Next Article in Journal
Metabolic and Environmental Benefits of Following the Healthy and Sustainable Dietary Recommendations for the Spanish Population: The AWHS Study
Next Article in Special Issue
The Effect of a Low-Energy and Low-Glycemic Diet on Adipose Tissue Metabolism and Energy Expenditure in Women with Excess Body Weight
Previous Article in Journal
Maternal Adiposity, Milk Production and Removal, and Infant Milk Intake During Established Lactation
Previous Article in Special Issue
Soy Protein Outperforms Whey Protein in Ameliorating Insulin Resistance but Not Obesity in High-Fat Diet-Induced Obese Mice
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Anthocyanins Modulation of Gut Microbiota to Reverse Obesity-Driven Inflammation and Insulin Resistance

by
Caio Cesar Ruy
,
Tanila Wood dos Santos
,
Quélita Cristina Pereira
and
Marcelo Lima Ribeiro
*
Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil
*
Author to whom correspondence should be addressed.
Nutrients 2025, 17(23), 3727; https://doi.org/10.3390/nu17233727
Submission received: 13 October 2025 / Revised: 19 November 2025 / Accepted: 24 November 2025 / Published: 27 November 2025
(This article belongs to the Special Issue Dietary Interventions for Obesity and Obesity-Related Complications)

Abstract

Obesity has reached alarming proportions worldwide, becoming one of the most prevalent and critical public health challenges of the 21st century. Currently, there is great interest in studying the treatment of obesity with food-derived bioactive compounds, which have low toxicity and no serious adverse events compared to pharmacotherapeutic agents. Here, we review the benefits of anthocyanin-rich foods in preventing obesity, including antioxidant and anti-inflammatory effects, and in regulating the gut microbiota in preclinical models and human clinical trials. Evidence suggests that dietary anthocyanins may have anti-obesity effects and reduce the risk of chronic noncommunicable diseases by regulating gut health.

1. Introduction

Obesity has emerged as one of the most pressing public health challenges of the 21st century. Its prevalence has increased at an alarming pace over the past three decades, transforming from a regional concern to a global epidemic with profound clinical and socioeconomic consequences. According to the World Health Organization (WHO, 2024), by 2022 nearly one in eight individuals worldwide were living with obesity [1]. Since 1990, prevalence has more than doubled among adults and quadrupled among adolescents, reflecting complex interactions between urbanization, dietary transitions toward energy-dense ultra-processed foods, and reductions in physical activity. Global estimates indicate that approximately 2.5 billion adults were overweight in 2022, of whom 890 million were obese, corresponding to 43% of adults with overweight and 16% with obesity, figures that align with the Global Burden of Disease data [2,3,4,5,6,7,8,9].
Clinically, obesity is defined as excessive adiposity that increases health risk, often operationalized as a body mass index (BMI) ≥ 30 kg/m2. However, BMI alone fails to capture heterogeneity in fat distribution, metabolic profiles, and individual risk, highlighting the need for refined diagnostic tools based on body composition and metabolic markers [10]. Obesity is a systemic condition that affects virtually every organ and is strongly associated with type 2 diabetes (T2DM), hypertension, dyslipidemia, cardiovascular disease (CVD), metabolic dysfunction-associated steatotic liver disease (MASLD), and several cancers. Its pathophysiology extends beyond caloric imbalance, encompassing neuroendocrine regulation, chronic low-grade inflammation, alterations in gut barrier integrity and microbiota, and the interplay of genetic and epigenetic determinants [1,11,12,13,14,15,16,17,18,19,20].
The relentless rise in obesity prevalence underscores the inadequacy of current prevention and management strategies. Conventional approaches based solely on caloric restriction and exercise promotion often fail to ensure long-term weight maintenance, as they do not address underlying biological and environmental drivers. Consequently, there is a growing emphasis on integrative strategies that combine lifestyle modification, pharmacological therapy, and novel nutraceutical and microbiota-targeted interventions [21,22,23,24,25,26]. In particular, recent advances in understanding the gut–adipose–brain axis and the role of bioactive dietary compounds, such as anthocyanins, provide a promising framework for both mechanistic insights and translational therapeutic development determinants [12,18,27,28,29,30,31,32].

2. Energy Homeostasis and Neuroendocrine Regulation

Obesity results from a chronic positive energy balance governed by complex interactions between endocrine tissues and the central nervous system [33,34,35]. Energy homeostasis, the balance between energy intake and expenditure, is essential for body weight control. Resting metabolic rate, responsible for roughly 70% of total energy expenditure, is strongly associated with fat-free mass [35,36,37].
Food intake and energy expenditure are regulated by interlinked neural and hormonal pathways, with prominent communication between the central nervous system and peripheral tissues such as the gut and adipose tissue. Enteric sensory modalities detect nutrients and mechanical distension, triggering secretion of gut hormones (e.g., ghrelin, CCK, GLP-1, PYY) and autonomic afferent signaling that converge on brainstem nuclei and hypothalamic centers [38,39,40,41,42].
Adipose-derived signals, notably leptin and adiponectin, also modulate hypothalamic circuits (e.g., the arcuate nucleus) to influence feeding behavior and energy expenditure. In obesity, leptin signaling is commonly impaired (leptin resistance), while adiponectin levels are reduced [38,43,44,45,46]. Excess lipid deposition overwhelms lipid-handling pathways, causes endoplasmic reticulum and mitochondrial dysfunction, and increases reactive oxygen species generation; lipid intermediates such as ceramides activate pro-inflammatory kinases and foster an inflammatory adipokine profile that impairs insulin signaling [47,48,49,50,51,52,53,54].
Nutrient sensing by enteroendocrine cells stimulates secretion of hormones that regulate gastrointestinal motility and food intake. Ghrelin, an orexigenic peptide, increases appetite and can reduce physical activity, favoring weight gain. In contrast, GLP-1 is anorexigenic: it enhances insulin secretion, suppresses glucagon, slows gastric emptying, and acts centrally to reduce food intake [44,55,56,57,58,59,60,61,62,63].
These gut-derived signals interact with adipose-derived hormones and central networks to fine-tune feeding behavior and energy expenditure, and disruptions in these pathways contribute to the development and persistence of obesity.

3. Inflammation-Driven Mechanisms of Insulin Resistance in Obesity

There is growing evidence that obesity-associated inflammation originates at least in part from the gastrointestinal tract. High-fat diets impair distal intestinal epithelial barrier integrity, altering the expression of protective mucins and defensins [64,65,66,67,68,69,70,71,72].
Markers of inflammation with metabolic and endocrine functions include pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, IL-18, IL-12), members of the IL-10 family, adipokines (e.g., adiponectin), chemokines (CCL2, CCL5, CXCL8, CXCL9, CXCL10), hepatocyte-derived acute-phase proteins (C-reactive protein—CRP, fibrinogen, serum amyloid A—SAA), downstream markers such as urinary microalbumin, and enzymes like COX-2 [43,73,74,75,76].
The inflammatory milieu in obesity, characterized by elevated cytokines and immune cell activation, promotes insulin resistance through multiple mechanisms. Inflammatory signals such as TNF alter kinase activities involved in insulin-mediated glucose uptake and impair insulin receptor signaling via aberrant phosphorylation patterns [77,78,79,80,81,82,83].
Elevated levels of free fatty acid intermediates activate NF-κB and protein kinase C (PKC), reinforcing inflammatory signaling and worsening insulin receptor dysfunction. Animal models show that suppression of pro-inflammatory kinase pathways can protect against insulin resistance [84,85,86,87].
Insulin signaling perturbations occur predominantly in liver and skeletal muscle, critically affecting glucose homeostasis. High hepatic concentrations of certain lipid intermediates, particularly diacylglycerol, correlate with hepatic insulin resistance, but tissue-specific interactions among nutrients, kinases and metabolic pathways remain incompletely understood. The regulation of energy metabolism involves complex interactions between peripheral hormones, such as ghrelin and leptin, and immune cells residing in metabolic tissues, particularly macrophages. Ghrelin, mainly produced in the stomach, acts through the GHSR receptor, promoting orexigenic effects and modulating intracellular pathways such as AMPK, in addition to exerting anti-inflammatory effects and favoring macrophage polarization toward the M2 phenotype, characterized by an anti-inflammatory profile and improved insulin sensitivity [88,89,90,91]. Conversely, leptin, secreted by adipocytes, acts on the ObR receptor via JAK2/STAT3 and PI3K/MAPK pathways, and under conditions of obesity and hyperleptinemia, induces a pro-inflammatory state that favors macrophage polarization toward the M1 phenotype, leading to the release of cytokines such as TNF-α, IL-6, and IL-1β, thereby contributing to the development of insulin resistance [92,93,94,95]. The polarization of macrophages into M1 and M2 represents a crucial point at the interface between immunity and metabolism: M1 macrophages rely predominantly on glycolytic metabolism, while M2 macrophages depend on fatty acid oxidation and AMPK activation, a kinase that acts as a cellular energy sensor regulating both inflammatory and metabolic pathways [94,96,97]. In obesity, there is increased infiltration of M1 macrophages in adipose tissue and a reduction in M2 cells, creating an inflammatory microenvironment that interferes with insulin signaling through inhibition of IRS-1 and reduced Akt phosphorylation [98]. AMPK activation has been associated with decreased M1 polarization, improved energy homeostasis, and reduced insulin resistance, highlighting its importance in modulating the NF-κB and JNK pathways and promoting the M2 phenotype [96,99]. Ghrelin activates AMPK in several tissues, including the pancreas and skeletal muscle, while leptin may either activate or inhibit this enzyme depending on the metabolic context, indicating that the balance between these hormonal pathways is essential for metabolic homeostasis. Furthermore, recent studies suggest that gap junctions, formed by connexins such as Cx43, play an important role in intercellular communication between macrophages and adipocytes, allowing the exchange of ions and metabolites that modulate the inflammatory response and insulin sensitivity [90]. Dysfunction of these junctions may amplify pro-inflammatory signaling and contribute to insulin resistance, whereas AMPK activation may preserve their function and limit the propagation of inflammation [100,101,102,103,104]. Thus, the combined dysregulation of ghrelin, leptin, and AMPK, together with impaired communication via gap junctions, promotes the shift in macrophages from the M2 to the M1 phenotype, thereby favoring insulin resistance. Therapeutic strategies aimed at restoring AMPK activation, balancing the effects of ghrelin and leptin, and preserving the integrity of gap junctions represent potential approaches for the treatment of metabolic and inflammatory syndromes associated with obesity [88,92,96,97,99].

