.; Jukema, J.W.; van Veldhuisen, D.J. Secondary prevention with folic acid: Effects on clinical outcomes. J. Am. Coll. Cardiol. 2003, 41, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Wald, D.S.; Morris, J.K.; Wald, N.J. Reconciling the evidence on serum homocysteine and ischaemic heart disease: A meta-analysis. PLoS ONE 2011, 6, 16473. [Google Scholar] [CrossRef] [PubMed]
- Davì, G.; Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med. 2007, 357, 2482–2494. [Google Scholar] [CrossRef] [PubMed]
- Coppola, A.; Davi, G.; De Stefano, V.; Mancini, F.P.; Cerbone, A.M.; Di Minno, G. Homocysteine, coagulation, platelet function, and thrombosis. Semin. Thromb. Hemost. 2000, 26, 243–254. [Google Scholar] [CrossRef]
- Zhou, K.; Zhao, R.; Geng, Z.; Jiang, L.; Cao, Y.; Xu, D.; Liu, Y.; Huang, L.; Zhou, J. Association between B-group vitamins and venous thrombosis: Systematic review and meta-analysis of epidemiological studies. J. Thromb. Thrombolysis 2012, 34, 459–467. [Google Scholar] [CrossRef]
- Cattaneo, M.; Lombardi, R.; Lecchi, A.; Bucciarelli, P.; Mannucci, P.M. Low plasma levels of vitamin B(6) are independently associated with a heightened risk of deep-vein thrombosis. Circulation 2001, 104, 2442–2446. [Google Scholar] [CrossRef]
- Ekim, M.; Sekeroglu, M.R.; Balahoroglu, R.; Ozkol, H.; Ekim, H. Roles of the Oxidative Stress and ADMA in the Development of Deep Venous Thrombosis. Biochem. Res. Int. 2014, 2014, 703128. [Google Scholar] [CrossRef]
- Chambers, J.C.; Obeid, O.A.; Refsum, H.; Ueland, P.; Hackett, D.; Hooper, J.; Turner, R.M.; Thompson, S.G.; Kooner, J.S. Plasma homocysteine concentrations and risk of coronary heart disease in UK Indian Asian and European men. Lancet 2000, 355, 523–527. [Google Scholar] [CrossRef]
- Menzel, D.; Haller, H.; Wilhelm, M.; Robenek, H. L-Arginine and B vitamins improve endothelial function in subjects with mild to moderate blood pressure elevation. Eur. J. Nutr. 2018, 57, 557–568. [Google Scholar] [CrossRef]
- Zamani, M.; Rezaiian, F.; Saadati, S.; Naseri, K.; Ashtary-Larky, D.; Yousefi, M.; Golalipour, E.; Clark, C.C.T.; Rastgoo, S.; Asbaghi, O. The effects of folic acid supplementation on endothelial function in adults: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr. J. 2023, 22, 12. [Google Scholar] [CrossRef]
- Sodi, A.; Giambene, B.; Marcucci, R.; Sofi, F.; Bolli, P.; Abbate, R.; Prisco, D.; Menchini, U. Atherosclerotic and thrombophilic risk factors in patients with recurrent central retinal vein occlusion. Eur. J. Ophthalmol. 2008, 18, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, J.; Chen, X.; She, H.; Zhao, L.; Peng, Y.; Zhang, J.; Shang, K.; Li, H.; Yang, W.; et al. Association Between Folic Acid Supplementation and Retinal Atherosclerosis in Chinese Adults with Hypertension Complicated by Diabetes Mellitus. Front. Pharmacol. 2018, 9, 1159. [Google Scholar] [CrossRef] [PubMed]
- Hodis, H.N.; Mack, W.J.; Dustin, L.; Mahrer, P.R.; Azen, S.P.; Detrano, R.; Selhub, J.; Alaupovic, P.; Liu, C.R.; Liu, C.H.; et al. BVAIT Research Group. High-dose B vitamin supplementation and progression of subclinical atherosclerosis: A randomized controlled trial. Stroke 2009, 40, 730–736. [Google Scholar] [CrossRef]
