Decay of Food DNA in the Gastrointestinal Tract: Implications for Molecular Dietary Records
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.1.1. Mice
2.1.2. Dogs
2.2. Molecular Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, M.; Howe, G.R.; Rohan, T. Dietary assessment in epidemiology: Comparison of a food frequency and a diet history questionnaire with a 7-day food record. Am. J. Epidemiol. 1996, 143, 953–960. [Google Scholar] [CrossRef]
- Männistö, S.; Virtanen, M.; Mikkonen, T.; Pietinen, P. Reproducibility and validity of a food frequency questionnaire in a case-control study on breast cancer. J. Clin. Epidemiol. 1996, 49, 401–409. [Google Scholar] [CrossRef]
- Pietinen, P.; Hartman, A.M.; Haapa, E.; Räsänen, L.; Haapakoski, J.; Palmgren, J.; Albanes, D.; Virtamo, J.; Huttunen, J.K. Reproducibility and validity of dietary assessment instruments: I. A self-administered food use questionnaire with a portion size picture booklet. Am. J. Epidemiol. 1988, 128, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef]
- Klesges, R.C.; Eck, L.H.; Ray, J.W. Who underreports dietary intake in a dietary recall? Evidence from the Second National Health and Nutrition Examination Survey. J. Consult. Clin. Psychol. 1995, 63, 438. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.; Ascherio, A.; Rosner, B.A.; Spiegelman, D.; Willett, W.C. Dietary fat and coronary heart disease: A comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am. J. Epidemiol. 1999, 149, 531–540. [Google Scholar] [CrossRef]
- Thompson, F.E.; Subar, A.F. Dietary assessment methodology. In Nutrition in the Prevention and Treatment of Disease; Academic Press: Cambridge, MA, USA, 2017; pp. 5–48. [Google Scholar]
- Di Noia, J.; Cullen, K.W.; Monica, D. Social Desirability Trait Is Associated with Self-Reported Vegetable Intake among Women Enrolled in the Special Supplemental Nutrition Program for Women, Infants, and Children. J. Acad. Nutr. Diet. 2016, 116, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Carroll, R.J.; Freedman, L.S.; Kipnis, V. Measurement error and dietary intake. In Mathematical Modeling in Experimental Nutrition; Springer: Boston, MA, USA, 1998; pp. 139–145. [Google Scholar]
- Lafrenière, J.; Laramée, C.; Robitaille, J.; Lamarche, B.; Lemieux, S. Assessing the relative validity of a new, web-based, self-administered 24 h dietary recall in a French-Canadian population. Public Health Nutr. 2018, 21, 2744–2752. [Google Scholar] [CrossRef]
- Whelan, K.; Alexander, M.; Gaiani, C.; Lunken, G.; Holmes, A.; Staudacher, H.M.; Theis, S.; Marco, M.L. Design and reporting of prebiotic and probiotic clinical trials in the context of diet and the gut microbiome. Nat. Microbiol. 2024, 9, 2785–2794. [Google Scholar] [CrossRef] [PubMed]
- Buttar, J.; Kon, E.; Lee, A.; Kaur, G.; Lunken, G. Effect of diet on the gut mycobiome and potential implications in inflammatory bowel disease. Gut Microbes 2024, 16, 2399360. [Google Scholar] [CrossRef]
- Yun, E.-J.; Imdad, S.; Jang, J.; Park, J.; So, B.; Kim, J.-H.; Kang, C. Diet Is a Stronger Covariate than Exercise in Determining Gut Microbial Richness and Diversity. Nutrients 2022, 14, 2507. [Google Scholar] [CrossRef]
- Liu, H.; Liao, C.; Wu, L.; Tang, J.; Chen, J.; Lei, C.; Zheng, L.; Zhang, C.; Liu, Y.-Y.; Xavier, J.; et al. Ecological dynamics of the gut microbiome in response to dietary fiber. ISME J. 2022, 16, 2040–2055. [Google Scholar] [CrossRef]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef]
- Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Walter, J. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 2019, 25, 789–802.e785. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.S.; Schatzkin, A.; Midthune, D.; Kipnis, V. Dealing with dietary measurement error in nutritional cohort studies. J. Natl. Cancer Inst. 2011, 103, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Spiegelman, D.; McDermott, A.; Rosner, B. Regression calibration method for correcting measurement-error bias in nutritional epidemiology. Am. J. Clin. Nutr. 1997, 65, 1179S–1186S. [Google Scholar] [CrossRef] [PubMed]
- Abar, L.; Steele, E.M.; Lee, S.K.; Kahle, L.; Moore, S.C.; Watts, E.; O’Connell, C.P.; Matthews, C.E.; Herrick, K.A.; Hall, K.D.; et al. Identification and validation of poly-metabolite scores for diets high in ultra-processed food: An observational study and post-hoc randomized controlled crossover-feeding trial. PLoS Med. 2025, 22, e1004560. [Google Scholar] [CrossRef]
- Diener, C.; Holscher, H.D.; Filek, K.; Corbin, K.D.; Moissl-Eichinger, C.; Gibbons, S.M. Metagenomic estimation of dietary intake from human stool. Nat. Metab. 2025, 7, 617–630. [Google Scholar] [CrossRef]
