Efficacy of Large Language Models in Providing Evidence-Based Patient Education for Celiac Disease: A Comparative Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Expert Panel Composition and Characteristics
2.3. Question Development and Content Validation
- General understanding (n = 5): Fundamental concepts, etiology, and disease characteristics.
- Symptoms and diagnosis (n = 5): Clinical presentation, diagnostic criteria, and testing protocols.
- Diet and nutrition (n = 5): Dietary management, food safety, and nutritional considerations.
- Lifestyle and management (n = 5): Long-term care, monitoring, and treatment adherence.
2.4. AI Model Selection and Configuration
- ChatGPT-4 (OpenAI): GPT-4 architecture accessed via ChatGPT interface.
- Claude 3.7 (Anthropic): Claude-3.7 Sonnet model via Claude interface.
- Gemini 2.0 (Google): Gemini 2.0 model via Google AI interface.
2.5. Evaluation of Metrics and Rating Scales
2.5.1. Primary Outcome Measures
- Scientific accuracy: Rated on a 5-point Likert scale (1 = contains serious scientific inaccuracies; 3 = mostly accurate with minor errors; 5 = completely accurate based on current evidence-based guidelines). Experts were instructed to reference the latest guidelines and consensus recommendations [46,56].
- Clarity of information: Rated on a 5-point Likert scale (1 = very unclear, confusing presentation; 3 = moderately clear with some ambiguity; 5 = exceptionally clear, well-organized, and comprehensible to patients). Evaluators assessed structural organization, terminology appropriateness, and explanation quality.
2.5.2. Secondary Outcome Measures
- Presence of misinformation: Binary assessment (Yes/No) with required justification for “Yes” responses. Misinformation was defined as any statement that contradicted established clinical guidelines, contained factual errors that could potentially impact patient care, or presented unsubstantiated or controversial claims as established facts.
- Readability analysis: Objective linguistic assessment was performed using validated computational readability metrics:
- Flesch Reading Ease: Scale from 0–100 with higher scores indicating easier readability (90–100: very easy; 80–89: easy; 70–79: fairly easy; 60–69: standard; 50–59: fairly difficult; 30–49: difficult; 0–29: very confusing) [82].
- Flesch-Kincaid Grade Level: Estimates the U.S. academic grade level required to comprehend the text [83].
- Simple Measure of Gobbledygook (SMOG) Index: Calculates the years of education needed to understand the text, with particular relevance for healthcare materials [84].
2.6. Expert Assessment Protocol
2.7. Statistical Analysis
2.8. Ethical Considerations
3. Results
3.1. Scientific Accuracy
3.2. Clarity of Information
3.3. Misinformation Detection and Assessment
3.4. Correlation Between Accuracy, Clarity and Misinformation
3.5. Evaluator Expertise Effects
3.6. Readability and Linguistic Analysis
- Flesch Reading Ease: χ2 = 19.70, p < 0.001;
- Flesch-Kincaid Grade Level: χ2 = 22.55, p < 0.001;
- SMOG Index: χ2 = 23.97, p < 0.001.
3.7. Performance Variation by Question Complexity
3.8. Follow-Up Question Generation
3.9. Inter-Rater Reliability and Internal Consistency Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| GFD | Gluten-Free Diet |
| LLM | Large Language Model |
| SMOG | Simple Measure of Gobbledygook |
References
- Reddy, K.; Paulus, Y.M. Leveraging Retrieval-Augmented Large Language Models for Patient Education in Ophthalmology. Graefes. Arch. Clin. Exp. Ophthalmol. 2025, 1–4. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Ouyang, J.; Xue, Z.; Wang, M.; He, H.; Song, B.; Zheng, X.; Gan, W. Evaluating Large Language Models for Preoperative Patient Education in Superior Capsular Reconstruction: Comparative Study of Claude, GPT, and Gemini. JMIR Perioper. Med. 2025, 8, e70047. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhou, H.; Gu, B.; Zou, X.; Huang, J.; Wu, J.; Li, Y.; Chen, S.S.; Hua, Y.; Zhou, P.; et al. Application of Large Language Models in Medicine. Nat. Rev. Bioeng. 2025, 3, 445–464. [Google Scholar] [CrossRef]