- Kwok, T.; Chook, P.; Qiao, M.; Tam, L.; Poon, Y.K.; Ahuja, A.T.; Woo, J.; Celermajer, D.S.; Woo, K.S. Vitamin B-12 supplementation improves arterial function in vegetarians with subnormal vitamin B-12 status. J. Nutr. Health Aging 2012, 16, 569–573. [Google Scholar] [CrossRef]
- Huang, X.; Qin, X.; Yang, W.; Liu, L.; Jiang, C.; Zhang, X.; Jiang, S.; Bao, H.; Su, H.; Li, P.; et al. MTHFR Gene and Serum Folate Interaction on Serum Homocysteine Lowering: Prospect for Precision Folic Acid Treatment. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 679–685. [Google Scholar] [CrossRef]
- Jacques, P.F.; Selhub, J.; Bostom, A.G.; Wilson, P.W.; Rosenberg, I.H. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N. Engl. J. Med. 1999, 340, 1449–1454. [Google Scholar] [CrossRef]
- Wang, B.; Wu, H.; Li, Y.; Ban, Q.; Huang, X.; Chen, L.; Li, J.; Zhang, Y.; Cui, Y.; He, M.; et al. Effect of long-term low-dose folic acid supplementation on degree of total homocysteine-lowering: Major effect modifiers. Br. J. Nutr. 2018, 120, 1122–1130. [Google Scholar] [CrossRef]
- Wald, N.J.; Morris, J.K.; Blakemore, C. Public health failure in the prevention of neural tube defects: Time to abandon the tolerable upper intake level of folate. Public Health Rev. 2018, 39, 2. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chiu, S.W.; Hong, K.S.; Saver, J.L.; Wu, Y.L.; Lee, J.D.; Lee, M.; Ovbiagele, B. Folic Acid in Stroke Prevention in Countries without Mandatory Folic Acid Food Fortification: A Meta-Analysis of Randomized Controlled Trials. J. Stroke 2018, 20, 99–109. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Roh, H.; Kwon, Y. Causes of hyperhomocysteinemia and its pathological significance. Arch. Pharm. Res. 2018, 41, 372–383. [Google Scholar] [CrossRef]
- Leclerc, D.; Sibani, S.; Rozen, R. Molecular Biology of Methylenetetrahydrofolate Reductase (MTHFR) and Overview of Mutations/Polymorphisms. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6561/ (accessed on 10 February 2025).
- Frederiksen, J.; Juul, K.; Grande, P.; Jensen, G.B.; Schroeder, T.V.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Methylenetetrahydrofolate reductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: Prospective and case-control studies from the Copenhagen City Heart Study. Blood 2004, 104, 3046–3051. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.A.; Parish, S.; Millwood, I.Y.; Guo, Y.; Chen, Y.; Turnbull, I.; Yang, L.; Lv, J.; Yu, C.; Smith, G.D.; et al. MTHFR and risk of stroke and heart disease in a low-folate population: A prospective study of 156 000 Chinese adults. Int. J. Epidemiol. 2023, 52, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar]
- Shi, Y.; Zhang, Z.; Wang, B.; Wang, Y.; Kong, X.; Sun, Y.; Li, A.; Cui, Y.; Zhang, Y.; Li, J.; et al. Effect of plateletcrit and methylenetetrahydrofolate reductase (MTHFR) C677T genotypes on folic acid efficacy in stroke prevention. Signal Transduct. Target. Ther. 2024, 9, 110. [Google Scholar] [CrossRef]
- Scaglione, F.; Panzavolta, G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica 2014, 44, 480–488. [Google Scholar] [CrossRef]
- Cianciolo, G.; La Manna, G.; Colì, L.; Donati, G.; D’Addio, F.; Persici, E.; Comai, G.; Wratten, M.; Dormi, A.; Mantovani, V.; et al. 5-methyltetrahydrofolate administration is associated with prolonged survival and reduced inflammation in ESRD patients. Am. J. Nephrol. 2008, 28, 941–948. [Google Scholar] [CrossRef]
