The Effect of Eating Speed on Sarcopenia, Obesity, and Sarcopenic Obesity in Older Adults: A 16-Year Cohort Study Using the Korean Genome and Epidemiology Study (KoGES) Data
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Covariates
2.3. Definition of Meal Speed
2.4. Definition of Sarcopenia, Obesity, and Sarcopenic Obesity
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALMI | Appendicular Lean Mass Index |
BIA | Bioelectrical Impedance Analysis |
BMI | Body Mass Index |
CAD | Coronary Artery Disease |
CHF | Chronic Heart Failure |
CI | Confidence Interval |
CKD | Chronic Kidney Disease |
COPA | Chronic Obstructive Pulmonary Disease |
CVD | Cerebrovascular Disease |
DM | Diabetes Mellitus |
HR | Hazard Ratio |
KoGES | Korean Genome and Epidemiology Study |
KSSO | Korean Society for the Study of Obesity |
METs | Metabolic Equivalents |
MI | Myocardial Infarction |
OA | Osteoarthritis |
WC | Waist Circumference |
References
- Roubenoff, R. Sarcopenia and its implications for the elderly. Eur. J. Clin. Nutr. 2000, 54, S40–S47. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Zhu, X.; Zhang, X.; Li, H.; Du, Y.; Hong, W.; Xue, S.; Zhu, H. A cross-sectional study of loss of muscle mass corresponding to sarcopenia in healthy Chinese men and women: Reference values, prevalence, and association with bone mass. J. Bone. Miner. Metab. 2014, 32, 78–88. [Google Scholar] [CrossRef]
- Kim, H.; Hirano, H.; Edahiro, A.; Ohara, Y.; Watanabe, Y.; Narumi, K.; Kim, M.; Hosoi, E.; Yoshida, Y.; Yoshida, H.; et al. Sarcopenia: Prevalence and associated factors based on different suggested definitions in community-dwelling older adults. Geriatr. Gerontol. Int. 2016, 16, 110–122. [Google Scholar] [CrossRef]
- Scott, D.; Hayes, A.; Sanders, K.M.; Aitken, D.; Ebeling, P.R.; Jones, G. Operational definitions of sarcopenia and their associations with 5-year changes in falls risk in community-dwelling middle-aged and older adults. Osteoporos. Int. 2014, 25, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; An, P.; Chen, W.C.; Lv, Y.; Fu, Q. Comparisons of sarcopenia prevalence based on different diagnostic criteria in Chinese older adults. J. Nutr. Health Aging 2015, 19, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and managing the global epidemic: Report of a WHO consultation. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Haslam, D.W.; James, W.P. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Nimptsch, K.; Pischon, T. Body fatness, related biomarkers and cancer risk: An epidemiological perspective. Horm. Mol. Biol. Clin. Investig. 2015, 22, 39–51. [Google Scholar] [CrossRef]
- Pischon, T. Use of obesity biomarkers in cardiovascular epidemiology. Dis. Markers 2009, 26, 247–263. [Google Scholar] [CrossRef]
- Newman, A.B.; Lee, J.S.; Visser, M. Weight change and the conservation of lean mass in old age: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 872–916. [Google Scholar] [CrossRef]