- Lieberum, J.-L.; Toews, M.; Metzendorf, M.-I.; Heilmeyer, F.; Siemens, W.; Haverkamp, C.; Böhringer, D.; Meerpohl, J.J.; Eisele-Metzger, A. Large Language Models for Conducting Systematic Reviews: On the Rise, but Not yet Ready for Use-a Scoping Review. J. Clin. Epidemiol. 2025, 181, 111746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wan, X.-H.; Kong, Q.-Z.; Liu, H.; Liu, J.; Guo, J.; Yang, X.-Y.; Zuo, X.-L.; Li, Y.-Q. Evaluating Large Language Models as Patient Education Tools for Inflammatory Bowel Disease: A Comparative Study. World J. Gastroenterol. 2025, 31, 102090. [Google Scholar] [CrossRef]
- Dihan, Q.A.; Brown, A.D.; Chauhan, M.Z.; Alzein, A.F.; Abdelnaem, S.E.; Kelso, S.D.; Rahal, D.A.; Park, R.; Ashraf, M.; Azzam, A.; et al. Leveraging Large Language Models to Improve Patient Education on Dry Eye Disease. Eye 2025, 39, 1115–1122. [Google Scholar] [CrossRef]
- Dahiya, D.S.; Ali, H.; Moond, V.; Shah, M.D.A.; Santana, C.; Ali, N.; Sheikh, A.B.; Nadeem, M.A.; Munir, A.; Quazi, M.A.; et al. Large Language Models in Gastroenterology and Gastrointestinal Surgery: A New Frontier in Patient Communication and Education. Gastroenterol. Res. 2025, 18, 39–48. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, W.; Shi, R.; Liu, F.; Liu, S.; Xu, X.; Yang, J.; Rong, G.; Xin, C.; Zhou, X.; et al. Performance of Popular Large Language Models in Glaucoma Patient Education: A Randomized Controlled Study. Adv. Ophthalmol. Pract. Res. 2025, 5, 88–94. [Google Scholar] [CrossRef]
- Ardila, C.M.; González-Arroyave, D.; Ramírez-Arbeláez, J. Advancing Large Language Models as Patient Education Tools for Inflammatory Bowel Disease. World J. Gastroenterol. 2025, 31, 105285. [Google Scholar] [CrossRef]
- Dihan, Q.A.; Brown, A.D.; Zaldivar, A.T.; Chauhan, M.Z.; Eleiwa, T.K.; Hassan, A.K.; Solyman, O.; Gise, R.; Phillips, P.H.; Sallam, A.B.; et al. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Neurol. Clin. Pract. 2025, 15, e200366. [Google Scholar] [CrossRef]
- Domrös-Zoungrana, D.; Rajaeean, N.; Boie, S.; Fröling, E.; Lenz, C. Medical Education: Considerations for a Successful Integration of Learning with and Learning about AI. J. Med. Educ. Curric. Dev. 2024, 11, 23821205241284719. [Google Scholar] [CrossRef]
- Patel, N.; Grewal, H.; Buddhavarapu, V.; Dhillon, G. OpenEvidence: Enhancing Medical Student Clinical Rotations With AI but With Limitations. Cureus 2025, 17, e76867. [Google Scholar] [CrossRef] [PubMed]
- Hallquist, E.; Gupta, I.; Montalbano, M.; Loukas, M. Applications of Artificial Intelligence in Medical Education: A Systematic Review. Cureus 2025, 17, e79878. [Google Scholar] [CrossRef]
- Aydin, S.; Karabacak, M.; Vlachos, V.; Margetis, K. Large Language Models in Patient Education: A Scoping Review of Applications in Medicine. Front. Med. 2024, 11, 1477898. [Google Scholar] [CrossRef]
- Sami, A.; Tanveer, F.; Sajwani, K.; Kiran, N.; Javed, M.A.; Ozsahin, D.U.; Muhammad, K.; Waheed, Y. Medical Students’ Attitudes toward AI in Education: Perception, Effectiveness, and Its Credibility. BMC Med. Educ. 2025, 25, 82. [Google Scholar] [CrossRef]
- Franco D’Souza, R.; Mathew, M.; Mishra, V.; Surapaneni, K.M. Twelve Tips for Addressing Ethical Concerns in the Implementation of Artificial Intelligence in Medical Education. Med. Educ. Online 2024, 29, 2330250. [Google Scholar] [CrossRef]
- Jafari, F.; Keykha, A.; Taheriankalati, A.; Taghavi Monfared, A. The Role of AI in Shaping Medical Education: Insights from an Umbrella Review of Review Studies. J. Adv. Med. Educ. Prof. 2025, 13, 270–293. [Google Scholar] [CrossRef]