- Liu, M.; Ye, Z.; Yang, S.; Zhang, Y.; Zhang, Y.; He, P.; Zhou, C.; Hou, F.F.; Qin, X. Relationship of dietary intake of food folate and synthetic folic acid intake from fortified foods with all-cause mortality in individuals with chronic kidney disease. Food Funct. 2024, 15, 559–568. [Google Scholar] [CrossRef]
- Pietrzik, K.; Bailey, L.; Shane, B. Folic acid and L-5-methyltetrahydrofolate: Comparison of clinical pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2010, 49, 535–548. [Google Scholar] [CrossRef]
- Huang, X.; Bao, H.; Ding, C.; Li, J.; Cao, T.; Liu, L.; Wei, Y.; Zhou, Z.; Zhang, N.; Song, Y.; et al. Optimal folic acid dosage in lowering homocysteine: Precision Folic Acid Trial to lower homocysteine (PFAT-Hcy). Eur. J. Nutr. 2024, 63, 1513–1528. [Google Scholar] [CrossRef]
- Williamson, J.M.; Arthurs, A.L.; Smith, M.D.; Roberts, C.T.; Jankovic-Karasoulos, T. High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022, 14, 3930. [Google Scholar] [CrossRef]
- Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Circulating unmetabolized folic acid and 5-methyltetrahydrofolate in relation to anemia, macrocytosis, and cognitive test performance in American seniors. Am. J. Clin. Nutr. 2020, 91, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA Panel); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.-I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific opinion on the tolerable upper intake level for folate. EFSA J. 2023, 21, e08353. [Google Scholar] [CrossRef]
- Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Flores-Guerrero, J.L.; Minovic, I.; Groothof, D.; Gruppen, E.G.; Riphagen, I.J.; Kootstra-Ros, J.; Muller Kobold, A.; Hak, E.; Navis, G.; Gansevoort, R.T.; et al. Association of Plasma Concentration of Vitamin B12 with All-Cause Mortality in the General Population in the Netherlands. JAMA Netw. Open 2020, 3, 1919274. [Google Scholar] [CrossRef]
Study | Sample Size and Population | Intervention and Comparison | Duration |
---|---|---|---|
Trials on Arterial Thrombotic Events | |||
Wu et al. CSPPT 2021 [13] | 20,424 hypertensive adults without a history of stroke or MI | Enalapril 10 mg and folic acid 0.8 mg (single pill) daily vs. Enalapril 10 mg daily alone | 4.5 years |
Oliari Araghi et al., B-PROOF trial extended follow-up 2021 [14] | 1298 patients with aged ≥65 with an elevated Hcy level (12–50 µmol/L) | Folic acid (400 µg daily) and vitamin B12 (500 µg daily) vs. placebo | 5–7 years |
Kong et al. Post-hoc analysis of CSPPT 2018 [15] | 10,789 hypertensive adults without a history of stroke or MI | Enalapril 10 mg–Folic acid 0.8 mg (single pill) daily vs. Enalapril 10 mg daily alone | 4.5 years (median) |
Zhao et al. Post-hoc analysis of CSPPT 2017 [16] | 20,424 hypertensive adults without a history of stroke or MI | Enalapril 10 mg–folic acid 0.8 mg (single pill) daily vs. Enalapril 10 mg daily alone | 4.5 years (median) |
Huo et al. The CSPPT trial 2015 [17] | 20,424 hypertensive adults without a history of stroke or MI | Enalapril 10 mg–folic acid 0.8 mg (single pill) daily vs. Enalapril 10 mg daily alone | 4.5 years (median) |
Kotwal et al., 2015 [18] | 6000 Armed Forces personnel in the high-altitude area | Vitamin B12 1000 μg, B6 3 mg and folic 5 mg daily vs. no treatment | 2 years |