4. Cardiometabolic and Hepatic Consequences of Insulin Resistance

Insulin resistance is a central metabolic disorder closely associated with numerous comorbidities, including type 2 diabetes, cardiovascular disease, hypertension and dyslipidemia. It is defined by the reduced capacity of tissues to respond appropriately to insulin, leading to hyperglycemia and compensatory hyperinsulinemia [105,106,107,108]. Approximately 80% of individuals with type 2 diabetes exhibit significant insulin resistance. Chronic hyperglycemia accelerates vascular damage and potentiates microvascular complications such as neuropathy and retinopathy [109,110,111,112,113,114].
Insulin resistance also predisposes to cardiovascular disease via endothelial dysfunction, adverse lipid profiles (elevated triglycerides, low HDL), and chronic low-grade inflammation that accelerate atherogenesis [115,116,117,118,119,120,121]. Visceral adiposity further increases cardiovascular risk through enhanced production of pro-inflammatory adipokines [122,123,124,125,126,127].
Insulin resistance is tightly linked to elevated blood pressure. Inflammatory pathway activation and endothelial dysfunction associated with insulin resistance contribute to abnormal blood pressure regulation. Studies indicate that insulin resistance can activate the sympathetic nervous system and the renin–angiotensin–aldosterone system, both crucial drivers of vasoconstriction and sodium retention in hypertension [116,128,129,130].
Insulin resistance is commonly accompanied by dyslipidemia: increased triglycerides, reduced HDL cholesterol, increased VLDL secretion, and decreased lipoprotein lipase activity, leading to lipid accumulation in liver and circulation [131,132,133,134,135,136,137,138]. Elevated uric acid associated with insulin resistance may also play a role in blood pressure elevation [139,140,141,142,143,144,145,146].
Lipid deposition in tissues, particularly the liver, can trigger MASLD and progress to cirrhosis. Hepatic steatosis arising from insulin resistance generates oxidative stress and pro-inflammatory cytokines, driving fibrosis and organ injury [147,148,149,150,151]. MASLD commonly coexists with metabolic syndrome, a cluster that includes abdominal obesity, hypertension, dyslipidemia and insulin resistance, with visceral adiposity being a key determinant of this syndrome [152,153,154,155,156,157,158].

5. Intestinal Barrier Integrity, Microbiota Shifts, and Their Role in Obesity-Related Inflammation

Recent evidence highlights the fundamental role of intestinal health and barrier integrity in metabolic regulation, inflammation, and the development of obesity-related conditions such as type 2 diabetes and cardiovascular disease. The intestinal barrier, formed by an epithelial cell layer connected through tight junctions, selectively allows nutrient absorption while blocking pathogens, toxins and other harmful substances [159,160,161,162,163,164,165,166,167].
In obesity, the intestinal barrier is often compromised, a condition commonly called ‘leaky gut,’ whereby increased permeability permits translocation of bacterial endotoxins such as lipopolysaccharide (LPS) into the circulation and triggers chronic innate immune activation [168,169,170,171,172,173,174,175]. This process contributes to the low-grade chronic inflammation observed in obesity and participates in insulin resistance and metabolic dysfunction [168,175,176,177,178,179,180,181].
Alterations in intestinal microbiota composition seen in obesity contribute to increased intestinal permeability and systemic inflammation. Specific microbial shifts, for example, changes in the abundance of Firmicutes relative to Bacteroidetes and increases in Proteobacteria, have been associated with higher endotoxin production and metabolic inflammation [182,183,184,185]. Microbiota-derived metabolites and structural molecules such as LPS engage host immune pathways, perpetuating a cycle of barrier dysfunction, inflammation and metabolic impairment [186,187,188,189,190,191,192,193,194,195].
LPS can activate the NF-κB immune pathway in the bloodstream. In combination with CD14, LPS acts as a ligand for Toll-like receptor (TLR) 4 [196]. This suggests that LPS translocation, caused primarily by high-fat diets, is related to obesity-induced low-grade systemic inflammation [177].
A chronic systemic accumulation of bacteria and LPS results in metabolic bacteremia and endotoxemia, respectively—pro-inflammatory processes characteristic of obesity and other metabolic syndrome phenotypes [153,197,198].
Microbial metabolites, such as short-chain fatty acids (SCFAs), secondary bile acids, and trimethylamine-N-oxide, may reflect gut microbiota activity and potentially predict obesity and insulin resistance risk. Therefore, increased SCFAs have been associated with decreased body weight, fat mass, waist circumference, fasting blood glucose, insulin resistance, and inflammation. Increased levels of secondary bile acids have been associated with decreased BMI, waist-to-hip ratio, fasting blood glucose, insulin resistance, and inflammation. Furthermore, elevated concentrations of trimethylamine-N-oxide were correlated with increased BMI, waist circumference, body fat percentage, fasting glucose, insulin resistance, blood pressure, inflammation, and oxidative stress [199,200,201].

6. Bioactive Phytochemicals and Microbiota-Targeted Interventions: Dual Strategies Against Obesity-Associated Inflammation

Interventions that modulate the gut microbiota, including dietary fiber enrichment, prebiotics, probiotics and symbiotics, have shown potential to restore barrier function, reduce systemic inflammation, and improve glucose homeostasis and cardiometabolic health [202,203,204,205,206,207,208]. Clinical and preclinical studies suggest that diets rich in fermentable fibers and low in saturated fats promote a healthier microbial community that produces SCFAs, enhances mucin production, and strengthens epithelial tight junctions [209,210,211,212,213,214,215].
Given the central role of inflammation in obesity-related disorders, exploration of anti-inflammatory strategies, including plant-derived natural compounds, has intensified. Flavonoids and other polyphenols present in fruits, vegetables and teas have shown capacity to modulate the microbiota, reinforce the epithelial barrier, and reduce chronic inflammation associated with obesity [216,217,218,219,220,221,222].
Natural compounds can upregulate tight junction proteins (occludin (Ocln), claudins (Cldn), Zonula occludens (ZO-1)) and inhibit pro-inflammatory pathways such as TLR4/NF-κB and NLRP3 inflammasome activation [223,224,225,226,227,228,229,230,231]. Examples include rhein, which restored occludin and ZO-1 distribution in LPS-stimulated IEC6 cells while reducing inflammatory cytokine secretion and inhibiting TLR4/NF-κB/NLRP3 activation [232], and glycyrol (a licorice derivative), which enhanced ZO-1 membrane localization through the GDNF/RET pathway [233]. A broad range of bioactive plant compounds, including curcumin, quercetin, resveratrol, naringenin, and ginsenosides, have demonstrated inhibition of central inflammatory pathways (e.g., TLR4/NF-κB), resulting in reduced expression of TNFα, IL-6 and IL-1β [227,234,235,236,237,238,239,240,241]. Flavonoids extracted from Amomum tsaoko attenuated inflammation in murine models of ulcerative colitis through inhibition of TLR4/NF-κB/NLRP3 signaling and simultaneous modulation of gut microbiota [242]. Ginger extracts have been reported to lower TNFα, reduce oxidative stress and restore tight junction proteins in experimental colitis models [243,244,245].

7. Anthocyanins: Chemical Characteristics, Bioavailability, Biological Effects, and Clinical Potential

Anthocyanins are water-soluble flavonoid pigments built on a C6–C3–C6 backbone and typically present in glycosylated or acylated forms (for example, aglycones such as cyanidin, delphinidin, pelargonidin, peonidin, petunidin and malvidin). Their chemical stability, encompassing color, pH dependence, light and temperature sensitivity, and sugar/acyl substituent patterns, significantly influences their presence in foods as well as their absorption and metabolism in the human body [246,247,248,249]. These compounds are abundant in red, blue or purple fruits and vegetables such as berries, grapes, red cabbage and eggplant, yet the actual dietary intake varies widely according to cultivar, harvest, processing and region. In terms of biological effects, growing meta-analyses of randomized controlled trials (RCTs) and cohort studies suggest promising benefits: one large meta-analysis of 44 RCTs and 15 cohort studies found that supplementation with purified anthocyanins significantly lowered LDL cholesterol and triglycerides, raised HDL, and habitual dietary consumption was associated with lower incidence of coronary heart disease and total cardiovascular disease [250,251,252,253]. A separate meta-analysis of 32 RCTs found that anthocyanins significantly improved fasting glucose, 2-h postprandial glucose, HbA1c, total cholesterol and LDL in cardiometabolic populations [254].
However, the bioavailability of anthocyanins remains a notable challenge: only a small fraction of ingested anthocyanins appear in the circulation in their intact form, as most are extensively metabolized in the gut and liver into glucuronide, sulfate and methylated derivatives [255,256,257]. Distribution to tissues in humans is poorly characterized, though animal studies indicate accumulation in liver, kidneys, brain and adipose tissue at low concentrations [258,259,260,261,262]. When considering clinical applicability, several factors must be addressed: the molecular form (glycosylated vs. aglycone), the food matrix (whole fruit versus extract vs. supplement), processing and digestion, interactions with other dietary components (fibers, fats, other polyphenols), inter-individual variability (microbiota composition, metabolism, transporters), and the need for standardized effective doses. For example, while evidence supports benefits, the heterogeneity in doses, formulations and populations limits translation to clinical practice [263,264,265,266].

8. Modulation of Gut Microbiota by Anthocyanins and Their Potential Synergistic Effects with Semaglutide and Tirzepatide

Anthocyanins have been shown to act as relevant modulators of gut microbiota, promoting beneficial bacteria such as Bifidobacterium spp. and Bacteroides, increasing short-chain fatty acid (SCFA) production (acetate, propionate, butyrate), reducing intestinal pH and permeability, and improving tight junction protein expression and villi morphology in animal models [267,268,269,270]. Concurrently, GLP-1 receptor agonists such as Semaglutide and dual GIP/GLP-1 receptor agonists like Tirzepatide have been demonstrated to modulate the gut microbiota in animal models, increasing the abundance of Akkermansia muciniphila, Faecalibaculum, Allobaculum, and Muribaculaceae, while improving intestinal barrier integrity and reducing inflammation [271,272,273,274,275]. Given that both anthocyanins and these pharmacological agents converge on the gut microbiota pathway, it is plausible that anthocyanin intake may potentiate or modify their effects by promoting beneficial bacteria that are also favored by the drugs, increasing SCFA production which activates GPR43/GPR41 receptors, and enhancing intestinal integrity, thereby reducing metabolic endotoxemia. While direct clinical evidence of this synergy is lacking, mechanistic data suggest potential complementary effects, particularly in the context of obesity or type 2 diabetes. Most current evidence derives from animal or in vitro studies; human data remain limited, and factors such as anthocyanin dose, formulation, duration, and individual microbiota profiles may influence outcomes [276,277,278,279]. Well-designed clinical trials are therefore urgently needed to evaluate anthocyanin supplementation in patients treated with Semaglutide or Tirzepatide, monitoring microbiota composition, SCFA levels, intestinal barrier function, and therapeutic response, to explore their translational and synergistic potential in a safe and standardized manner.