- Roubenoff, R. Sarcopenic obesity: The confluence of two epidemics. Obes. Res. 2004, 12, 887–888. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; Teschler, M.; Weissenfels, A.; Bebenek, M.; Stengel, S.; Kohl, M.; Freiberger, E.; Goisser, S.; Jakob, F.; Sieber, C.; et al. Whole-body electromyostimulation to fight sarcopenic obesity in community-dwelling older women at risk. Resultsof the randomized controlled FORMOsA-sarcopenic obesity study. Osteoporos. Int. 2016, 27, 3261–3270. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Margioris, A.N. Sarcopenic obesity. Hormones 2018, 17, 321–331. [Google Scholar] [CrossRef]
- Goisser, S.; Kemmler, W.; Porzel, S.; Volkert, D.; Sieber, C.C.; Bollheimer, L.C.; Freiberger, E. Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons-a narrative review. Clin. Interv. Aging 2015, 10, 1267–1282. [Google Scholar]
- Kob, R.; Bollheimer, L.C.; Bertsch, T.; Fellner, C.; Djukic, M.; Sieber, C.C.; Fischer, B.E. Sarcopenic obesity: Molecular clues to a better understanding of its pathogenesis? Biogerontology 2015, 16, 15–29. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Takahashi, F.; Kaji, A.; Sakai, R.; Okamura, T.; Kitagawa, N.; Okada, H.; Nakanishi, N.; Majima, S.; Senmaru, T.; et al. Eating Speed Is Associated with the Presence of Sarcopenia in Older Patients with Type 2 Diabetes: A Cross-Sectional Study of the KAMOGAWA-DM Cohort. Nutrients 2022, 14, 759. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, G.; Hashimoto, Y.; Takahashi, F.; Kaji, A.; Sakai, R.; Okamura, T.; Okada, H.; Kitagawa, N.; Nakanishi, N.; Majima, S.; et al. Impact of Eating Speed on Muscle Mass in Older Patients with Type 2 Diabetes: A Prospective Study of KAMOGAWA-DM Cohort. Front. Nutr. 2022, 9, 919124. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, B.G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef]
- Bloom, I.; Shand, C.; Cooper, C.; Robinson, S.; Baird, J. Diet quality and sarcopenia in older adults: A systematic review. Aging Clin. Exp. Res. 2018, 30, 308. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Landi, F.; Vellas, B.; Bernabei, R.; Marzetti, E. Sarcopenia and physical frailty: Two sides of the same coin. Aging Clin. Exp. Res. 2014, 26, 355–360. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Ohkuma, T.; Hirakawa, Y.; Nakamura, U.; Kiyohara, Y.; Kitazono, T.; Ninomiya, T. Association between eating rate and obesity: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Jia, M.; Wang, X.; Hong, Y.; Zhao, X.; Zhang, L.; Ru, Y.; Yang, F.; Zhu, S. Associations of eating speed with fat distribution and body shape vary in different age groups and obesity status. Nutr. Metab. 2022, 19, 63. [Google Scholar] [CrossRef]
- Aragon, A.A.; Tipton, K.D.; Schoenfeld, B.J. Age-related muscle anabolic resistance: Inevitable or preventable? Nutr. Rev. 2023, 81, 441–454. [Google Scholar] [CrossRef]