Arshi et al. Post hoc analysis of VISP 2015 [19] | 3680 patients with non-disabling post-ischemic stroke | High dose group (vitamin B6 25 mg, vitamin B12 0.4 mg, and folic acid 2.5 mg daily) vs. Low dose group (vitamin B6 200 μg, vitamin B12 6 μg, and folic acid 20 μg daily) | 2 years |
Hankey et al., VITATOPS post-hoc analysis 2012 [20] | 8164 patients with recent stroke or TIA (within the past 7 months) | Folic acid 2 mg, vitamin B6 25 mg, and vitamin B12 0.5 mg daily vs. placebo | 3.4 years |
Bostom et al., 2011 [21] | 4110 patients with stable kidney transplant recipients | High dose: folic acid 5.0 mg, vitamin B6 50 mg, and vitamin B12 1.0 mg daily; Low dose: vitamin B6 1.4 mg and vitamin B12 2.0 µg daily | 4 years |
Galan et al., 2010 [22] | 2501 patients with history of MI, UA or ischemic stroke | 5-methyltetrahydrofolate (5-methyl-THF) 560 μg, vitamin B6 3 mg, and vitamin B12 20 μg daily vs. placebo | 4.7 years |
House et al., 2010 [23] | 238 patients with diabetes and diagnosed diabetic nephropathy | Folic acid 2.5 mg, vitamin B6 25 mg, and vitamin B12 1 mg daily vs. placebo | 2.7 years |
VITATOPS trial 2010 [24] | 8164 patients with recent stroke or TIA (within the past 7 months) | Folic acid 2 mg, vitamin B6 25 mg, and vitamin B12 0.5 mg daily vs. placebo | 3.4 years |
SEARCH trial 2010 [25] | 12,064 survivors of MI | Folic acid 2 mg and vitamin B12 1 mg daily vs. placebo | 6.7 years |
Heinz et al., 2010 [26] | 650 patients with ESRD | Active treatment: folic acid 5 mg, vitamin B12 50 μg, and vitamin B6 20 mg given 3 times a week; Placebo: folic acid 0.2 mg, vitamin B12 4 μg, and vitamin B6 1.0 mg, given 3 times a week. | 2.1 years [median] |
Albert et al., 2008 [27] | 5442 female US health professionals with either a history of CVD or ≥three coronary risk factors | Folic acid 2.5 mg, vitamin B6 50 mg, and vitamin B12 1 mg daily vs. placebo | 7.3 years |
Ebbing et al. WENBIT trial 2008 [28] | 3096 patients undergoing coronary angiography | Four groups: folic acid 0.8 plus vitamin B12 0.4 mg plus vitamin B6 40 mg daily; folic acid plus vitamin B12 daily; vitamin B6 daily alone; and placebo. | 3.2 years [median] |
Jamison et al., 2007 [29] | 2056 patients with advanced CKD (eCrCl 30 mL/min) or ESRD, and high Hcy levels (≥15 µmol/L). | Folic acid 40 mg, vitamin B6 100 mg, and vitamin B12 2 mg daily vs. placebo | 3.2 years [median] |
HOPE 2 trial 2006 [30] | 5522 patients with vascular disease or diabetes | Folic acid 2.5 mg, vitamin B6 50 mg, and vitamin B12 1 mg daily vs. placebo | 5 years |
Bønaa et al. NORVIT trial 2006 [31] | 3749 patients who had an acute MI within 7 days before randomization | Four groups: G1: folic acid 0.8 mg, vitamin B12 0.4 mg, and vitamin B6 40 mg daily; G2: folic acid 0.8 mg and vitamin B12 0.4 mg daily; G3: vitamin B6 40 mg daily; vs. G4: placebo | 3.3 years [median] |
Zoungas et al., ASFAST trial 2006 [32] | 315 patients with ESRD | folic acid 15 mg daily vs. placebo | 3.6 years [median] |
Liem et al., 2005 [33] | 593 patients with stable CAD | folic acid 0.5 mg vs. standard care | 3.5 years |