- Wang, T.; Fu, Y.; Shuai, M.; Zheng, J.-S.; Zhu, L.; Chan, A.T.; Sun, Q.; Hu, F.B.; Weiss, S.T.; Liu, Y.-Y. Microbiome-based correction for random errors in nutrient profiles derived from self-reported dietary assessments. Nat. Commun. 2024, 15, 9112. [Google Scholar] [CrossRef]
- Thomas, A.C.; Jarman, S.N.; Haman, K.H.; Trites, A.W.; Deagle, B.E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 2014, 23, 3706–3718. [Google Scholar] [CrossRef]
- Dunshea, G. DNA-based diet analysis for any predator. PLoS ONE 2009, 4, e5252. [Google Scholar] [CrossRef]
- McInnes, J.C.; Emmerson, L.; Southwell, C.; Faux, C.; Jarman, S.N. Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adélie penguins. R. Soc. Open Sci. 2016, 3, 150443. [Google Scholar] [CrossRef]
- Cooper, W.R.; Marshall, A.T.; Foutz, J.; Wildung, M.R.; Northfield, T.D.; Crowder, D.W.; Leach, H.; Leskey, T.C.; Halbert, S.E.; Snyder, J.B. Directed Sequencing of Plant Specific DNA Identifies the Dietary History of Four Species of Auchenorrhyncha (Hemiptera). Ann. Entomol. Soc. Am. 2022, 115, 275–284. [Google Scholar] [CrossRef]
- Ando, H.; Mukai, H.; Komura, T.; Dewi, T.; Ando, M.; Isagi, Y. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2020, 2, 391–406. [Google Scholar] [CrossRef]
- Xing, R.; Liu, H.; Qi, X.; Pan, L. Measuring the process and rate of exogenous DNA degradation during digestion in mice. Sci. Rep. 2022, 12, 6463. [Google Scholar] [CrossRef] [PubMed]
- Forsman, A.; Ushameckis, D.; Bindra, A.; Yun, Z.; Blomberg, J. Uptake of amplifiable fragments of retrotransposon DNA from the human alimentary tract. Mol. Genet. Genom. 2003, 270, 362–368. [Google Scholar] [CrossRef]
- Loretz, B.; Föger, F.; Werle, M.; Bernkop-Schnuerch, A. Oral gene delivery: Strategies to improve stability of pDNA towards intestinal digestion. J. Drug Target. 2006, 14, 311–319. [Google Scholar] [CrossRef]
- Vieira, B.; Carvalho, E.; Silva, D. Analysis of human DNA present in the digestive tract of Aedes aegypti mosquitoes for possible forensic application. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e324–e326. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, J.; Chen, J.; Pan, X. Evaluating the effect of food components on the digestion of dietary nucleic acids in human gastric juice in vitro. Food Sci. Nutr. 2023, 11, 6522–6531. [Google Scholar] [CrossRef]
- Gromova, B.; Janovicova, L.; Gardlik, R. Low endogenous deoxyribonuclease activity in the colon as a factor contributing to the pathogenesis of ulcerative colitis. Med. Hypotheses 2023, 174, 111062. [Google Scholar] [CrossRef]
- Del-Rio-Ruiz, R.; da Silva, D.R.R.; Suresh, H.; Creasey, H.; Asci, C.; dos Santos, D.M.; Sharma, A.; Widmer, G.; Sonkusale, S. Soft autonomous ingestible device for sampling the small-intestinal microbiome. Device 2024, 2, 100406. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef]
- Wallinger, C.; Juen, A.; Staudacher, K.; Schallhart, N.; Mitterrutzner, E.; Steiner, E.M.; Thalinger, B.; Traugott, M. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA. PLoS ONE 2012, 7, e29473. [Google Scholar] [CrossRef]
- James, D.; Schmidt, A.-m. Use of an intron region of a chloroplast tRNA gene (trnL) as a target for PCR identification of specific food crops including sources of potential allergens. Food Res. Int. 2004, 37, 395–402. [Google Scholar] [CrossRef]
- Dalmasso, A.; Fontanella, E.; Piatti, P.; Civera, T.; Rosati, S.; Bottero, M.T. A multiplex PCR assay for the identification of animal species in feedstuffs. Mol. Cell. Probes 2004, 18, 81–87. [Google Scholar] [CrossRef]
- Lahiff, S.; Glennon, M.; O’Brien, L.; Lyng, J.; Smith, T.; Maher, M.; Shilton, N. Species-specific PCR for the identification of ovine, porcine and chicken species in meat and bone meal (MBM). Mol. Cell. Probes 2001, 15, 27–35. [Google Scholar] [CrossRef]
- Arlorio, M.; Coïsson, J.D.; Martelli, A. Identification of Saccharomyces cerevisiae in bakery products by PCR amplification of the ITS region of ribosomal DNA. Eur. Food Res. Technol. 1999, 209, 185–191. [Google Scholar] [CrossRef]
- Hintze, K.J.; Cox, J.E.; Rompato, G.; Benninghoff, A.D.; Ward, R.E.; Broadbent, J.; Lefevre, M. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes 2014, 5, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Rondinella, D.; Raoul, P.C.; Valeriani, E.; Venturini, I.; Cintoni, M.; Severino, A.; Galli, F.S.; Mora, V.; Mele, M.C.; Cammarota, G.; et al. The Detrimental Impact of Ultra-Processed Foods on the Human Gut Microbiome and Gut Barrier. Nutrients 2025, 17, 859. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.; Bhave, M. Application of a DNA-based test to detect adulteration of bread wheat in pasta. J. Food Qual. 2007, 30, 237–252. [Google Scholar] [CrossRef]
- Sam, M. Consecrated Sacramental Bread DNA Analysis Refutes Catholic Transubstantiation Claim. Available online: https://scientificdesign.org/analysis-of-consecrated-sacramental-bread/ (accessed on 8 December 2025).