9. Anthocyanins: In Vitro, In Vivo and Clinical Evidence

Anthocyanins, water-soluble flavonoid pigments abundant in berries and colored fruits, have shown antioxidant, hypoglycemic and hypolipidemic effects in vitro and in animal models (Table 1) [280,281,282]. For example, anthocyanins isolated from blueberry (Vaccinium virgatum, ‘Garden blue’) increased glucose uptake and reduced lipid accumulation in HepG2 cells exposed to high glucose and oleic acid, suggesting therapeutic potential for obesity and diabetes, though animal validation is still needed [283].
A randomized clinical trial evaluated supplementation with blueberry anthocyanins combined with prebiotics (rice bran fiber and Jerusalem artichoke) in patients with type 2 diabetes. After 60 days, participants showed reductions in fasting glucose, HbA1c and LDL cholesterol, and improvement in estimated glomerular filtration rate; however, markers of oxidative stress, inflammation and cardiorespiratory fitness were unchanged, indicating that mechanistic pathways require further exploration [284].
Other studies have reported cardiometabolic benefits of anthocyanin-rich extracts (e.g., Aronia melanocarpa, pomegranate, mulberry) in animal models and small human trials, including reductions in LDL cholesterol, triglycerides, blood pressure and postprandial endotoxemia, though results are heterogeneous across studies [254,285,286,287,288,289,290,291].
Mechanistically, anthocyanins and related polyphenols interact with multiple molecular targets: they activate AMPK to inhibit lipogenesis and enhance fatty acid oxidation, stimulate Nrf2-driven antioxidant defenses, attenuate NF-κB-mediated inflammation, and modulate transcription factors controlling lipid and cholesterol homeostasis (LXR, PPARα, PPARγ, C/EBPα, SREBP-1c) [292,293,294,295,296,297,298,299,300,301,302,303,304,305,306].
In recent years, growing evidence has shown that anthocyanidins, particularly cyanidin-3-O-glucoside (C3G), exert beneficial immunometabolic effects through the modulation of insulin signaling, leptin activity, and macrophage polarization. For example, C3G has been reported to activate AMPK, inhibit the NF-κB pathway, and reduce pro-inflammatory cytokine production, thereby promoting the shift in macrophages from the M1 to the M2 phenotype, consistent with anti-inflammatory effects and enhanced insulin sensitivity [307,308,309]. Recent reviews also indicate that anthocyanins regulate leptin signaling by increasing ObR receptor expression and activating the JAK2/STAT3 and PI3K/Akt pathways, which improves leptin sensitivity and reduces insulin resistance [218]. Network-based analyses of bioactive compounds further highlight anthocyanins as critical nodes capable of shifting an obesogenic, pro-inflammatory state toward a healthier phenotype by promoting the recruitment of M2 macrophages in adipose tissue [309,310,311]. Although direct studies on ghrelin remain limited, the energy-rebalancing effects mediated by AMPK activation may indirectly influence ghrelin signaling, as ghrelin interacts with cellular energy pathways that shape macrophage polarization [96,312,313]. This combination of effects, enhanced insulin signaling, normalization of leptin activity, and a macrophage shift toward the M2 phenotype, suggests that anthocyanidins hold considerable therapeutic potential for mitigating chronic inflammation associated with obesity and insulin resistance (Figure 1).
Specific compounds such as cyanidin-3-O-glucoside (C3G) can stimulate GLP-1 secretion from intestinal L cells via PPARβ/δ–β-catenin–TCF-4 signaling, thereby enhancing insulin secretion and improving glycemic control [314,315,316]. C3G has also demonstrated protective effects on pancreatic β-cells against lipotoxic stress by attenuating ER stress and CHOP-mediated apoptosis [317]. Polyphenols act on integrated metabolic and signaling pathways, supporting their candidacy as nutraceutical modulators of glucose and lipid metabolism.
Table 1. Therapeutic effects of anthocyanins in experimental and clinical models.
Table 1. Therapeutic effects of anthocyanins in experimental and clinical models.
AnthocyaninsFood SourceMain Metabolic EffectsMolecular MechanismsEvidence
(In vitro/In vivo/Human)
Cyanidin-3-O-glucoside (C3G)Blueberry, Blackcurrant↑ GLP-1,
↑ Insulin,
↓ Lipotoxicity
PPARβ/δ–β-catenin–TCF-4, ER stress attenuationIn vitro [280,314,317]
In vivo [282,289]
Human [281,284]
DelphinidinBlackcurrant, Elderberry↓ Inflammation,
↑ Antioxidant status
NF-κB inhibition, Nrf2 activationIn vitro [283,303,304,305]
In vivo [283,288,302]
Human [306]
MalvidinBlueberry, Grape↓ Lipogenesis,
↓ Cholesterol
AMPK activation, PPARα/γ modulationIn vitro [301]
In vivo [293,294,301]
Human [292]
PelargonidinStrawberry, Raspberry↓ Postprandial glycaemia,
↓ LDL
NF-κB, LXR modulationIn vitro [296,297]
In vivo [290,291,296,297,298]
Human [254]
PetunidinBlueberry, Purple
star apple
↑ Fat acid oxidation,
↓ TG
AMPK/Nrf2, SREBP-1c inhibitionIn vitro [299,301]
In vivo [300,301]
Human [285,286]
PPARβ/δ—Peroxisome Proliferator-Activated Receptor Beta/Delta; TCF—T-Cell Factor; ER—Estrogen Receptor; NF-κB—Nuclear Factor kappa-Light-Chain-Enhancer of Activated B Cells AMPK—AMP-Activated Protein Kinase; PPARα/γ—Peroxisome Proliferator-Activated Receptor Alpha/Gamma; LXR—Liver X Receptor; LDL—Low-Density Lipoprotein; TG—Triglycerides; AMPK/Nrf2—AMP-Activated Protein Kinase/Nuclear Factor Erythroid 2–Related Factor 2; SREBP-1c—Sterol Regulatory Element-Binding Protein 1c. ↑—Induction; ↓—Repression.

10. Anthocyanins, Microbiota and Gut–Liver Interactions

Anthocyanins influence gut microbial composition and function, promoting SCFA production and favoring genera such as Akkermansia and Parabacteroides while reducing the Firmicutes/Bacteroidetes ratio in some models [276,318,319,320,321,322]. These changes can improve intestinal barrier function, reduce endotoxemia and modulate hepatic metabolism via activation of the Nrf2/Keap1 pathway and SCFA-mediated signaling [323,324].
Microbial biotransformation of flavonoids generates metabolites (e.g., cyanidin derivatives, γ-valerolactones) that contribute to antioxidant and metabolic effects observed in vitro and in vivo [325,326,327,328,329,330]. The bidirectional interaction between flavonoids and microbiota, where polyphenols modulate microbiota composition and microbiota metabolizes polyphenols into bioactive compounds, sustains a beneficial cycle for barrier integrity and host metabolism [331,332,333,334,335,336,337]. Microbiota-mediated metabolism of anthocyanins amplifies their systemic effects and constitutes an important mechanism linking diet to metabolic health.
Although a substantial body of preclinical research supports metabolic benefits of anthocyanins and other phytochemicals, most of the evidence arises from in vitro or animal models. Well-designed human trials are required to determine optimal doses, formulations, safety profiles and bioavailability in clinically relevant populations.
Heterogeneity in food matrices, processing, individual metabolic phenotypes and microbiota composition influences polyphenol bioavailability and response to supplementation. This variability necessitates personalized and integrative approaches when recommending these compounds in clinical practice (Figure 2).

11. Concluding Remarks

Recognized for their anti-inflammatory, antioxidant, and immunomodulatory properties, polyphenols are increasingly recognized for their potential interconnection with the complex dynamics of the gut microbiota in the pathogenesis of various diseases. Furthermore, there is a growing focus on how microbiota can initiate epigenetic adjustments, with polyphenolic compounds potentially holding the key to counteracting these obesity-related epigenetic alterations.
The evidence reviewed here supports a model in which obesity-driven dysregulation of energy balance, gut barrier dysfunction, and chronic low-grade inflammation converge to produce insulin resistance and cardiometabolic disease. Natural compounds, particularly anthocyanins and other polyphenols, exert pleiotropic actions that target inflammation, barrier integrity, microbiota composition, and metabolic signaling pathways. These intricate interactions represent a promising advance in addressing dysbiosis and its associated epigenetic nuances. This area offers potential for innovative nutritional interventions aimed at combating the complex biological effects of obesity.

Author Contributions

Conceptualization, C.C.R., T.W.d.S., Q.C.P. and M.L.R.; data curation, C.C.R., T.W.d.S., Q.C.P. and M.L.R.; writing—original draft preparation, C.C.R., T.W.d.S., Q.C.P. and M.L.R.; writing—review and editing, C.C.R., T.W.d.S., Q.C.P. and M.L.R.; visualization, T.W.d.S. and M.L.R.; supervision, M.L.R. All authors have read and agreed to the published version of the manuscript.