Spence et al., VISP trial-subgroup analysis 2005 [34] | 2155 patients with non disabling post-ischemic stroke, baseline vitamin B12 in between the 25th percentile and the 95th percentile, GFR ≥ the 10th percentile | High-dose group (vitamin B6 25 mg, vitamin B12 0.4 mg, and folic acid 2.5 mg daily) vs. low-dose group (vitamin B6 200 μg, vitamin B12 6 μg, and folic acid 20 μg daily) | 2 years |
Wrone 2004 [35] | 510 patients with ESRD on dialysis | 1, 5, or 15 mg of folic acid contained in a renal multivitamin | 2 years [median] |
Toole et al., VISP trial 2004 [36] | 3680 non-disabling post-ischemic stroke | High-dose group (vitamin B6 25 mg, vitamin B12 0.4 mg, and folic acid 2.5 mg daily) vs. low-dose group (vitamin B6 200 μg, vitamin B12 6 μg, and folic acid 20 μg daily) | 2 years |
Liem, et al., 2004 [37] | 283 patients with a total cholesterol > 251 mg/dL | Folic acid 5 mg plus fluvastatin 40 mg daily vs. fluvastatin 40 mg daily | 1 year |
Trials on Venous Thrombotic Events | |||
Shu et al., 2017 [38] | 90 patients with homocysteine cerebral infarction | Folic acid 5 mg and vitamin B12 0.25 mg daily vs. no treatment | 3 months |
den Heijer et al. The VITRO trial 2007 [39] | 701 patients between 20 and 80 years of age with a first objectively confirmed DVT/PE | Folic acid 5 mg, cyanocobalamin 0.4 mg, and pyridoxine 50 mg daily vs. placebo | 2.5 years |
Intervention | Arterial Thrombotic Events | Venous Thrombotic Events | Safety | |||||||
---|---|---|---|---|---|---|---|---|---|---|
First Ischemic Stroke | Recurrent Ischemic Stroke | Undefined Stroke * | MI | Death from CV Cause | Death From Any Cause | DVT (Only) | PE (Only) | VTE (DVT/PE) | Hemorrhagic Stroke | |
FA | Kong (pts w/low plt) [15], Zhao [16], Wu [13] | Ebbing [28], Liem (2005) [33], Wrone [35], Liem (2004) [37], Zoungas [32] | Ebbing [28], Wrone [35], Liem 2004 [37], Zoungas [32] | Zoungas [32] | Ebbing [28], Liem (2005) [33], Wrone [35] | Huo [17] | ||||
B6 | Ebbing [28] | Ebbing [28] | Ebbing [28] | |||||||
FA+B12 | Oliari Araghi [14], SEARCH [25] | Oliari Araghi [14], SEARCH [25] | SEARCH [25] | SEARCH [25] | Shu [38] | SEARCH [25] | ||||
FA+B6+B12 | Arshi (pts w/antiplatelets) [19] | Galan [22], HOPE2 [8] | NORVIT (non-fatal) [31] | VITATOPS [24], Hankey (w/o antiplatelets) [20] | Galan [22] | Kotwal [18] | Heinz [26] | HOPE2 [8], VITRO [39], Kotwal [18] | Albert [27] | |
Hankey (w/o antiplatelets) [20] | ||||||||||
Hankey [20], Bostom [35], House [23], VITATOPS [24], Heinz [26], Albert [27], Jamison [29], Kotwal [18] | Hankey (w/antiplatelets) [20], Galan [22], Bostom [21], Heinz [26], Albert [27], HOPE2 [8], Lonn [30] | |||||||||
Bostom [21], House [23], VITATOPS [24], Heinz [26], Albert [27], Jamison [29], HOPE2 [8], Toole [36], NORVIT [31] | ||||||||||
Spence [34], Hankey (w/antiplatelets) [20], VITATOPS [24], Toole [36] | Bostom [21], House [23], Heinz [26], Albert [27], Jamison [29], NORVIT [31], Kotwal [18] |
Author, Year | Country | Mandatory Folic Fortification At the Time of the Study | Age (years) | History of Thrombotic Event | History of CKD | Homocysteine (µmol/L) Baseline/after Treatment | Folic Acid (ng/mL) Baseline/after Treatment | Vitamin B12 (pg/mL) Baseline/after Treatment |
---|---|---|---|---|---|---|---|---|
Trials on Arterial Thrombotic Events | ||||||||
Huo et al. (CSPPT, 2015) [17] | China | No | 60.0 ± 7.5 | No | No | 12.5 (10.5–15.5)/N/A | 8.1 (5.6–10.4)/19.9 (14.7–23.3) | 379.6 (314.3–475.2)/N/A |