- Hosseini, S.M. AI Misuse and Passiveness of Students in Medical Education. Adv. Physiol. Educ. 2025, 49, 1009–1013. [Google Scholar] [CrossRef]
- Komasawa, N.; Yokohira, M. Generative Artificial Intelligence (AI) in Medical Education: A Narrative Review of the Challenges and Possibilities for Future Professionalism. Cureus 2025, 17, e86316. [Google Scholar] [CrossRef] [PubMed]
- Triola, M.M.; Rodman, A. Integrating Generative Artificial Intelligence Into Medical Education: Curriculum, Policy, and Governance Strategies. Acad. Med. 2025, 100, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Ali, M. The Role of AI in Reshaping Medical Education: Opportunities and Challenges. Clin. Teach. 2025, 22, e70040. [Google Scholar] [CrossRef]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836.e2. [Google Scholar] [CrossRef] [PubMed]
- Zingone, F.; Bai, J.C.; Cellier, C.; Ludvigsson, J.F. Celiac Disease-Related Conditions: Who to Test? Gastroenterology 2024, 167, 64–78. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Hill, I.D.; Semrad, C.; Kelly, C.P.; Greer, K.B.; Limketkai, B.N.; Lebwohl, B. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. Am. J. Gastroenterol. 2023, 118, 59–76. [Google Scholar] [CrossRef]
- Al-Toma, A.; Zingone, F.; Branchi, F.; Schiepatti, A.; Malamut, G.; Canova, C.; Rosato, I.; Ocagli, H.; Trott, N.; Elli, L.; et al. European Society for the Study of Coeliac Disease 2025 Updated Guidelines on the Diagnosis and Management of Coeliac Disease in Adults. Part 1: Diagnostic Approach. United Eur. Gastroenterol. J. 2025. [Google Scholar] [CrossRef]
- Størdal, K.; Kurppa, K. Celiac Disease, Non-Celiac Wheat Sensitivity, Wheat Allergy-Clinical and Diagnostic Aspects. Semin. Immunol. 2025, 77, 101930. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, O.G.; Russell, A.K.; Henneken, L.M.; Fothergill, L.; Motyer, A.; Reid, H.; Rossjohn, J.; Bryant, V.; Anderson, R.P.; Hardy, M.Y.; et al. Blood-Based T-Cell Diagnosis of Celiac Disease. Gastroenterology 2025, 169, 1253–1267.e5. [Google Scholar] [CrossRef] [PubMed]
- Marietta, E.; Choung, R.S.; Rubio-Tapia, A.; Murray, J.A. Immunology in Celiac Disease. Gastrointest. Endosc. Clin. N. Am. 2025, 35, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Myleus, A.; Catassi, C. Epidemiology of Celiac Disease. Gastrointest. Endosc. Clin. N. Am. 2025, 35, 693–706. [Google Scholar] [CrossRef]
- Stout, J.; Austin, K.; Bonnes, S.; DuBroff, J.; Muratore, A. Celiac Disease and Gluten Cross-Contact: How Much Is Too Much? Curr. Nutr. Rep. 2025, 14, 41. [Google Scholar] [CrossRef]
- Usai Satta, P.; Mocci, G.; Lai, M. FODMAP Diet in Celiac Disease and Gluten-Related Disorders. Nutrients 2024, 16, 4190. [Google Scholar] [CrossRef]
- Lazzano, P.; Fracas, E.; Nandi, N.; Scaramella, L.; Elli, L. Extraintestinal Complications of Celiac Disease: Treatment Considerations. Expert Rev. Gastroenterol. Hepatol. 2024, 18, 761–777. [Google Scholar] [CrossRef]
- Santonicola, A.; Soldaini, C.; Ciacci, C. New Therapies in Celiac Disease. Curr. Opin. Gastroenterol. 2025, 41, 124–131. [Google Scholar] [CrossRef]
- Berkemeyer, A. Understanding Celiac Disease for the General Pediatrician. Pediatr. Ann. 2025, 54, e263–e268. [Google Scholar] [CrossRef]
- Araújo, E.M.Q.; Coutinho-Lima, C.R.O.; de Sousa, A.S.; de Souza, L.M.S.; Ramos, H.E.; de Almeida-Pititto, B.; Canto, G.D.L.; Trevisani, V.F.M. Effects of Gluten-Free Diet in Non-Celiac Hashimoto’s Thyroiditis: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 3437. [Google Scholar] [CrossRef]
- Crepaldi, M.; Palo, M.; Maniero, D.; Bertin, L.; Savarino, E.V.; Anderson, R.P.; Zingone, F. Emerging Pharmaceutical Therapies to Address the Inadequacy of a Gluten-Free Diet for Celiac Disease. Pharmaceuticals 2023, 17, 4. [Google Scholar] [CrossRef]
- Parzanese, I.; Qehajaj, D.; Patrinicola, F.; Aralica, M.; Chiriva-Internati, M.; Stifter, S.; Elli, L.; Grizzi, F. Celiac Disease: From Pathophysiology to Treatment. World J. Gastrointest. Pathophysiol. 2017, 8, 27–38. [Google Scholar] [CrossRef]