Funding

The APC was funded by Casa Nossa Senhora da Paz, ASF.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 30 March 2024).
  2. Shafiee, A.; Nakhaee, Z.; Bahri, R.A.; Amini, M.J.; Salehi, A.; Jafarabady, K.; Seighali, N.; Rashidian, P.; Fathi, H.; Esmaeilpur Abianeh, F.; et al. Global prevalence of obesity and overweight among medical students: A systematic review and meta-analysis. BMC Public Health 2024, 24, 1673. [Google Scholar] [CrossRef] [PubMed]
  3. Ge, C.; Xiong, J.; Zhu, R.; Hong, Z.; He, Y. The global burden of high BMI among adolescents between 1990 and 2021. Commun. Med. 2025, 5, 125. [Google Scholar] [CrossRef] [PubMed]
  4. Ahmed, S.K.; Mohammed, R.A. Obesity: Prevalence, causes, consequences, management, preventive strategies and future research directions. Metab. Open 2025, 27, 100375. [Google Scholar] [CrossRef] [PubMed]
  5. NCDRF. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
  6. Koliaki, C.; Dalamaga, M.; Liatis, S. Update on the Obesity Epidemic: After the Sudden Rise, Is the Upward Trajectory Beginning to Flatten? Curr. Obes. Rep. 2023, 12, 514–527. [Google Scholar] [CrossRef]
  7. Machado-Rodrigues, A.M.; Padez, C.; Rodrigues, D.; Dos Santos, E.A.; Baptista, L.C.; Liz Martins, M.; Fernandes, H.M. Ultra-processed food consumption and its association with risk of obesity, sedentary behaviors, and well-being in adolescents. Nutrients 2024, 16, 3827. [Google Scholar] [CrossRef]
  8. Vargas-Quesada, R.; Monge-Rojas, R.; Rodríguez-Ramírez, S.; Araneda-Flores, J.; Cacau, L.T.; Cediel, G.; Gaitán-Charry, D.; Pizarro Quevedo, T.; Pinheiro Fernandes, A.C.; Rovirosa, A.; et al. Adherence to the EAT-Lancet Diet Among Urban and Rural Latin American Adolescents: Associations with Micronutrient Intake and Ultra-Processed Food Consumption. Nutrients 2025, 17, 2048. [Google Scholar] [CrossRef]
  9. Babalola, O.O.; Akinnusi, E.; Ottu, P.O.; Bridget, K.; Oyubu, G.; Ajiboye, S.A.; Waheed, S.A.; Collette, A.C.; Adebimpe, H.O.; Nwokafor, C.V.; et al. The impact of ultra-processed foods on cardiovascular diseases and cancer: Epidemiological and mechanistic insights. Asp. Mol. Med. 2025, 5, 100072. [Google Scholar] [CrossRef]
  10. Naeem, M.; Imran, L.; Banatwala, U.E.S.S. Unleashing the power of retatrutide: A possible triumph over obesity and overweight: A correspondence. Health Sci. Rep. 2024, 7, e1864. [Google Scholar] [CrossRef]
  11. NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
  12. Longo, S.; Rizza, S.; Federici, M. Microbiota-gut-brain axis: Relationships among the vagus nerve, gut microbiota, obesity, and diabetes. Acta Diabetol. 2023, 60, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
  13. Rodríguez Núñez, S.; Rubín-García, M.; Martín-Sánchez, V.; Álvarez-Álvarez, L.; Molina, A.J. Mediterranean Diet, Obesity-Related Metabolic Cardiovascular Disorders, and Environmental Sustainability: A Systematic Review. Nutrients 2025, 17, 2005. [Google Scholar] [CrossRef] [PubMed]
  14. Alzamil, H. Elevated Serum TNF-α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance. J. Obes. 2020, 2020, 5076858. [Google Scholar] [CrossRef] [PubMed]
  15. Allen, A.M.; Hicks, S.B.; Mara, K.C.; Larson, J.J.; Therneau, T.M. The risk of incident extrahepatic cancers is higher in non-alcoholic fatty liver disease than obesity—A longitudinal cohort study. J. Hepatol. 2019, 71, 1229–1236. [Google Scholar] [CrossRef]
  16. Kim, S.H.; Park, H.Y.; Lee, H.S.; Jung, K.S.; Lee, M.H.; Jhee, J.H.; Kim, T.H.; Lee, J.E.; Kim, H.J.; Kim, B.S.; et al. Association between non-alcoholic fatty liver disease and coronary calcification depending on sex and obesity. Sci. Rep. 2020, 10, 1025. [Google Scholar] [CrossRef]
  17. Rubin, H. Promotion and selection by serum growth factors drive field cancerization, which is anticipated in vivo by type 2 diabetes and obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 13927–13931. [Google Scholar] [CrossRef]
  18. Hemat Jouy, S.; Mohan, S.; Scichilone, G.; Mostafa, A.; Mahmoud, A.M. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024, 12, 2129. [Google Scholar] [CrossRef]
  19. Harwood, H.J., Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 2012, 63, 57–75. [Google Scholar] [CrossRef]
  20. Rajesh, Y.; Sarkar, D. Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer. Int. J. Mol. Sci. 2021, 22, 2163. [Google Scholar] [CrossRef]
  21. Baker, J.S.; Supriya, R.; Dutheil, F.; Gao, Y. Obesity: Treatments, conceptualizations, and future directions for a growing problem. Biology 2022, 11, 160. [Google Scholar] [CrossRef]
  22. Lasikiewicz, N.; Myrissa, K.; Hoyland, A.; Lawton, C. Psychological benefits of weight loss following behavioural and/or dietary weight loss interventions. A systematic research review. Appetite 2014, 72, 123–137. [Google Scholar] [CrossRef]
  23. Aaseth, J.; Ellefsen, S.; Alehagen, U.; Sundfør, T.M.; Alexander, J. Diets and drugs for weight loss and health in obesity–An update. Biomed. Pharmacother. 2021, 140, 111789. [Google Scholar] [CrossRef]
  24. Carrera-Quintanar, L.; López Roa, R.I.; Quintero-Fabián, S.; Sánchez-Sánchez, M.A.; Vizmanos, B.; Ortuño-Sahagún, D. Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediat. Inflamm. 2018, 2018, 9734845. [Google Scholar] [CrossRef]
  25. Liu, J.; He, Z.; Ma, N.; Chen, Z.Y. Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. J. Agric. Food Chem. 2020, 68, 33–47. [Google Scholar] [CrossRef] [PubMed]
  26. Dingeo, G.; Brito, A.; Samouda, H.; Iddir, M.; La Frano, M.R.; Bohn, T. Phytochemicals as modifiers of gut microbial communities. Food Funct. 2020, 11, 8444–8471. [Google Scholar] [CrossRef] [PubMed]
  27. Panda, S.S.; Nayak, A.; Shah, S.; Aich, P. A Systematic Review on the Association between Obesity and Mood Disorders and the Role of Gut Microbiota. Metabolites 2023, 13, 488. [Google Scholar] [CrossRef] [PubMed]
  28. Farzi, A.; Hassan, A.M.; Zenz, G.; Holzer, P. Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Mol. Asp. Med. 2019, 66, 80–93. [Google Scholar] [CrossRef]
  29. Palau-Rodriguez, M.; Tulipani, S.; Isabel Queipo-Ortuño, M.; Urpi-Sarda, M.; Tinahones, F.J.; Andres-Lacueva, C. Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes. Front. Microbiol. 2015, 6, 1151. [Google Scholar] [CrossRef]
  30. Yi, C.X.; Tschöp, M.H. Brain-gut-adipose-tissue communication pathways at a glance. Dis. Model Mech. 2012, 5, 583–587. [Google Scholar] [CrossRef]
  31. Geurts, L.; Neyrinck, A.M.; Delzenne, N.M.; Knauf, C.; Cani, P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes 2014, 5, 3–17. [Google Scholar] [CrossRef]
  32. Nascimento, J.C.; Matheus, V.A.; Oliveira, R.B.; Tada, S.F.S.; Collares-Buzato, C.B. High-Fat Diet Induces Disruption of the Tight Junction-Mediated Paracellular Barrier in the Proximal Small Intestine Before the Onset of Type 2 Diabetes and Endotoxemia. Dig. Dis. Sci. 2021, 66, 3359–3374. [Google Scholar] [CrossRef] [PubMed]
  33. Bosy-Westphal, A.; Hägele, F.A.; Müller, M.J. What is the impact of energy expenditure on energy intake? Nutrients 2021, 13, 3508. [Google Scholar] [CrossRef] [PubMed]
  34. Bosy-Westphal, A.; Müller, M.J. Diagnosis of obesity based on body composition-associated health risks—Time for a change in paradigm. Obes. Rev. 2021, 22, e13190. [Google Scholar] [CrossRef]
  35. Heymsfield, S.B.; Smith, B.; Dahle, J.; Kennedy, S.; Fearnbach, N.; Thomas, D.M.; Bosy-Westphal, A.; Müller, M.J. Resting energy expenditure: From cellular to whole-body level, a mechanistic historical perspective. Obesity 2021, 29, 500–511. [Google Scholar] [CrossRef]
  36. Christoffersen, B.Ø.; Sanchez-Delgado, G.; John, L.M.; Ryan, D.H.; Raun, K.; Ravussin, E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity 2022, 30, 841–857. [Google Scholar] [CrossRef]
  37. Fernández-Verdejo, R.; Galgani, J. Predictive equations for energy expenditure in adult humans: From resting to free-living conditions. Obesity 2022, 30, 1537–1548. [Google Scholar] [CrossRef]
  38. Johansen, V.B.I.; Petersen, J.; Lund, J.; Mathiesen, C.V.; Fenselau, H.; Clemmensen, C. Brain control of energy homeostasis: Implications for anti-obesity pharmacotherapy. Cell 2025, 188, 4178–4212. [Google Scholar] [CrossRef]
  39. Williams, E.K.; Chang, R.B.; Strochlic, D.E.; Umans, B.D.; Lowell, B.B.; Liberles, S.D. Sensory Neurons that Detect Stretch and Nutrients in the Digestive System. Cell 2016, 166, 209–221. [Google Scholar] [CrossRef]
  40. Sun, X.; Liu, B.; Yuan, Y.; Rong, Y.; Pang, R.; Li, Q. Neural and hormonal mechanisms of appetite regulation during eating. Front. Nutr. 2025, 12, 1484827. [Google Scholar] [CrossRef]
  41. Nowacka, A.; Śniegocki, M.; Ziółkowska, E.A. Vagal Oxytocin Receptors as Molecular Targets in Gut–Brain Signaling: Implications for Appetite, Satiety, Obesity, and Esophageal Motility—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 7812. [Google Scholar] [CrossRef]
  42. Wachsmuth, H.R.; Weninger, S.N.; Duca, F.A. Role of the gut–brain axis in energy and glucose metabolism. Exp. Mol. Med. 2022, 54, 377–392. [Google Scholar] [CrossRef]