- Kolay, E.; Bykowska-Derda, A.; Abdulsamad, S.; Kaluzna, M.; Samarzewska, K.; Ruchala, M.; Czlapka-Matyasik, M. Self-Reported Eating Speed Is Associated with Indicators of Obesity in Adults: A Systematic Review and Meta-Analysis. Healthcare 2021, 9, 1559. [Google Scholar] [CrossRef]
- Takahashi, F.; Hashimoto, Y.; Kawano, R.; Kaji, A.; Sakai, R.; Kawate, Y.; Okamura, T.; Ushigome, E.; Kitagawa, N.; Majima, S.; et al. Eating Fast Is Associated with Nonalcoholic Fatty Liver Disease in Men but Not in Women with Type 2 Diabetes: A Cross-Sectional Study. Nutrients 2020, 12, 2174. [Google Scholar] [CrossRef]
- Kudo, A.; Asahi, K.; Satoh, H.; Iseki, K.; Moriyama, T.; Yamagata, K.; Tsuruya, K.; Fujimoto, S.; Narita, I.; Konta, T.; et al. Fast eating is a strong risk factor for new-onset diabetes among the Japanese general population. Sci. Rep. 2019, 9, 8210. [Google Scholar] [CrossRef]
- Nakamura, T.; Nakamura, Y.; Takashima, N.; Kadota, A.; Miura, K.; Ueshima, H.; Kita, Y. Eating Slowly Is Associated with Undernutrition among Community-Dwelling Adult Men and Older Adult Women. Nutrients 2021, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Tamakoshi, K.; Yatsuya, H.; Wada, K.; Matsushita, K.; Yang, P.O.; Hotta, Y.; Takefuji, S.; Mitsuhashi, H.; Sugiura, K.; et al. Eating fast leads to insulin resistance: Findings in middle-aged Japanese men and women. Prev. Med. 2008, 46, 154–159. [Google Scholar] [CrossRef]
- Robinson, E.; Almiron-Roig, E.; Rutters, F.; Graaf, C.; Forde, C.G.; Smith, C.T.; Nolan, S.J.; Jebb, S.A. A systematic review and meta-analysis examining the effect of eating rate on energy intake and hunger. Am. J. Clin. Nutr. 2014, 100, 123–151. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, N.; Hu, L.; Li, Z.; Li, R.; Wang, S. Improvement in chewing activity reduces energy intake in one meal and modulates plasma gut hormone concentrations in obese and lean young Chinese men. Am. J. Clin. Nutr. 2011, 94, 709–716. [Google Scholar] [CrossRef]
- Kokkinos, A.; le Roux, C.W.; Alexiadou, K.; Tentolouris, N.; Vincent, R.P.; Kyriaki, D.; Perrea, D.; Ghatei, M.A.; Bloom, S.R.; Katsilambros, N. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. J. Clin. Endocrinol. Metab. 2010, 95, 333–337. [Google Scholar] [CrossRef]
- Kojima, M.; Kangawa, K. Ghrelin: Structure and function. Physiol. Rev. 2005, 85, 495–522. [Google Scholar] [CrossRef] [PubMed]
- Reano, S.; Angelino, E.; Ferrara, M.; Malacarne, V.; Sustova, H.; Sabry, O.; Agosti, E.; Clerici, S.; Ruozi, G.; Zentilin, L.; et al. Unacylated Ghrelin Enhances Satellite Cell Function and Relieves the Dystrophic Phenotype in Duchenne Muscular Dystrophy mdx Model. Stem Cells 2017, 35, 1733–1746. [Google Scholar] [CrossRef]
- Akamizu, T.; Kangawa, K. Ghrelin for cachexia. J. Cachexia Sarcopenia Muscle 2010, 1, 169–176. [Google Scholar] [CrossRef]
- Berthoud, H.R. The vagus nerve, food intake and obesity. Regul. Pept. 2008, 149, 15–25. [Google Scholar] [CrossRef]
Fast (n = 2665) | Normal (n = 2859) | Slow (n = 678) | Total (N = 6202) | p | |