- Weekley, K.; Gardinier, D.; Lee, A.R.; Weisbrod, V. The Gluten-Free Diet for Celiac Disease. Gastrointest. Endosc. Clin. N. Am. 2025, 35, 753–773. [Google Scholar] [CrossRef] [PubMed]
- Ait Said, H.; Elmoumou, L.; Rherissi, B.; El Kadmiri, N. Probiotics: A Supplement to the Gluten-Free Diet in Celiac Disease. Gastroenterol. Hepatol. Bed. Bench. 2025, 18, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Ghunaim, M.; Seedi, A.; Alnuman, D.; Aljohani, S.; Aljuhani, N.; Almourai, M.; Alsuhaymi, S. Impact of a Gluten-Free Diet in Adults With Celiac Disease: Nutritional Deficiencies and Challenges. Cureus 2024, 16, e74983. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, M.K.; Domżał-Magrowska, D.; Szcześniak, P.; Bulska, M.; Orszulak-Michalak, D.; Małecka-Wojciesko, E. Gluten-Free Diet Adherence Evaluation in Adults with Long-Standing Celiac Disease. Foods 2024, 14, 76. [Google Scholar] [CrossRef]
- Manza, F.; Lungaro, L.; Costanzini, A.; Caputo, F.; Carroccio, A.; Mansueto, P.; Seidita, A.; Raju, S.A.; Volta, U.; De Giorgio, R.; et al. Non-Celiac Gluten/Wheat Sensitivity-State of the Art: A Five-Year Narrative Review. Nutrients 2025, 17, 220. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Aguililla, S.; Farrais, S.; López-Palacios, N.; Arau, B.; Senosiain, C.; Corzo, M.; Fernandez-Jimenez, N.; Ruiz-Carnicer, Á.; Fernández-Bañares, F.; González-García, B.P.; et al. Diagnosis of Celiac Disease on a Gluten-Free Diet: A Multicenter Prospective Quasi-Experimental Clinical Study. BMC Med. 2025, 23, 182. [Google Scholar] [CrossRef]
- Mager, D.R.; Jiang, Z.; Rashke, S.; Turner, J.M. Gluten-Free Oats and Diet Quality in Children and Youth with Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2025, 81, 1070–1078. [Google Scholar] [CrossRef]
- Catassi, C.; Chirdo, F.G. The Gluten-Free Diet: The Road Ahead. Nutrients 2025, 17, 1226. [Google Scholar] [CrossRef]
- Zingone, F.; Maimaris, S.; Auricchio, R.; Caio, G.P.I.; Carroccio, A.; Elli, L.; Galliani, E.; Montagnani, M.; Valiante, F.; Biagi, F. Guidelines of the Italian Societies of Gastroenterology on the Diagnosis and Management of Coeliac Disease and Dermatitis Herpetiformis. Dig. Liver Dis. 2022, 54, 1304–1319. [Google Scholar] [CrossRef]
- Alsayb, M.A.; Alharbi, S.A.; Alloqmani, R.H.; Madkli, G.A.; Basharahil, R.A.; Alhejaili, M.I.; Mumena, W.A. Knowledge, Adherence, and Barriers to Gluten-Free Diet Among Adults with Celiac Disease in Saudi Arabia: A Pilot Study at a Tertiary Hospital in Madinah, Saudi Arabia. Healthcare 2025, 13, 1208. [Google Scholar] [CrossRef]
- Polat, Y.H.; Cankurtaran, R.E. Assessment of Reliability and Validity of Celiac Disease-Related YouTube Videos: Content Analysis. JMIR Infodemiology 2025, 5, e58615. [Google Scholar] [CrossRef]
- Jacobsson, L.R.; Friedrichsen, M.; Göransson, A.; Hallert, C. Impact of an Active Patient Education Program on Gastrointestinal Symptoms in Women with Celiac Disease Following a Gluten-Free Diet: A Randomized Controlled Trial. Gastroenterol. Nurs. 2012, 35, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, F.; Rostami-Nejad, M.; Mohaghegh Shalmani, H.; Sadeghi, A.; Allahverdi Khani, M.; Aldulaimi, D. The Effect of Education on the Knowledge of Patients with Celiac Disease. Gastroenterol. Hepatol. Bed. Bench. 2017, 10, S15–S19. [Google Scholar]
- Ludvigsson, J.F.; Card, T.; Ciclitira, P.J.; Swift, G.L.; Nasr, I.; Sanders, D.S.; Ciacci, C. Support for Patients with Celiac Disease: A Literature Review. United Eur. Gastroenterol. J. 2015, 3, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Elsahoryi, N.A.; Altamimi, E.; Subih, H.S.; Hammad, F.J.; Woodside, J.V. Educational Intervention Improved Parental Knowledge, Attitudes, and Practices (KAP) and Adherence of Patients with Celiac Disease to Gluten-Free Diet. Int. J. Food. Sci. 2020, 2020, 8850594. [Google Scholar] [CrossRef]