- Gryson, N.; Dewettinck, K.; Messens, K. Detection of genetically modified soy in doughs and cookies. Cereal Chem. 2007, 84, 109–115. [Google Scholar] [CrossRef]
- Ye, S.; Shah, B.R.; Li, J.; Liang, H.; Zhan, F.; Geng, F.; Li, B. A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci. Technol. 2022, 124, 237–249. [Google Scholar] [CrossRef]
- Cui, J.; Lian, Y.; Zhao, C.; Du, H.; Han, Y.; Gao, W.; Xiao, H.; Zheng, J. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1514–1532. [Google Scholar] [CrossRef] [PubMed]
- Rezende, E.S.V.; Lima, G.C.; Naves, M.M.V. Dietary fibers as beneficial microbiota modulators: A proposed classification by prebiotic categories. Nutrition 2021, 89, 111217. [Google Scholar] [CrossRef] [PubMed]
- Puhlmann, M.-L.; de Vos, W.M. Intrinsic dietary fibers and the gut microbiome: Rediscovering the benefits of the plant cell matrix for human health. Front. Immunol. 2022, 13, 954845. [Google Scholar] [CrossRef]




| Ingredient 1 | Primer Forward (5′→3′) | Primer Reverse (5′→3′) | Amplicon Top BLAST Hit | Reference |
|---|---|---|---|---|
| corn | atttgatcattatatacatttttgagat | tccttccttttttagagtattcc | Zea mays chloroplast | [35] |
| wheat | gaggggttttataccttatac | ggggatagagggacttgaac | Triticum spp. 2 chloroplast | [36] |
| soya | aataatagaatccttccgtc | ggggatagagggacttgaac | Glycine soya chloroplast | [36] |
| salmon | taagagggcggtaaaactc 3 | gtggggtatctaatcccag 3 | Brevoortia tyrannus 4 12S rRNA | [37] |
| chicken | gggacaccctcccccttaatgaca | ggagggctggaagaaggagtg | Gallus gallus mitochondrion | [38] |
| yeast 5 | agcatgagagcttttactg | tccagttacgaaaattct | Saccharomyces cerevisiae ITS | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, M.J.; da Silva, D.R.R.; Kim, J.; dos Santos, D.M.; Sonkusale, S.; Widmer, G. Decay of Food DNA in the Gastrointestinal Tract: Implications for Molecular Dietary Records. Nutrients 2025, 17, 3865. https://doi.org/10.3390/nu17243865
Patel MJ, da Silva DRR, Kim J, dos Santos DM, Sonkusale S, Widmer G. Decay of Food DNA in the Gastrointestinal Tract: Implications for Molecular Dietary Records. Nutrients. 2025; 17(24):3865. https://doi.org/10.3390/nu17243865
Chicago/Turabian StylePatel, Manasvi J., Debora Regina Romualdo da Silva, Jihyun Kim, Danilo M. dos Santos, Sameer Sonkusale, and Giovanni Widmer. 2025. "Decay of Food DNA in the Gastrointestinal Tract: Implications for Molecular Dietary Records" Nutrients 17, no. 24: 3865. https://doi.org/10.3390/nu17243865
APA StylePatel, M. J., da Silva, D. R. R., Kim, J., dos Santos, D. M., Sonkusale, S., & Widmer, G. (2025). Decay of Food DNA in the Gastrointestinal Tract: Implications for Molecular Dietary Records. Nutrients, 17(24), 3865. https://doi.org/10.3390/nu17243865