  43. Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
  44. Zhang, X.; Yang, J.; Li, Y.; Li, Y.; Li, G. Role of hypothalamus function in metabolic diseases and its potential mechanisms. PeerJ 2025, 13, e19532. [Google Scholar] [CrossRef] [PubMed]
  45. Díaz-Castro, F.; Morselli, E.; Claret, M. Interplay between the brain and adipose tissue: A metabolic conversation. EMBO Rep. 2024, 25, 5277–5293. [Google Scholar] [CrossRef] [PubMed]
  46. Tran, L.T.; Park, S.; Kim, S.K.; Lee, J.S.; Kim, K.W.; Kwon, O. Hypothalamic control of energy expenditure and thermogenesis. Exp. Mol. Med. 2022, 54, 358–369. [Google Scholar] [CrossRef] [PubMed]
  47. Ma, K.; Zhang, Y.; Zhao, J.; Zhou, L.; Li, M. Endoplasmic reticulum stress: Bridging inflammation and obesity-associated adipose tissue. Front. Immunol. 2024, 15, 1381227. [Google Scholar] [CrossRef]
  48. El-Assaad, W.; Joly, E.; Barbeau, A.; Sladek, R.; Buteau, J.; Maestre, I.; Pepin, E.; Zhao, S.; Iglesias, J.; Roche, E.; et al. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 2010, 151, 3061–3073. [Google Scholar] [CrossRef]
  49. Opazo-Ríos, L.; Mas, S.; Marín-Royo, G.; Mezzano, S.; Gómez-Guerrero, C.; Moreno, J.A.; Egido, J. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int. J. Mol. Sci. 2020, 21, 2632. [Google Scholar] [CrossRef]
  50. Dutta, B.; Tripathy, A.; Archana, P.R.; Kamath, S.U. Unraveling the complexities of diet induced obesity and glucolipid dysfunction in metabolic syndrome. Diabetol. Metab. Syndr. 2025, 17, 292. [Google Scholar] [CrossRef]
  51. Olivares-Vicente, M.; Herranz-López, M. The Interplay Between Oxidative Stress and Lipid Composition in Obesity-Induced Inflammation: Antioxidants as Therapeutic Agents in Metabolic Diseases. Int. J. Mol. Sci. 2025, 26, 8544. [Google Scholar] [CrossRef]
  52. Lemos, G.d.O.; Torrinhas, R.S.; Waitzberg, D.L. Nutrients, physical activity, and mitochondrial dysfunction in the setting of metabolic syndrome. Nutrients 2023, 15, 1217. [Google Scholar] [CrossRef]
  53. Sergi, D.; Zauli, E.; Celeghini, C.; Previati, M.; Zauli, G. Ceramides as the molecular link between impaired lipid metabolism, saturated fatty acid intake and insulin resistance: Are all saturated fatty acids to be blamed for ceramide-mediated lipotoxicity? Nutr. Res. Rev. 2024, 38, 256–266. [Google Scholar] [CrossRef]
  54. Ren, L.-P.; Chan, S.M.; Zeng, X.-Y.; Laybutt, D.R.; Iseli, T.J.; Sun, R.-Q.; Kraegen, E.W.; Cooney, G.J.; Turner, N.; Ye, J.-M. Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance. PLoS ONE 2012, 7, e30816. [Google Scholar] [CrossRef]
  55. Spreckley, E.; Murphy, K.G. The L-Cell in Nutritional Sensing and the Regulation of Appetite. Front. Nutr. 2015, 2, 23. [Google Scholar] [CrossRef] [PubMed]
  56. Ricardo-Silgado, M.L.; McRae, A.; Acosta, A. Role of Enteroendocrine Hormones in Appetite and Glycemia. Obes. Med. 2021, 23, 100332. [Google Scholar] [CrossRef]
  57. Baccari, M.C.; Vannucchi, M.G.; Idrizaj, E. The Possible Involvement of Glucagon-like Peptide-2 in the Regulation of Food Intake through the Gut–Brain Axis. Nutrients 2024, 16, 3069. [Google Scholar] [CrossRef] [PubMed]
  58. Adriaenssens, A.E.; Reimann, F.; Gribble, F.M. Distribution and stimulus secretion coupling of enteroendocrine cells along the intestinal tract. Compr. Physiol. 2018, 8, 1603–1638. [Google Scholar] [CrossRef] [PubMed]
  59. Farias, G.; Netto, B.D.M.; Bettini, S.C.; Dâmaso, A.R.; de Freitas, A.C.T. Neuroendocrine regulation of energy balance: Implications on the development and surgical treatment of obesity. Nutr. Health 2017, 23, 131–146. [Google Scholar] [CrossRef]
  60. Holliday, A.; Horner, K.; Johnson, K.O.; Dagbasi, A.; Crabtree, D.R. Appetite-related Gut Hormone Responses to Feeding Across the Life Course. J. Endocr. Soc. 2025, 9, bvae223. [Google Scholar] [CrossRef]
  61. Beumer, J.; Geurts, M.H.; Geurts, V.; Andersson-Rolf, A.; Akkerman, N.; Völlmy, F.; Krueger, D.; Busslinger, G.A.; Martínez-Silgado, A.; Boot, C.; et al. Description and functional validation of human enteroendocrine cell sensors. Science 2024, 386, 341–348. [Google Scholar] [CrossRef]
  62. Lu, V.B.; Gribble, F.M.; Reimann, F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021, 13, 883. [Google Scholar] [CrossRef] [PubMed]
  63. Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 298. [Google Scholar] [CrossRef] [PubMed]
  64. Portincasa, P.; Bonfrate, L.; Khalil, M.; Angelis, M.; Calabrese, F.M.; D’Amato, M.; Wang, D.Q.; Di Ciaula, A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021, 10, 83. [Google Scholar] [CrossRef]
  65. Xue, Y.; Wang, H.; Du, M.; Zhu, M.J. Maternal obesity induces gut inflammation and impairs gut epithelial barrier function in nonobese diabetic mice. J. Nutr. Biochem. 2014, 25, 758–764. [Google Scholar] [CrossRef]
  66. AlMarzooqi, S.K.; Almarzooqi, F.; Sadida, H.Q.; Jerobin, J.; Ahmed, I.; Abou-Samra, A.B.; Fakhro, K.A.; Dhawan, P.; Bhat, A.A.; Al-Shabeeb Akil, A.S. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes. Rev. 2024, 25, e13766. [Google Scholar] [CrossRef]
  67. Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
  68. Smolińska, K.; Hułas-Stasiak, M.; Dobrowolska, K.; Sobczyński, J.; Szopa, A.; Tomaszewska, E.; Muszyński, S.; Smoliński, K.; Dobrowolski, P. Effects of an Innovative High-Fat Diet on Intestinal Structure, Barrier Integrity, and Inflammation in a Zebrafish Model of Visceral Obesity. Int. J. Mol. Sci. 2024, 25, 12723. [Google Scholar] [CrossRef]
  69. Fan, S.; Chen, S.; Lin, L. Research progress of gut microbiota and obesity caused by high-fat diet. Front. Cell. Infect. Microbiol. 2023, 13, 1139800. [Google Scholar] [CrossRef]
  70. Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef]
  71. Stolfi, C.; Maresca, C.; Monteleone, G.; Laudisi, F. Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022, 10, 289. [Google Scholar] [CrossRef]
  72. Ding, S.; Chi, M.M.; Scull, B.P.; Rigby, R.; Schwerbrock, N.M.; Magness, S.; Jobin, C.; Lund, P.K. High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 2010, 5, e12191. [Google Scholar] [CrossRef]
  73. Borges, M.D.; Franca, E.L.; Fujimori, M.; Silva, S.M.C.; de Marchi, P.G.F.; Deluque, A.L.; Honorio-Franca, A.C.; de Abreu, L.C. Relationship between Proinflammatory Cytokines/Chemokines and Adipokines in Serum of Young Adults with Obesity. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 260–267. [Google Scholar] [CrossRef] [PubMed]
  74. Vachliotis, I.D.; Polyzos, S.A. The Intriguing Roles of Cytokines in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review. Curr. Obes. Rep. 2025, 14, 65. [Google Scholar] [CrossRef] [PubMed]
  75. Cybulska, A.M.; Rachubińska, K.; Grochans, E.; Bosiacki, M.; Simińska, D.; Korbecki, J.; Lubkowska, A.; Panczyk, M.; Kuczyńska, M.; Schneider-Matyka, D. Systemic Inflammation Indices, Chemokines, and Metabolic Markers in Perimenopausal Women. Nutrients 2025, 17, 2885. [Google Scholar] [CrossRef] [PubMed]
  76. Pan, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Chemokines in prediabetes and type 2 diabetes: A meta-analysis. Front. Immunol. 2021, 12, 622438. [Google Scholar] [CrossRef]
  77. Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2019, 10, 1607. [Google Scholar] [CrossRef]
  78. Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef]
  79. Ye, J. Mechanisms of insulin resistance in obesity. Front. Med. 2013, 7, 14–24. [Google Scholar] [CrossRef]
  80. Gkrinia, E.M.M.; Belančić, A. The Mechanisms of Chronic Inflammation in Obesity and Potential Therapeutic Strategies: A Narrative Review. Curr. Issues Mol. Biol. 2025, 47, 357. [Google Scholar] [CrossRef]
  81. Khodabandehloo, H.; Gorgani-Firuzjaee, S.; Panahi, G.; Meshkani, R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl. Res. 2016, 167, 228–256. [Google Scholar] [CrossRef]
  82. Mohallem, R.; Aryal, U.K. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci. Rep. 2020, 10, 20878. [Google Scholar] [CrossRef] [PubMed]
  83. Al-Mansoori, L.; Al-Jaber, H.; Prince, M.S.; Elrayess, M.A. Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance. Inflammation 2022, 45, 31–44. [Google Scholar] [CrossRef] [PubMed]
  84. Ragheb, R.; Shanab, G.M.; Medhat, A.M.; Seoudi, D.M.; Adeli, K.; Fantus, I.G. Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: Evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem. Biophys. Res. Commun. 2009, 389, 211–216. [Google Scholar] [CrossRef] [PubMed]
  85. Shimu, S.J.; Mahir, J.U.K.; Shakib, F.A.F.; Ridoy, A.A.; Samir, R.A.; Jahan, N.; Hasan, M.F.; Sazzad, S.; Akter, S.; Mohiuddin, M.S.; et al. Metabolic Reprogramming Through Polyphenol Networks: A Systems Approach to Metabolic Inflammation and Insulin Resistance. Med. Sci. 2025, 13, 180. [Google Scholar] [CrossRef]
  86. Ponce-Lopez, T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood–Brain Barrier Integrity and Glia Activation in Alzheimer’s Disease. Int. J. Mol. Sci. 2025, 26, 4209. [Google Scholar] [CrossRef]
  87. Rehman, K.; Akash, M.S.H. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J. Biomed. Sci. 2016, 23, 87. [Google Scholar] [CrossRef]