- Basil, A.; Littlejohn, B.; Perl, J.; Adams, D.W. Use of Technology to Educate Patients with Celiac Disease. Nutr. Clin. Pract. 2025, 40, 1031–1039. [Google Scholar] [CrossRef]
- Vázquez-Polo, M.; Navarro, V.; Larretxi, I.; Perez-Junkera, G.; Lasa, A.; Miranda, J.; Churruca, I. Effectiveness of a Nutrition Education Programme for Individuals with Celiac Disease and Their Supporters through Social Media (GLUTLEARN Project). Comput. Biol. Med. 2025, 184, 109505. [Google Scholar] [CrossRef]
- Marsilio, I.; Canova, C.; D’Odorico, A.; Ghisa, M.; Zingone, L.; Lorenzon, G.; Savarino, E.V.; Zingone, F. Quality-of-Life Evaluation in Coeliac Patients on a Gluten-Free Diet. Nutrients 2020, 12, 2981. [Google Scholar] [CrossRef]
- Elli, L.; Leffler, D.; Cellier, C.; Lebwohl, B.; Ciacci, C.; Schumann, M.; Lundin, K.E.A.; Chetcuti Zammit, S.; Sidhu, R.; Roncoroni, L.; et al. Guidelines for Best Practices in Monitoring Established Coeliac Disease in Adult Patients. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Scarmozzino, F.; Pizzi, M.; Pelizzaro, F.; Angerilli, V.; Dei Tos, A.P.; Piazza, F.; Savarino, E.V.; Zingone, F.; Fassan, M. Refractory Celiac Disease and Its Mimickers: A Review on Pathogenesis, Clinical-Pathological Features and Therapeutic Challenges. Front. Oncol. 2023, 13, 1273305. [Google Scholar] [CrossRef]
- Verdelho Machado, M. Refractory Celiac Disease: What the Gastroenterologist Should Know. Int. J. Mol. Sci. 2024, 25, 10383. [Google Scholar] [CrossRef] [PubMed]
- Fiori, F.; Bravo, G.; Neuhold, S.; Bartolone, G.; Pilo, C.; Parpinel, M.; Pellegrini, N. Compliance and Attitudes towards the Gluten-Free Diet in Celiac Patients in Italy: What Has Changed after a Decade? Nutrients 2024, 16, 2493. [Google Scholar] [CrossRef] [PubMed]
- Canova, C.; Rosato, I.; Marsilio, I.; Valiante, F.; Zorzetto, V.; Cataudella, G.; D’Odorico, A.; Zingone, F. Quality of Life and Psychological Disorders in Coeliac Disease: A Prospective Multicentre Study. Nutrients 2021, 13, 3233. [Google Scholar] [CrossRef]
- Zingone, F.; Swift, G.L.; Card, T.R.; Sanders, D.S.; Ludvigsson, J.F.; Bai, J.C. Psychological Morbidity of Celiac Disease: A Review of the Literature. United. Eur. Gastroenterol. J. 2015, 3, 136–145. [Google Scholar] [CrossRef]
- Ciacci, C.; Zingone, F. The Perceived Social Burden in Celiac Disease. Diseases 2015, 3, 102–110. [Google Scholar] [CrossRef]
- Sas, K.P.; Zieliński, D.; Piegza, M. Depressive and Anxiety Symptoms in Patients with Celiac Disease-Co-Occurrence and Mutual Dependencies. Psychiatr. Pol. 2025, 16, 1–15. [Google Scholar] [CrossRef]
- Daldaban Sarıca, B.; Demirci, E.; Altay, D.; Arslan, D. Body Image Dissatisfaction, Depression, and Anxiety in Adolescents with Celiac Disease. Front. Pediatr. 2025, 13, 1603009. [Google Scholar] [CrossRef]
- Kaul, R.; Jansson-Knodell, C.; Simons, M.L.; Weekley, K.; Gardinier, D.; Rubio-Tapia, A. Avoidant/Restrictive Food Intake Disorder in Celiac Disease. Nutrients 2025, 17, 3197. [Google Scholar] [CrossRef]
- Gercek, H.G.; İpek Bas, S.A.; Kara, A.; Bukulmez, A. Examination of Eating Attitudes and Symptoms of Orthorexia Nervosa in Adolescents with and without Celiac Disease. J. Eat. Disord. 2025, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Akkuş, E.; Yücel, A.; Bilgiç, A.; Yüksekkaya, H.A. Comparison of Quality of Life, Anxiety, and Depression Levels in Celiac Patients With Children Without Chronic Illnesses. Children 2025, 12, 1080. [Google Scholar] [CrossRef]