Kotwal et al. (2015) [18] | India | No | Not Available | No | No | 8.19 ± 2.6/10.99 ± 2.15 | 10.32 ± 2.43/32 ± 2.8 | 279.6 ± 20.72/520 ± 38.8 |
van Dijk et al., B-PROOF (2015) [41] | The Netherlands | No | Placebo 74.2 (6.4) Treatment 74.0 (6.6) | No | No | Placebo: 14.5 (13.0–16.7)/14.3 (12.4–17.0) Treatment: 14.3 (13.0–16.5)/10.3 (8.9–12.0) | Placebo: 18.8 (14.7–21.2) Treatment: 18.7 (14.7–24.4) | Placebo: 265.9 (203.9–343.4)/NA Treatment: 267.3 (212.9–341.2)/NA |
Bostom et al. (2011) [21] | US, Canada, Brazil | Yes | 52 ± 9.4 | No | Stable kidney transplant recipient *** | 16.4 ± 1.3 (overall baseline)/11.8 ± 3.8 (HD post-treatment); 15.9 ± 5.5 (LD post-treatment) | N/A | N/A |
SEARCH Trial (2010) [25] | UK | No | 64.2 ± 8.9 | Yes, history of MI | 14% with GFR < 60 | 13.5 ± 4.8/Reduced by 3.8 ± 0.1 | 7.4 ± 4.6/Increased by 16.2 ± 0.5 | 388 ± 240/Increased by 625 ± 19 |
Heinz et al. (2010) [26] | Germany | No | 61 ± 13 | No | ESRD on dialysis | Placebo: 28.2 (13.0–62.0)/22.3 (9.8–54.1) Treatment arm: 28.7 (16.5–69.4)/18.8 (7.2–33.6) | Placebo 11.8 (5.7–61.4)/ 15.0 (8.2–83.6) Treatment arm: 12.7 (5.7–118.5)/81.8 (34.0–117.4) | Placebo: 288 (140–690)/399 (227–731) Treatment arm: 279 (72–999)/407 (163–1058) |
VITATOPS (2010) [24] | 20 countries | Variable | 62.6 ± 12.5 | Yes, recent stroke or TIA | No | 14.3 ± 8.5/10.5 ± 4.9 | 922 ± 476/NA | 322 ± 182/NA |
Galan et al. (2010) [22] | France | No | 60.4–60.9 | Yes, history of MI, unstable angina or stroke | No | Placebo: 12.6 (10.4–15.5)/14.5 (12.4–18.3) B vitamins group: 13.0 (11.2–16.0)/11.4 (9.9–14.4) | Placebo: 7.0 (5.3–9.0)/6.5 (5.2–8.1) B vitamins group: 6.7 (5.2–8.5)/15.4 (11.4–19.4) | Placebo: 376 (306–474)/370 (312–469) B vitamins group: 359 (298–455)/497 (390–615) |
House et al. (2010) [23] | Canada | Yes | 60 | Variable | Variable | Placebo: 16.4 ± 5.4/increased by 2.6 ± 0.4 B vitamin group: 14.7 ± 4.9/decreased by 2.2 ± 0.4 | Placebo 15 ± 15/NA B vitamin group: 16 ± 37/NA | Placebo: 474 ± 286/NA B vitamin group: 412 ± 193/NA |
Ebbing et al., (WENBIT 2008) [28] | Norway | No | 61.7 | Yes, stable angina/double- or triple-vessel disease/ACS | No | 10.8 ± 4.5/7.6 ± 2.2 | N/A | N/A |
Albert et al. (2008) [27] | US | Yes | Placebo: 62.8 ± 8.8 Treatment: 62.8 ± 8.8 | No (either a history of CVD or three or more coronary risk factors) | No | 18.5% less than after treatment/9.8 | 0 subjects > 40 ng/mL/49.3% subjects > 40 ng/mL | N/A |
Jamison et al. (2007) [29] | US | Yes | Placebo: 66.2 ± 11.5 Treatment: 65.4 ± 12.0 | No | CKD (eGFR ≤ 30 mL/min) or ESRD | Placebo 22.3 (18.7–26.9)/21.6 (18.1–26.9) Treatment: 22.5 (18.9–27.3)/16.5 (13.8–20.1) | Placebo 15.5/16.5 Treatment: 15.7 (9.6–25.0)/ 2019 (501–4067) | N/A |
Bønaa et al. (NORVIT, 2006) [31] | Norway | No | FA/B12/B6: 63.6 ± 11.9 FA/B12: 63.2 ± 11.6 B6: 62.5 ± 11.7 Placebo: 62.6 ± 11.4 | Yes, acute MI within 7 days | No | FA/B12/B6: 13.1 ± 5.0/9.5 ± 3.6 FA/B12: 12.9 ± 4.3/9.8 ± 4.0 B6: 13.3 ± 6.1/13.3 ± 5.4 Placebo: 13.2 ± 5.2/13.6 ± 6.2 | FA/B12/B6: 13.1 ± 27.5/61.8 ± 31.7 FA/B12: 11.7 ± 28.4/70.4 ± 36.4 B6: 9.4 ± 6.6/10.4 ± 9.6 Placebo: 9.6 ± 6.0/13.1 ± 14.5 | FA/B12/B6: 388 ± 161/638 ± 370 FA/B12: 400 ± 311/ 648 ± 414 B6: 388 ± 167/398 ± 320 Placebo: 383 ± 182/390 ± 171 |