  88. Yuan, F.; Zhang, Q.; Dong, H.; Xiang, X.; Zhang, W.; Zhang, Y.; Li, Y. Effects of Des-acyl Ghrelin on Insulin Sensitivity and Macrophage Polarization in Adipose Tissue. J. Transl. Int. Med. 2021, 9, 84–97. [Google Scholar] [CrossRef]
  89. Li, H.; Meng, Y.; He, S.; Tan, X.; Zhang, Y.; Zhang, X.; Wang, L.; Zheng, W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022, 11, 3001. [Google Scholar] [CrossRef]
  90. Kruglov, V.; Jang, I.H.; Camell, C.D. Inflammaging and fatty acid oxidation in monocytes and macrophages. Immunometabolism 2024, 6, e00038. [Google Scholar] [CrossRef]
  91. Pereira, J.A.D.S.; da Silva, F.C.; de Moraes-Vieira, P.M.M. The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective. J. Diabetes Res. 2017, 2017, 4527980. [Google Scholar] [CrossRef]
  92. Monteiro, L.B.; Prodonoff, J.S.; Favero de Aguiar, C.; Correa-da-Silva, F.; Castoldi, A.; Bakker, N.V.T.; Davanzo, G.G.; Castelucci, B.; Pereira, J.A.D.S.; Curtis, J.; et al. Leptin Signaling Suppression in Macrophages Improves Immunometabolic Outcomes in Obesity. Diabetes 2022, 71, 1546–1561. [Google Scholar] [CrossRef] [PubMed]
  93. Monteiro, L.; Pereira, J.A.D.S.; Palhinha, L.; Moraes-Vieira, P.M.M. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J. Leukoc. Biol. 2019, 106, 703–716. [Google Scholar] [CrossRef] [PubMed]
  94. Wang, Y.; Wan, R.; Hu, C. Leptin/obR signaling exacerbates obesity-related neutrophilic airway inflammation through inflammatory M1 macrophages. Mol. Med. 2023, 29, 100. [Google Scholar] [CrossRef] [PubMed]
  95. Xu, L.; Yan, X.; Zhao, Y.; Wang, J.; Liu, B.; Yu, S.; Fu, J.; Liu, Y.; Su, J. Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int. J. Mol. Sci. 2022, 23, 9252. [Google Scholar] [CrossRef]
  96. Cui, Y.; Chen, J.; Zhang, Z.; Shi, H.; Sun, W.; Yi, Q. The role of AMPK in macrophage metabolism, function and polarisation. J. Transl. Med. 2023, 21, 892. [Google Scholar] [CrossRef]
  97. Witcoski Junior, L.; de Lima, J.D.; Somensi, A.G.; de Souza Santos, L.B.; Paschoal, G.L.; Uada, T.S.; Bastos, T.S.B.; de Paula, A.G.P.; Dos Santos Luz, R.B.; Czaikovski, A.P.; et al. Metabolic reprogramming of macrophages in the context of type 2 diabetes. Eur. J. Med. Res. 2024, 29, 497. [Google Scholar] [CrossRef]
  98. Cai, Z.; Huang, Y.; He, B. New Insights into Adipose Tissue Macrophages in Obesity and Insulin Resistance. Cells 2022, 11, 1424. [Google Scholar] [CrossRef]
  99. Galic, S.; Fullerton, M.D.; Schertzer, J.D.; Sikkema, S.; Marcinko, K.; Walkley, C.R.; Izon, D.; Honeyman, J.; Chen, Z.P.; van Denderen, B.J.; et al. Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Investig. 2011, 121, 4903–4915. [Google Scholar] [CrossRef]
  100. Rabe, K.; Lehrke, M.; Parhofer, K.G.; Broedl, U.C. Adipokines and insulin resistance. Mol. Med. 2008, 14, 741–751. [Google Scholar] [CrossRef]
  101. Zhou, Q.; Wang, Y.; Lu, Z.; He, C.; Li, L.; You, M.; Wang, L.; Cao, T.; Zhao, Y.; Li, Q.; et al. Cx43 acts as a mitochondrial calcium regulator that promotes obesity by inducing the polarization of macrophages in adipose tissue. Cell. Signal 2023, 105, 110606. [Google Scholar] [CrossRef]
  102. Choi, C.; Saha, A.; An, S.; Cho, Y.K.; Kim, H.; Noh, M.; Lee, Y.H. Macrophage-Specific Connexin 43 Knockout Protects Mice from Obesity-Induced Inflammation and Metabolic Dysfunction. Front. Cell Dev. Biol. 2022, 10, 925971. [Google Scholar] [CrossRef]
  103. González-Casanova, J.E.; Durán-Agüero, S.; Caro-Fuentes, N.J.; Gamboa-Arancibia, M.E.; Bruna, T.; Bermúdez, V.; Rojas-Gómez, D.M. New Insights on the Role of Connexins and Gap Junctions Channels in Adipose Tissue and Obesity. Int. J. Mol. Sci. 2021, 22, 12145. [Google Scholar] [CrossRef]
  104. Townsend, L.K.; Steinberg, G.R. AMPK and the Endocrine Control of Metabolism. Endocr. Rev. 2023, 44, 910–933. [Google Scholar] [CrossRef]
  105. Kosmas, C.E.; Bousvarou, M.D.; Kostara, C.E.; Papakonstantinou, E.J.; Salamou, E.; Guzman, E. Insulin resistance and cardiovascular disease. J. Int. Med. Res. 2023, 51, 3000605231164548. [Google Scholar] [CrossRef] [PubMed]
  106. Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef] [PubMed]
  107. Mir, M.M.; Jeelani, M.; Alharthi, M.H.; Rizvi, S.F.; Sohail, S.K.; Wani, J.I.; Sabah, Z.U.; BinAfif, W.F.; Nandi, P.; Alshahrani, A.M.; et al. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int. J. Mol. Sci. 2025, 26, 2770. [Google Scholar] [CrossRef] [PubMed]
  108. Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Signal Transduct. Target. Ther. 2024, 9, 262. [Google Scholar] [CrossRef]
  109. Satapathy, P.; Pratima, P.; Gaidhane, A.M.; Vadia, N.; Menon, S.V.; Chennakesavulu, K.; Panigrahi, R.; Shabil, M.; Jena, D.; Kumar, H.; et al. Prevalence and impact of microvascular complications in type 2 diabetes mellitus on cognitive impairment and depression: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2025, 17, 187. [Google Scholar] [CrossRef]
  110. Roy, B. Pathophysiological Mechanisms of Diabetes-Induced Macrovascular and Microvascular Complications: The Role of Oxidative Stress. Med. Sci. 2025, 13, 87. [Google Scholar] [CrossRef]
  111. Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018, 17, 121. [Google Scholar] [CrossRef]
  112. Thi Bui, H.D.; Jing, X.; Lu, R.; Chen, J.; Ngo, V.; Cui, Z.; Liu, Y.; Li, C.; Ma, J. Prevalence of and factors related to microvascular complications in patients with type 2 diabetes mellitus in Tianjin, China: A cross-sectional study. Ann. Transl. Med. 2019, 7, 325. [Google Scholar] [CrossRef]
  113. Nguyen, D.V.; Shaw, L.C.; Grant, M.B. Inflammation in the pathogenesis of microvascular complications in diabetes. Front. Endocrinol. 2012, 3, 170. [Google Scholar] [CrossRef] [PubMed]
  114. Maruhashi, T.; Higashi, Y. Pathophysiological Association between Diabetes Mellitus and Endothelial Dysfunction. Antioxidants 2021, 10, 1306. [Google Scholar] [CrossRef]
  115. Brie, A.D.; Christodorescu, R.M.; Popescu, R.; Adam, O.; Tîrziu, A.; Brie, D.M. Atherosclerosis and Insulin Resistance: Is There a Link Between Them? Biomedicines 2025, 13, 1291. [Google Scholar] [CrossRef] [PubMed]
  116. Horton, W.B.; Love, K.M.; Gregory, J.M.; Liu, Z.; Barrett, E.J. Metabolic and vascular insulin resistance: Partners in the pathogenesis of cardiovascular disease in diabetes. Am. J. Physiol.-Heart Circ. Physiol. 2025, 328, H1218–H1236. [Google Scholar] [CrossRef] [PubMed]
  117. Bornfeldt, K.E.; Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011, 14, 575–585. [Google Scholar] [CrossRef]
  118. Das, D.; Shruthi, N.R.; Banerjee, A.; Jothimani, G.; Duttaroy, A.K.; Pathak, S. Endothelial dysfunction, platelet hyperactivity, hypertension, and the metabolic syndrome: Molecular insights and combating strategies. Front. Nutr. 2023, 10, 1221438. [Google Scholar] [CrossRef]
  119. Romeo, S.; Vidal-Puig, A.; Husain, M.; Ahima, R.; Arca, M.; Bhatt, D.L.; Diehl, A.M.; Fontana, L.; Foo, R.; Frühbeck, G.; et al. Clinical staging to guide management of metabolic disorders and their sequelae: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2025, 46, 3685–3713. [Google Scholar] [CrossRef]
  120. Siripuram, C.; Gunde, A.K.; Hegde, S.V.; Ghetia, K.S.; Kandimalla, R.; Ghetia, K. Exploring Cardiovascular Health: The Role of Dyslipidemia and Inflammation. Cureus 2025, 17, e78818. [Google Scholar] [CrossRef]
  121. El-Hefnawy, K.A.; Elsaid, H.H. Assessment of some inflammatory markers and lipid profile as risk factors for atherosclerosis in subclinical hypothyroid patients. Egypt. J. Intern. Med. 2019, 31, 115–121. [Google Scholar] [CrossRef]
  122. Cesaro, A.; De Michele, G.; Fimiani, F.; Acerbo, V.; Scherillo, G.; Signore, G.; Rotolo, F.P.; Scialla, F.; Raucci, G.; Panico, D.; et al. Visceral adipose tissue and residual cardiovascular risk: A pathological link and new therapeutic options. Front. Cardiovasc. Med. 2023, 10, 1187735. [Google Scholar] [CrossRef] [PubMed]
  123. Dutheil, F.; Gordon, B.A.; Naughton, G.; Crendal, E.; Courteix, D.; Chaplais, E.; Thivel, D.; Lac, G.; Benson, A.C. Cardiovascular risk of adipokines: A review. J. Int. Med. Res. 2018, 46, 2082–2095. [Google Scholar] [CrossRef]
  124. Nakamura, K.; Fuster, J.J.; Walsh, K. Adipokines: A link between obesity and cardiovascular disease. J. Cardiol. 2014, 63, 250–259. [Google Scholar] [CrossRef] [PubMed]
  125. Feijóo-Bandín, S.; Aragón-Herrera, A.; Moraña-Fernández, S.; Anido-Varela, L.; Tarazón, E.; Roselló-Lletí, E.; Portolés, M.; Moscoso, I.; Gualillo, O.; González-Juanatey, J.R.; et al. Adipokines and Inflammation: Focus on Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 7711. [Google Scholar] [CrossRef] [PubMed]
  126. Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef]
  127. Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef]
  128. Mancusi, C.; Izzo, R.; di Gioia, G.; Losi, M.A.; Barbato, E.; Morisco, C. Insulin Resistance the Hinge Between Hypertension and Type 2 Diabetes. High Blood Press. Cardiovasc. Prev. 2020, 27, 515–526. [Google Scholar] [CrossRef]