- Shushari, M.K.; Wei, T.; Zhang, J.; Tidwell, D.K.; Conard, A.; Tolar-Peterson, T. Adherence to a Gluten-Free Diet, Depression, and Nutrient Distribution in Participants with Celiac Disease. Nutrition 2025, 132, 112676. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Kushima, R.; Ozawa, N.; Shimizu, S.; Shimizu, M. Villous Atrophy in Celiac Disease: Striking Differences in Endoscopic Findings between the Duodenal Bulb and Descending Duodenum. Clin. J. Gastroenterol. 2025, 18, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Tiainen, M.; Kurppa, K.; Jääskeläinen, T.; Kaartinen, N.; Huhtala, H.; Kaukinen, K.; Taavela, J. Prevalence and Characteristics of Adults Avoiding Gluten without Celiac Disease: A Long-Term Population-Based Follow-up Study. BMC Gastroenterol. 2025, 25, 199. [Google Scholar] [CrossRef]
- Abu-Janb, N.; Jaana, M. Facilitators and Barriers to Adherence to Gluten-Free Diet among Adults with Celiac Disease: A Systematic Review. J. Hum. Nutr. Diet. 2020, 33, 786–810. [Google Scholar] [CrossRef]
- Monzani, A.; Marcolin, S.; Giorda, S.; Epis, F.; Babral, M.; Valentino, K.; Scotti, L.; Felici, E.; Rabbone, I. Determinants of Adherence to a Gluten-Free Diet in Children with Celiac Disease and the Influence of the Methods Used to Assess It. Nutrients 2023, 15, 2455. [Google Scholar] [CrossRef]
- Mehtab, W.; Agarwal, A.; Chauhan, A.; Agarwal, S.; Singh, A.; Ahmad, A.; Bhola, A.; Singh, N.; Ahuja, V.; Malhotra, A.; et al. Barriers at Various Levels of Human Ecosystem for Maintaining Adherence to Gluten Free Diet in Adult Patients with Celiac Disease. Eur. J. Clin. Nutr. 2024, 78, 320–327. [Google Scholar] [CrossRef]
- Atsawarungruangkit, A.; Silvester, J.A.; Weiten, D.; Green, K.L.; Wilkey, K.E.; Rigaux, L.N.; Bernstein, C.N.; Graff, L.A.; Walker, J.R.; Duerksen, D.R. Development of the Dietitian Integrated Evaluation Tool for Gluten-Free Diets (DIET-GFD). Nutrition 2020, 78, 110819. [Google Scholar] [CrossRef] [PubMed]
- Guz-Mark, A.; Perets, T.T.; Biran, N.; Jack, Y.; Zevit, N.; Silbermintz, A.; Matar, M.; Nachmias-Friedler, V.; Waisbourd-Zinman, O.; Bar-Lev, M.R.; et al. Gluten Immunogenic Peptides Are Not Correlated With Reported Adherence to Gluten-Free Diet in Children With Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2023, 77, 244–248. [Google Scholar] [CrossRef]
- Wang, X.; Anders, S.; Jiang, Z.; Bruce, M.; Gidrewicz, D.; Marcon, M.; Turner, J.M.; Mager, D.R. Food Insecurity Impacts Diet Quality and Adherence to the Gluten-Free Diet in Youth with Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, S.; Mahmoudi Ghehsareh, M.; Asri, N.; Azizmohammad Looha, M.; Jahani-Sherafat, S.; Ciacci, C.; Rostami-Nejad, M. Gluten-Free Diet Adherence Patterns and Health Outcomes in Celiac Disease: A Retrospective Observational Study. BMC Gastroenterol. 2025, 25, 591. [Google Scholar] [CrossRef] [PubMed]
- Silvester, J.A.; Weiten, D.; Graff, L.A.; Walker, J.R.; Duerksen, D.R. Is It Gluten-Free? Relationship between Self-Reported Gluten-Free Diet Adherence and Knowledge of Gluten Content of Foods. Nutrition 2016, 32, 777–783. [Google Scholar] [CrossRef]
- Paganizza, S.; Zanotti, R.; D’Odorico, A.; Scapolo, P.; Canova, C. Is Adherence to a Gluten-Free Diet by Adult Patients With Celiac Disease Influenced by Their Knowledge of the Gluten Content of Foods? Gastroenterol. Nurs. 2019, 42, 55–64. [Google Scholar] [CrossRef]
- Crespo-Escobar, P.; Vázquez-Polo, M.; van der Hofstadt, M.; Nuñez, C.; Montoro-Huguet, M.A.; Churruca, I.; Simón, E. Knowledge Gaps in Gluten-Free Diet Awareness among Patients and Healthcare Professionals: A Call for Enhanced Nutritional Education. Nutrients 2024, 16, 2512. [Google Scholar] [CrossRef]
- Sorin, V.; Brin, D.; Barash, Y.; Konen, E.; Charney, A.; Nadkarni, G.; Klang, E. Large Language Models and Empathy: Systematic Review. J. Med. Internet. Res. 2024, 26, e52597. [Google Scholar] [CrossRef]
- Kincaid, J.P.; Fishburne, R.P., Jr.; Rogers, R.L.; Chissom, B.S. Derivation of New Readability Formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel, 1975. Defense Technical Information Center. Available online: https://apps.dtic.mil/sti/html/tr/ADA006655/ (accessed on 1 November 2025).