Zoungas et al. (ASFAST, 2006) [32] | Australia, New Zealand | No | 56 | Yes, CVD history | All patients had CKD | Estimated difference in mean tHcy between treatment groups at 48 months 4.7 (95% CI: 9.4 to 0.1; p 0.05) | Increased 3-fold in FA group | NA |
HOPE 2 Trial (2006) [30] | Canada, US, Brazil, Western Europe, and Slovakia | Yes for US and Canada only | Placebo 68.9 ± 6.8 Treatment 68.8 ± 7.1 | Yes, history of vascular disease | No | Placebo 12.0 ^/12.9 Treatment 12.1 ^/9.7 | Placebo: 28 ^/23 ^ (at 2 years) Treatment: 28 ^/43 ^ (at 2 years) | Placebo 300 ^/300 ^ Treatment 300 ^/780 ^ |
Wrone et al. (2004) [35] | US | Yes | 59.51–61.30 | Variable | Yes, on dialysis | 1 mg group: 34.71 ± 20.22/decreased by 3.7 5 mg group 30.62 ± 14.36/decreased by 4.3 15 mg group: 33.52 ± 26.61/decreased by 10.2 | 1 mg group: 45.91 ± 29.87/NA 5 mg group: 47.16 ± 34.26/NA 15 mg group 49.04 ± 34.85/NA | 1 mg group: 503.21 ± 314.47/NA 5 mg group: 514.51 ± 322.93/NA 15 mg group: 518.16 ± 548.32/NA |
Toole et al. (VISP, 2004) [36] | US, Canada, Scotland | Yes for US and Canada only | LD: 66.2 ± 10.8 HD: 66.4 ± 10.8 | Yes, nondisabling cerebral infarction | No | 13.4 at each group/11 (HD); 13.4 (LD) | 26 ^/80 ^ (HD); 26 ^ (LD) | 370 ^/700 ^ (HD); 400 ^ (LD) |
Liem et al. (2004) [37] | The Netherlands | No | 59 | Yes, history of acute MI | No | N/A | N/A | N/A |
Liem et al. (2003,2005) [33,41] | The Netherlands | No | FA 64.9 ± 9.9 Control 65.5 ± 9.7 | Unspecified, stable CAD | No | FA12.0 ± 4.8/9.4 ± 3.5 Control 12.2 ± 3.8/NA | FA 17 ± 7/33 ± 6 Control 15 ± 5/NA | FA 286 ± 129/NA Control 294 ± 162/NA |
Trials on Venous Thrombotic Events | ||||||||
Shu et al (2017) [38] | China | No | 64.7±2.5 | Yes, homocysteine cerebral infarction with DVT | No |
30.13 ± 1.84/ 10.45 ± 2.62 |
7.25 ± 2.35/ 15.13 ± 5.23 |
323.52 ± 93.76/ 645.92 ± 102.48 |
den Heijer, et al VITRO (2007) [39] | The Netherlands, Italy, Austria | No | Hyperhomocystenie mia group: 56.8 * Normohomocysteeinemia group: 47.3 ** | Yes, history of DVT and PE | No | Hyperhomocysteniemia group: 15.1/8.1–8.9 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Ren, R.; Wang, K.; Wang, S.; Chow, A.; Yang, A.K.; Lu, Y.; Leo, C. Effects of B Vitamins on Homocysteine Lowering and Thrombotic Risk Reduction—A Review of Randomized Controlled Trials Published Since January 1996. Nutrients 2025, 17, 1122. https://doi.org/10.3390/nu17071122
Li M, Ren R, Wang K, Wang S, Chow A, Yang AK, Lu Y, Leo C. Effects of B Vitamins on Homocysteine Lowering and Thrombotic Risk Reduction—A Review of Randomized Controlled Trials Published Since January 1996. Nutrients. 2025; 17(7):1122. https://doi.org/10.3390/nu17071122
Chicago/Turabian StyleLi, Mengyan, Ruodi Ren, Kunkun Wang, Shan Wang, Allison Chow, Andrew K. Yang, Yun Lu, and Christopher Leo. 2025. "Effects of B Vitamins on Homocysteine Lowering and Thrombotic Risk Reduction—A Review of Randomized Controlled Trials Published Since January 1996" Nutrients 17, no. 7: 1122. https://doi.org/10.3390/nu17071122
APA StyleLi, M., Ren, R., Wang, K., Wang, S., Chow, A., Yang, A. K., Lu, Y., & Leo, C. (2025). Effects of B Vitamins on Homocysteine Lowering and Thrombotic Risk Reduction—A Review of Randomized Controlled Trials Published Since January 1996. Nutrients, 17(7), 1122. https://doi.org/10.3390/nu17071122