  129. Zhou, M.S.; Wang, A.; Yu, H. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology? Diabetol. Metab. Syndr. 2014, 6, 12. [Google Scholar] [CrossRef]
  130. Sinha, S.; Haque, M. Insulin Resistance Is Cheerfully Hitched with Hypertension. Life 2022, 12, 564. [Google Scholar] [CrossRef]
  131. Bjornstad, P.; Eckel, R.H. Pathogenesis of Lipid Disorders in Insulin Resistance: A Brief Review. Curr. Diab. Rep. 2018, 18, 127. [Google Scholar] [CrossRef]
  132. Choi, S.H.; Ginsberg, H.N. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol. Metab. 2011, 22, 353–363. [Google Scholar] [CrossRef]
  133. Heeren, J.; Scheja, L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab. 2021, 50, 101238. [Google Scholar] [CrossRef] [PubMed]
  134. Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Postprandial Hyperlipidemia: Its Pathophysiology, Diagnosis, Atherogenesis, and Treatments. Int. J. Mol. Sci. 2023, 24, 13942. [Google Scholar] [CrossRef] [PubMed]
  135. Vergès, B.; Vantyghem, M.-C.; Reznik, Y.; Duvillard, L.; Rouland, A.; Capel, E.; Vigouroux, C. Hypertriglyceridemia Results From an Impaired Catabolism of Triglyceride-Rich Lipoproteins in PLIN1-Related Lipodystrophy. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1873–1883. [Google Scholar] [CrossRef]
  136. Vergès, B. Pathophysiology of diabetic dyslipidaemia: Where are we? Diabetologia 2015, 58, 886–899. [Google Scholar] [CrossRef]
  137. Bays, H.E.; Kirkpatrick, C.F.; Maki, K.C.; Toth, P.P.; Morgan, R.T.; Tondt, J.; Christensen, S.M.; Dixon, D.L.; Jacobson, T.A. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. J. Clin. Lipidol. 2024, 18, e320–e350. [Google Scholar] [CrossRef]
  138. Alcover, S.; Ramos-Regalado, L.; Girón, G.; Muñoz-García, N.; Vilahur, G. HDL-Cholesterol and Triglycerides Dynamics: Essential Players in Metabolic Syndrome. Antioxidants 2025, 14, 434. [Google Scholar] [CrossRef]
  139. Ma, L.; Wang, J.; Ma, L.; Wang, X.M. The link between hyperuricemia and diabetes: Insights from a quantitative analysis of scientific literature. Front. Endocrinol. 2024, 15, 1441503. [Google Scholar] [CrossRef]
  140. Deji-Oloruntoba, O.O.; Balogun, J.O.; Elufioye, T.O.; Ajakwe, S.O. Hyperuricemia and Insulin Resistance: Interplay and Potential for Targeted Therapies. Int. J. Transl. Med. 2025, 5, 30. [Google Scholar] [CrossRef]
  141. Asma Sakalli, A.; Küçükerdem, H.S.; Aygün, O. What is the relationship between serum uric acid level and insulin resistance?: A case-control study. Medicine 2023, 102, e36732. [Google Scholar] [CrossRef]
  142. Han, T.; Lan, L.; Qu, R.; Xu, Q.; Jiang, R.; Na, L.; Sun, C. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension. Hypertension 2017, 70, 703–711. [Google Scholar] [CrossRef]
  143. Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef]
  144. Chen, Y.W.; Ahn, I.S.; Wang, S.S.; Majid, S.; Diamante, G.; Cely, I.; Zhang, G.; Cabanayan, A.; Komzyuk, S.; Bonnett, J.; et al. Multitissue single-cell analysis reveals differential cellular and molecular sensitivity between fructose and high-fat high-sucrose diets. Cell Rep. 2025, 44, 115690. [Google Scholar] [CrossRef]
  145. Liu, R.; Li, Z.; Zhang, Y.; Du, M.; Wang, X.; Zhang, S.; Li, C. Association of serum uric acid with indices of insulin resistance: Proposal of a new model with reference to gender differences. Diabetes Metab. Syndr. Obes. 2024, 17, 3783–3793. [Google Scholar] [CrossRef] [PubMed]
  146. Hu, X.; Rong, S.; Wang, Q.; Sun, T.; Bao, W.; Chen, L.; Liu, L. Association between plasma uric acid and insulin resistance in type 2 diabetes: A Mendelian randomization analysis. Diabetes Res. Clin. Pract. 2021, 171, 108542. [Google Scholar] [CrossRef] [PubMed]
  147. Armandi, A.; Rosso, C.; Caviglia, G.P.; Bugianesi, E. Insulin Resistance across the Spectrum of Nonalcoholic Fatty Liver Disease. Metabolites 2021, 11, 155. [Google Scholar] [CrossRef] [PubMed]
  148. Grander, C.; Grabherr, F.; Tilg, H. Non-alcoholic fatty liver disease: Pathophysiological concepts and treatment options. Cardiovasc. Res. 2023, 119, 1787–1798. [Google Scholar] [CrossRef]
  149. Bansal, S.; Vachher, M.; Arora, T.; Kumar, B.; Burman, A. Visceral fat: A key mediator of NAFLD development and progression. Hum. Nutr. Metab. 2023, 33, 200210. [Google Scholar] [CrossRef]
  150. Peiseler, M.; Schwabe, R.; Hampe, J.; Kubes, P.; Heikenwaelder, M.; Tacke, F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease–novel insights into cellular communication circuits. J. Hepatol. 2022, 77, 1136–1160. [Google Scholar] [CrossRef]
  151. Wal, P.; Yadav, S.; Jha, S.K.; Singh, A.; Bhargavi, B.; Shivaram, R.; Imran, M.; Aziz, N. Role of natural compounds in non-alcoholic fatty liver diseases (NAFLD): A mechanistic approach. Egypt. Liver J. 2025, 15, 50. [Google Scholar] [CrossRef]
  152. Solomon, A.; Negrea, M.O.; Cipăian, C.R.; Boicean, A.; Mihaila, R.; Rezi, C.; Cristinescu, B.A.; Berghea-Neamtu, C.S.; Popa, M.L.; Teodoru, M.; et al. Interactions between Metabolic Syndrome, MASLD, and Arterial Stiffening: A Single-Center Cross-Sectional Study. Healthcare 2023, 11, 2696. [Google Scholar] [CrossRef]
  153. Pecani, M.; Andreozzi, P.; Cangemi, R.; Corica, B.; Miglionico, M.; Romiti, G.F.; Stefanini, L.; Raparelli, V.; Basili, S. Metabolic Syndrome and Liver Disease: Re-Appraisal of Screening, Diagnosis, and Treatment Through the Paradigm Shift from NAFLD to MASLD. J. Clin. Med. 2025, 14, 2750. [Google Scholar] [CrossRef]
  154. Stefan, N.; Yki-Järvinen, H.; Neuschwander-Tetri, B.A. Metabolic dysfunction-associated steatotic liver disease: Heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol. 2025, 13, 134–148. [Google Scholar] [CrossRef]
  155. Tacke, F.; Horn, P.; Wai-Sun Wong, V.; Ratziu, V.; Bugianesi, E.; Francque, S.; Zelber-Sagi, S.; Valenti, L.; Roden, M.; Schick, F.; et al. EASL–EASD–EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
  156. Obeidat, A.A.; Ahmad, M.N.; Ghabashi, M.A.; Alazzeh, A.Y.; Habib, S.M.; Abu Al-Haijaa, D.; Azzeh, F.S. Developmental Trends of Metabolic Syndrome in the Past Two Decades: A Narrative Review. J. Clin. Med. 2025, 14, 2402. [Google Scholar] [CrossRef]
  157. Godoy-Matos, A.F.; Valério, C.M.; Júnior, W.S.S.; de Araujo-Neto, J.M.; Sposito, A.C.; Suassuna, J.H.R. CARDIAL-MS (CArdio-Renal-DIAbetes-Liver-Metabolic Syndrome): A new proposition for an integrated multisystem metabolic disease. Diabetol. Metab. Syndr. 2025, 17, 218. [Google Scholar] [CrossRef]
  158. Özyüncü, N.; Erol, Ç. From Metabolic Syndrome to Cardiovascular–Kidney–Metabolic Syndrome and Systemic Metabolic Disorder: A Call to Recognize the Progressive Multisystemic Dysfunction. Anatol. J. Cardiol. 2025, 29, 384–393. [Google Scholar] [CrossRef]
  159. Riedel, S.; Pheiffer, C.; Johnson, R.; Louw, J.; Muller, C.J.F. Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Front. Endocrinol. 2021, 12, 833544. [Google Scholar] [CrossRef] [PubMed]
  160. Cebi, M.; Yilmaz, Y. Epithelial barrier hypothesis in the context of nutrition, microbial dysbiosis, and immune dysregulation in metabolic dysfunction-associated steatotic liver. Front. Immunol. 2025, 16, 1575770. [Google Scholar] [CrossRef] [PubMed]
  161. Rondinella, D.; Raoul, P.C.; Valeriani, E.; Venturini, I.; Cintoni, M.; Severino, A.; Galli, F.S.; Mora, V.; Mele, M.C.; Cammarota, G.; et al. The Detrimental Impact of Ultra-Processed Foods on the Human Gut Microbiome and Gut Barrier. Nutrients 2025, 17, 859. [Google Scholar] [CrossRef]
  162. Jyoti; Dey, P. Mechanisms and implications of the gut microbial modulation of intestinal metabolic processes. npj Metab. Health Dis. 2025, 3, 24. [Google Scholar] [CrossRef]
  163. Sharma, L.; Riva, A. Intestinal Barrier Function in Health and Disease—Any Role of SARS-CoV-2? Microorganisms 2020, 8, 1744. [Google Scholar] [CrossRef]
  164. Cifarelli, V.; Peche, V.S.; Abumrad, N.A. Vascular and lymphatic regulation of gastrointestinal function and disease risk. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2022, 1867, 159207. [Google Scholar] [CrossRef]
  165. Zhang, Y.; Zhu, X.; Yu, X.; Novák, P.; Gui, Q.; Yin, K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front. Nutr. 2023, 10, 1120168. [Google Scholar] [CrossRef] [PubMed]
  166. Ghosh, S.S.; Ghosh, S. Intestinal Barrier Function—A Novel Target to modulate Diet-induced Metabolic Diseases. Arch. Gastroenterol. Res. 2020, 1, 61–65. [Google Scholar]
  167. Seo, K.; Seo, J.; Yeun, J.; Choi, H.; Kim, Y.I.; Chang, S.Y. The role of mucosal barriers in human gut health. Arch. Pharm. Res. 2021, 44, 325–341. [Google Scholar] [CrossRef]
  168. Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
  169. Shemtov, S.J.; Emani, R.; Bielska, O.; Covarrubias, A.J.; Verdin, E.; Andersen, J.K.; Winer, D.A. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J. 2023, 290, 4163–4186. [Google Scholar] [CrossRef]
  170. Ghosh, S.S.; Wang, J.; Yannie, P.J.; Ghosh, S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J. Endocr. Soc. 2020, 4, bvz039. [Google Scholar] [CrossRef]