- Ahmed, I.; Ishtiaq, S. Reliability and Validity: Importance in Medical Research. J. Pak. Med. Assoc. 2021, 71, 2401–2406. [Google Scholar] [CrossRef]
- Wang, L.-W.; Miller, M.J.; Schmitt, M.R.; Wen, F.K. Assessing Readability Formula Differences with Written Health Information Materials: Application, Results, and Recommendations. Res. Social. Adm. Pharm. 2013, 9, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef]
- Nori, H.; King, N.; McKinney, S.; Carignan, D.; Horvitz, E. Capabilities of GPT-4 on Medical Challenge Problems. arXiv 2023, arXiv:2303.13375. [Google Scholar] [CrossRef]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; Leon, L.D.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-Assisted Medical Education Using Large Language Models. PLoS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef]
- AlSammarraie, A.; Househ, M. The Use of Large Language Models in Generating Patient Education Materials: A Scoping Review. Acta. Inform. Med. 2025, 33, 4–10. [Google Scholar] [CrossRef]
- Song, H.; Xia, Y.; Luo, Z.; Liu, H.; Song, Y.; Zeng, X.; Li, T.; Zhong, G.; Li, J.; Chen, M.; et al. Evaluating the Performance of Different Large Language Models on Health Consultation and Patient Education in Urolithiasis. J. Med. Syst. 2023, 47, 125. [Google Scholar] [CrossRef]
- Campbell, D.J.; Estephan, L.E.; Mastrolonardo, E.V.; Amin, D.R.; Huntley, C.T.; Boon, M.S. Evaluating ChatGPT Responses on Obstructive Sleep Apnea for Patient Education. J. Clin. Sleep. Med. 2023, 19, 1989–1995. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.A.; Brant, A.; Fisher, A.C.; Pershing, S.; Do, D.; Pan, C. Dr. Google vs. Dr. ChatGPT: Exploring the Use of Artificial Intelligence in Ophthalmology by Comparing the Accuracy, Safety, and Readability of Responses to Frequently Asked Patient Questions Regarding Cataracts and Cataract Surgery. Semin. Ophthalmol. 2024, 39, 472–479. [Google Scholar] [CrossRef]
- Chervonski, E.; Harish, K.B.; Rockman, C.B.; Sadek, M.; Teter, K.A.; Jacobowitz, G.R.; Berland, T.L.; Lohr, J.; Moore, C.; Maldonado, T.S. Generative Artificial Intelligence Chatbots May Provide Appropriate Informational Responses to Common Vascular Surgery Questions by Patients. Vascular 2025, 33, 229–237. [Google Scholar] [CrossRef]
- Almagazzachi, A.; Mustafa, A.; Eighaei Sedeh, A.; Vazquez Gonzalez, A.E.; Polianovskaia, A.; Abood, M.; Abdelrahman, A.; Muyolema Arce, V.; Acob, T.; Saleem, B. Generative Artificial Intelligence in Patient Education: ChatGPT Takes on Hypertension Questions. Cureus 2024, 16, e53441. [Google Scholar] [CrossRef] [PubMed]
- Caglar, U.; Yildiz, O.; Meric, A.; Ayranci, A.; Gelmis, M.; Sarilar, O.; Ozgor, F. Evaluating the Performance of ChatGPT in Answering Questions Related to Pediatric Urology. J. Pediatr. Urol. 2024, 20, 26.e1–26.e5. [Google Scholar] [CrossRef]
- Zaretsky, J.; Kim, J.M.; Baskharoun, S.; Zhao, Y.; Austrian, J.; Aphinyanaphongs, Y.; Gupta, R.; Blecker, S.B.; Feldman, J. Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format. JAMA Netw. Open 2024, 7, e240357. [Google Scholar] [CrossRef] [PubMed]
- McMahon, H.V.; McMahon, B.D. Automating Untruths: ChatGPT, Self-Managed Medication Abortion, and the Threat of Misinformation in a Post-Roe World. Front. Digit. Health 2024, 6, 1287186. [Google Scholar] [CrossRef] [PubMed]



| Category | Question |
| General understanding | What is Celiac Disease? |
| What causes celiac disease? | |
| Is celiac disease the same as gluten allergy or intolerance? | |