---|---|---|---|---|---|
Age (years) | 52.3 ± 8.8 | 53.6 ± 9.0 | 56.5 ± 9.1 | 53.4 ± 9.0 | <0.001 |
Men, n (%) | 1402 (52.6) | 1441 (50.4) | 282 (41.6) | 3125 (50.4) | <0.001 |
ALMI (kg/m2) | 7.4 ± 0.8 | 7.3 ± 0.8 | 7.1 ± 0.8 | 7.3 ± 0.8 | <0.001 |
Waist circumference (cm) | 84.2 ± 8.7 | 82.8 ± 8.6 | 81.5 ± 9.0 | 83.3 ± 8.8 | <0.001 |
BMI (kg/m2) | 25.0 ± 3.2 | 24.3 ± 3.0 | 23.5 ± 3.1 | 24.5 ± 3.2 | <0.001 |
Protein intake (g) | 66.9 ± 29.4 | 65.8 ± 30.4 | 65.4 ± 33.5 | 66.2 ± 30.3 | 0.391 |
METs (kcal/h) | 10,530.9 ± 6539.7 | 11,155.1 ± 6726.5 | 11,762.8 ± 6683.3 | 10,953.3 ± 6683.2 | <0.001 |
Education | |||||
Elementary | 924 (34.7) | 1089 (38.1) | 363 (53.5) | 2376 (38.3) | <0.001 |
Middle | 629 (23.6) | 647 (22.6) | 132 (19.5) | 1408 (22.7) | |
High | 880 (33.0) | 856 (29.9) | 129 (19.0) | 1865 (30.1) | |
University | 232 (8.7) | 267 (9.3) | 54 (8.0) | 553 (8.9) | |
Marriage | |||||
Alone | 37 (1.4) | 42 (1.5) | 8 (1.2) | 87 (1.4) | |
Marry | 2400 (90.1) | 2568 (89.8) | 589 (86.9) | 5557 (89.6) | |
Divorce | 228 (8.6) | 249 (8.7) | 81 (11.9) | 558 (9.0) | |
Alcohol | |||||
Current | 1111 (41.7) | 1274 (44.6) | 360 (53.1) | 2745 (44.3) | <0.001 |
Former | 185 (6.9) | 187 (6.5) | 40 (5.9) | 412 (6.6) | |
None | 1369 (51.4) | 1398 (48.9) | 278 (41.0) | 3045 (49.1) | |
Smoking | |||||
None | 1447 (54.3) | 1620 (56.7) | 422 (62.2) | 3489 (56.3) | <0.001 |
Former | 457 (17.1) | 499 (17.5) | 90 (13.3) | 1046 (16.9) | |
Current | 761 (28.6) | 740 (25.9) | 166 (24.5) | 1667 (26.9) | |
Income | |||||
Under 1 million won | 990 (37.1) | 1200 (42.0) | 381 (56.2) | 2571 (41.5) | <0.001 |
Under 2 million won | 1196 (44.9) | 1220 (42.7) | 229(33.8) | 2645 (42.6) | |
Under 3 million won | 412 (15.5) | 386 (13.5) | 61 (9.0) | 859 13.9) | |
Under 6 million won | 67 (2.5) | 53 (1.9) | 7 (1.0) | 127 (2.0) | |
Disease | |||||
DM | 173 (6.5) | 200 (7.0) | 47 (6.9) | 420 (6.8) | 0.680 |
CKD | 68 (2.6) | 88 (3.1) | 20 (2.9) | 176 (2.8) | 0.563 |
CVD | 27 (1.0) | 35 (1.2) | 17 (2.5) | 79 (1.3) | 0.002 |
OA | 135 (5.1) | 135 (4.7) | 40 (5.9) | 310 (5.0) | 0.384 |
CHF | 11 (0.4) | 8 (0.3) | 2 (0.3) | 21 (0.3) | 0.660 |
MI | 32 (1.2) | 31 (1.1) | 12 (1.8) | 75 (1.2) | 0.246 |
CAD | 26 (1.0) | 19 (0.7) | 7 (1.0) | 52 (0.8) | 0.894 |
COPD | 20 (0.8) | 16 (0.6) | 12 (1.8) | 48 (0.8) | <0.001 |
Model | Fast HR (95% CI) | Normal HR (95% CI) | Slow HR (95% CI) |
---|---|---|---|
40–69 yeas | |||
Model 1 | 1 | 1.281 (1.107–1.482) ** | 1.567 (1.269–1.934) ** |
Model 2 | 1 | 1.289 (1.112–1.495) ** | 1.589 (1.285–1.966) ** |
Model 3 | 1 | 1.284 (1.107–1.490) ** | 1.583 (1.279–1.958) ** |
Under 65 years | |||
Model 1 | 1 | 1.351 (1.141–1.600) ** | 1.506 (1.154–1.964) * |
Model 2 | 1 | 1.369 (1.154–1.625) ** | 1.524 (1.164–1.995) * |
Model 3 | 1 | 1.366 (1.151–1.622) ** | 1.499 (1.145–1.962) * |
Over 65 years | |||
Model 1 | 1 | 1.103 (0.829–1.469) | 1.597 (1.120–2.277) * |
Model 2 | 1 | 1.083 (0.808–1.452) | 1.618 (1.133–2.312) * |