| Is celiac disease genetic? Can I pass it on to my children? | |
| Is there a cure for celiac disease? | |
| Symptoms and diagnosis | What are the common symptoms of celiac disease? |
| How is celiac disease diagnosed? | |
| Can I have celiac disease even if I don’t have digestive symptoms? | |
| Can I test for celiac disease if I’m already on a gluten-free diet? | |
| Can celiac disease develop later in life? | |
| Diet and nutrition | What foods should I avoid with celiac disease? |
| What are some safe, gluten-free alternatives to common foods? | |
| I have celiac disease. How can I prevent cross-contamination in my kitchen? | |
| Do I need to take supplements if I have Celiac disease? | |
| I have celiac disease. Can I ever eat gluten again? | |
| Lifestyle and management | I have celiac disease. How long does it take for symptoms to improve after going gluten-free? |
| How often should I follow up with my doctor after a celiac disease diagnosis? | |
| What blood tests are used to monitor celiac disease? | |
| I have celiac disease. Do I need a follow-up biopsy to confirm that my intestine is healing? | |
| What are the risks of not strictly following a gluten-free diet? |
| ChatGPT-4 | Claude 3.7 | Gemini 2.0 | p Value | |
| Scientific accuracy | 4.0 [4.0–4.5] | 4.0 [4.0–4.5] | 4.5 [4.5–5.0] | 0.015 |
| Clarity of information | 4.0 [4.0–4.5] | 4.0 [4.0–4.5] | 5.0 [4.5–5.0] | 0.011 |
| Misinformation rate (%) | 23.3% (28/120) | 24.2% (29/120) | 13.3% (16/120) | 0.778 |
| Flesch Reading Ease | 38.2 [28.0–45.6] | 37.3 [30.9–42.3] | 48.8 [44.1–61.5] | <0.001 |
| Flesch-Kincaid Grade Level | 12.5 [11.6–15.3] | 12.5 [10.9–13.5] | 9.8 [8.8–10.3] | <0.001 |
| SMOG Index | 14.9 [13.6–16.0] | 16.0 [15.4–16.7] | 13.9 [13.1–14.4] | <0.001 |
| Metric | Comparison | p-Value | Cohen’s d |
| Scientific Accuracy | ChatGPT-4 vs. Gemini 2.0 | 0.006 | −0.70 |
| ChatGPT-4 vs. Claude 3.7 | 0.254 | −0.24 | |
| Claude 3.7 vs. Gemini 2.0 | 0.024 | −0.52 | |
| Clarity | ChatGPT-4 vs. Gemini 2.0 | 0.002 | −0.94 |
| ChatGPT-4 vs. Claude 3.7 | 0.022 | −0.50 | |
| Claude 3.7 vs. Gemini 2.0 | 0.053 | −0.51 | |
| Misinformation | ChatGPT-4 vs. Gemini 2.0 | 0.074 | 0.45 |
| ChatGPT-4 vs. Claude 3.7 | 0.745 | −0.08 | |
| Claude 3.7 vs. Gemini 2.0 | 0.009 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertin, L.; Branchi, F.; Ciacci, C.; Lee, A.R.; Sanders, D.S.; Trott, N.; Zingone, F. Efficacy of Large Language Models in Providing Evidence-Based Patient Education for Celiac Disease: A Comparative Analysis. Nutrients 2025, 17, 3828. https://doi.org/10.3390/nu17243828
Bertin L, Branchi F, Ciacci C, Lee AR, Sanders DS, Trott N, Zingone F. Efficacy of Large Language Models in Providing Evidence-Based Patient Education for Celiac Disease: A Comparative Analysis. Nutrients. 2025; 17(24):3828. https://doi.org/10.3390/nu17243828
Chicago/Turabian StyleBertin, Luisa, Federica Branchi, Carolina Ciacci, Anne R. Lee, David S. Sanders, Nick Trott, and Fabiana Zingone. 2025. "Efficacy of Large Language Models in Providing Evidence-Based Patient Education for Celiac Disease: A Comparative Analysis" Nutrients 17, no. 24: 3828. https://doi.org/10.3390/nu17243828
APA StyleBertin, L., Branchi, F., Ciacci, C., Lee, A. R., Sanders, D. S., Trott, N., & Zingone, F. (2025). Efficacy of Large Language Models in Providing Evidence-Based Patient Education for Celiac Disease: A Comparative Analysis. Nutrients, 17(24), 3828. https://doi.org/10.3390/nu17243828