Model 3 | 1 | 1.068 (0.796–1.432) | 1.603 (1.119–2.298) * |
Model | Fast HR (95% CI) | Normal HR (95% CI) | Slow HR (95% CI) |
---|---|---|---|
40–69 yeas | |||
Model 1 | 1 | 0.859 (0.781–0.945) * | 0.691 (0.588–0.813) ** |
Model 2 | 1 | 0.853 (0.774–0.939) ** | 0.687 (0.583–0.810) ** |
Model 3 | 1 | 0.865 (0.786–0.952) * | 0.680 (0.577–0.802) ** |
Under 65 years | |||
Model 1 | 1 | 0.868 (0.785–0.959) * | 0.676 (0.564–0.811) ** |
Model 2 | 1 | 0.858 (0.775–0.950) * | 0.662 (0.550–0.796) ** |
Model 3 | 1 | 0.868 (0.784–0.961) * | 0.651 (0.541–0.784) ** |
Over 65 years | |||
Model 1 | 1 | 0.829 (0.619–1.111) | 0.743 (0.508–1.085) |
Model 2 | 1 | 0.837 (0.619–1.131) | 0.765 (0.522–1.119) |
Model 3 | 1 | 0.846 (0.623–1.150) | 0.792 (0.537–1.168) |
Model | Fast HR (95% CI) | Normal HR (95% CI) | Slow HR (95% CI) |
---|---|---|---|
40–69 yeas | |||
Model 1 | 1 | 1.079 (0.756–1.54) | 1.132 (0.670–1.912) |
Model 2 | 1 | 1.164 (0.811–1.671) | 1.198 (0.707–2.029) |
Model 3 | 1 | 1.177 (0.818–1.693) | 1.125 (0.661–1.916) |
Under 65 years | |||
Model 1 | 1 | 1.428 (0.929–2.195) | 1.019 (0.485–2.142) |
Model 2 | 1 | 1.539 (0.996–2.376) | 1.086 (0.515–2.287) |
Model 3 | 1 | 1.610 (0.104–2.495) | 1.061 (0.503–2.241) |
Over 65 years | |||
Model 1 | 1 | 0.542 (0.281–1.043) | 1.100 (0.517–2.338) |
Model 2 | 1 | 0.569 (0.288–1.125) | 1.164 (0.544–2.491) |
Model 3 | 1 | 0.517 (0.242–1.060) | 0.904 (0.395–2.071) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.R.; Lee, S.Y.; Cho, Y.H.; Lee, Y.; Choi, J.I.; Kwon, R.J.; Son, S.M.; Lee, J.G.; Yi, Y.H.; Tak, Y.J.; et al. The Effect of Eating Speed on Sarcopenia, Obesity, and Sarcopenic Obesity in Older Adults: A 16-Year Cohort Study Using the Korean Genome and Epidemiology Study (KoGES) Data. Nutrients 2025, 17, 992. https://doi.org/10.3390/nu17060992
Lee SR, Lee SY, Cho YH, Lee Y, Choi JI, Kwon RJ, Son SM, Lee JG, Yi YH, Tak YJ, et al. The Effect of Eating Speed on Sarcopenia, Obesity, and Sarcopenic Obesity in Older Adults: A 16-Year Cohort Study Using the Korean Genome and Epidemiology Study (KoGES) Data. Nutrients. 2025; 17(6):992. https://doi.org/10.3390/nu17060992
Chicago/Turabian StyleLee, Sae Rom, Sang Yeoup Lee, Young Hye Cho, Youngin Lee, Jung In Choi, Ryuk Jun Kwon, Soo Min Son, Jeong Gyu Lee, Yu Hyeon Yi, Young Jin Tak, and et al. 2025. "The Effect of Eating Speed on Sarcopenia, Obesity, and Sarcopenic Obesity in Older Adults: A 16-Year Cohort Study Using the Korean Genome and Epidemiology Study (KoGES) Data" Nutrients 17, no. 6: 992. https://doi.org/10.3390/nu17060992
APA StyleLee, S. R., Lee, S. Y., Cho, Y. H., Lee, Y., Choi, J. I., Kwon, R. J., Son, S. M., Lee, J. G., Yi, Y. H., Tak, Y. J., Lee, S. H., Kim, G. L., Ra, Y. J., & Park, E. J. (2025). The Effect of Eating Speed on Sarcopenia, Obesity, and Sarcopenic Obesity in Older Adults: A 16-Year Cohort Study Using the Korean Genome and Epidemiology Study (KoGES) Data. Nutrients, 17(6), 992. https://doi.org/10.3390/nu17060992