  171. Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal Barrier in Human Health and Disease. Int. J. Environ. Res. Public Health 2021, 18, 12836. [Google Scholar] [CrossRef]
  172. Rohr, M.W.; Narasimhulu, C.A.; Rudeski-Rohr, T.A.; Parthasarathy, S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv. Nutr. 2020, 11, 77–91. [Google Scholar] [CrossRef] [PubMed]
  173. English, J.; Connolly, L.; Stewart, L.D. Increased Intestinal Permeability: An Avenue for the Development of Autoimmune Disease? Expo. Health 2024, 16, 575–605. [Google Scholar] [CrossRef]
  174. Dmytriv, T.R.; Storey, K.B.; Lushchak, V.I. Intestinal barrier permeability: The influence of gut microbiota, nutrition, and exercise. Front. Physiol. 2024, 15, 1380713. [Google Scholar] [CrossRef] [PubMed]
  175. Hollander, D.; Kaunitz, J.D. The “Leaky Gut”: Tight Junctions but Loose Associations? Dig. Dis. Sci. 2020, 65, 1277–1287. [Google Scholar] [CrossRef]
  176. Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front. Immunol. 2020, 11, 571731. [Google Scholar] [CrossRef]
  177. Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef]
  178. Peña-Durán, E.; García-Galindo, J.J.; López-Murillo, L.D.; Huerta-Huerta, A.; Balleza-Alejandri, L.R.; Beltrán-Ramírez, A.; Anaya-Ambriz, E.J.; Suárez-Rico, D.O. Microbiota and Inflammatory Markers: A Review of Their Interplay, Clinical Implications, and Metabolic Disorders. Int. J. Mol. Sci. 2025, 26, 1773. [Google Scholar] [CrossRef]
  179. Acciarino, A.; Diwakarla, S.; Handreck, J.; Bergola, C.; Sahakian, L.; McQuade, R.M. The role of the gastrointestinal barrier in obesity-associated systemic inflammation. Obes. Rev. 2024, 25, e13673. [Google Scholar] [CrossRef]
  180. Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
  181. Pelc, A.; Fic, W.; Typrowicz, T.; Polak-Szczybyło, E. Physiological Mechanisms of and Therapeutic Approaches to the Gut Microbiome and Low-Grade Inflammation in Obesity. Curr. Issues Mol. Biol. 2025, 47, 637. [Google Scholar] [CrossRef]
  182. Portincasa, P.; Khalil, M.; Graziani, A.; Frühbeck, G.; Baffy, G.; Garruti, G.; Di Ciaula, A.; Bonfrate, L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur. J. Intern. Med. 2024, 119, 13–30. [Google Scholar] [CrossRef]
  183. Patloka, O.; Komprda, T.; Franke, G. Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity. Nutrients 2024, 16, 3996. [Google Scholar] [CrossRef]
  184. Chakaroun, R.M.; Massier, L.; Kovacs, P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020, 12, 1082. [Google Scholar] [CrossRef]
  185. Brown, H.N.; Barber, T.; Renshaw, D.; Farnaud, S.; Oduro-Donkor, D.; Turner, M.C. Associations between the gut microbiome and metabolic, inflammatory, and appetitive effects of sleeve gastrectomy. Obes. Rev. 2023, 24, e13600. [Google Scholar] [CrossRef]
  186. Yang, W.; Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell. Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef]
  187. Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef] [PubMed]
  188. Zhang, H.; Yang Lee, B.J.; Wang, T.; Xiang, X.; Tan, Y.; Han, Y.; Bi, Y.; Zhi, F.; Wang, X.; He, F.; et al. Microbiota, chronic inflammation, and health: The promise of inflammatome and inflammatomics for precision medicine and health care. hLife 2025, 3, 307–326. [Google Scholar] [CrossRef]
  189. Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef] [PubMed]
  190. Pi, Y.; Fang, M.; Li, Y.; Cai, L.; Han, R.; Sun, W.; Jiang, X.; Chen, L.; Du, J.; Zhu, Z.; et al. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024, 16, 2838. [Google Scholar] [CrossRef]
  191. Michaels, M.; Madsen, K.L. Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunol. 2023, 16, 72–85. [Google Scholar] [CrossRef]
  192. Guo, H.; Tang, X.; He, X.; Weng, Y.; Zhang, Q.; Fang, Q.; Zhang, L. A Comprehensive Review of the Role of the Microbiota–Gut–Brain Axis via Neuroinflammation: Advances and Therapeutic Implications for Ischemic Stroke. Biomolecules 2025, 15, 920. [Google Scholar] [CrossRef]
  193. Zhang, Z.; Tang, H.; Chen, P.; Xie, H.; Tao, Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct. Target. Ther. 2019, 4, 41. [Google Scholar] [CrossRef]
  194. Vargas, A.; Robinson, B.L.; Houston, K.; Sangay, A.R.V.; Saadeh, M.; D’Souza, S.; Johnson, D.A. Gut microbiota-derived metabolites and chronic inflammatory diseases. Explor. Med. 2025, 6, 1001275. [Google Scholar] [CrossRef]
  195. Gasaly, N.; De Vos, P.; Hermoso, M.A. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Front. Immunol. 2021, 12, 658354. [Google Scholar] [CrossRef]
  196. Kim, K.-A.; Gu, W.; Lee, I.-A.; Joh, E.-H.; Kim, D.-H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 2012, 7, e47713. [Google Scholar] [CrossRef] [PubMed]
  197. Mohammad, S.; Thiemermann, C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Front. Immunol. 2020, 11, 594150. [Google Scholar] [CrossRef] [PubMed]
  198. Islam, M.R.; Arthur, S.; Haynes, J.; Butts, M.R.; Nepal, N.; Sundaram, U. The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients 2022, 14, 624. [Google Scholar] [CrossRef]
  199. Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef]
  200. De Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef]
  201. Cani, P.D.; Van Hul, M. Gut microbiota in overweight and obesity: Crosstalk with adipose tissue. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 164–183. [Google Scholar] [CrossRef]
  202. Kim, Y.-T.; Mills, D.A. Exploring the gut microbiome: Probiotics, prebiotics, synbiotics, and postbiotics as key players in human health and disease improvement. Food Sci. Biotechnol. 2024, 33, 2065–2080. [Google Scholar] [CrossRef] [PubMed]
  203. Chen, K.; Wang, H.; Yang, X.; Tang, C.; Hu, G.; Gao, Z. Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier. Pharmacol. Res. 2024, 210, 107483. [Google Scholar] [CrossRef] [PubMed]
  204. Yadav, M.K.; Kumari, I.; Singh, B.; Sharma, K.K.; Tiwari, S.K. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl. Microbiol. Biotechnol. 2022, 106, 505–521. [Google Scholar] [CrossRef] [PubMed]
  205. Jiménez-González, C.; Alonso-Peña, M.; Argos Vélez, P.; Crespo, J.; Iruzubieta, P. Unraveling MASLD: The Role of Gut Microbiota, Dietary Modulation, and AI-Driven Lifestyle Interventions. Nutrients 2025, 17, 1580. [Google Scholar] [CrossRef]
  206. Rondanelli, M.; Borromeo, S.; Cavioni, A.; Gasparri, C.; Gattone, I.; Genovese, E.; Lazzarotti, A.; Minonne, L.; Moroni, A.; Patelli, Z.; et al. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025, 15, 127. [Google Scholar] [CrossRef]
  207. Xu, Q.; Wang, W.; Li, Y.; Cui, J.; Zhu, M.; Liu, Y.; Liu, Y. The oral-gut microbiota axis: A link in cardiometabolic diseases. npj Biofilms Microbiomes 2025, 11, 11. [Google Scholar] [CrossRef]
  208. Meiners, F.; Fuellen, G.; Barrantes, I. Gut microbiome-mediated health effects of fiber and polyphenol-rich dietary interventions. Front. Nutr. 2025, 12, 1647740. [Google Scholar] [CrossRef]
  209. Lange, O.; Proczko-Stepaniak, M.; Mika, A. Short-Chain Fatty Acids-A Product of the Microbiome and Its Participation in Two-Way Communication on the Microbiome-Host Mammal Line. Curr. Obes. Rep. 2023, 12, 108–126. [Google Scholar] [CrossRef]
  210. Gill, P.A.; Inniss, S.; Kumagai, T.; Rahman, F.Z.; Smith, A.M. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front. Immunol. 2022, 13, 866059. [Google Scholar] [CrossRef]
  211. Münte, E.; Hartmann, P. The Role of Short-Chain Fatty Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease and Other Metabolic Diseases. Biomolecules 2025, 15, 469. [Google Scholar] [CrossRef]
  212. Tan, J.K.; Macia, L.; Mackay, C.R. Dietary fiber and SCFAs in the regulation of mucosal immunity. J. Allergy Clin. Immunol. 2023, 151, 361–370. [Google Scholar] [CrossRef] [PubMed]
  213. García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota–Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef] [PubMed]
  214. Zhang, D.; Jian, Y.-P.; Zhang, Y.-N.; Li, Y.; Gu, L.-T.; Sun, H.-H.; Liu, M.-D.; Zhou, H.-L.; Wang, Y.-S.; Xu, Z.-X. Short-chain fatty acids in diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef]
  215. Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef] [PubMed]
  216. He, L.; Su, Z.; Wang, S. The anti-obesity effects of polyphenols: A comprehensive review of molecular mechanisms and signal pathways in regulating adipocytes. Front. Nutr. 2024, 11, 1393575. [Google Scholar] [CrossRef]
  217. Deledda, A.; Annunziata, G.; Tenore, G.C.; Palmas, V.; Manzin, A.; Velluzzi, F. Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants 2021, 10, 708. [Google Scholar] [CrossRef]
  218. Randeni, N.; Luo, J.; Xu, B. Critical Review on Anti-Obesity Effects of Anthocyanins Through PI3K/Akt Signaling Pathways. Nutrients 2025, 17, 1126. [Google Scholar] [CrossRef]
  219. Bian, Y.; Lei, J.; Zhong, J.; Wang, B.; Wan, Y.; Li, J.; Liao, C.; He, Y.; Liu, Z.; Ito, K. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J. Nutr. Biochem. 2022, 99, 108840. [Google Scholar] [CrossRef]
  220. Barros, J.; Abraão, A.; Gouvinhas, I.; Granato, D.; Barros, A.N. Advances in Leaf Plant Bioactive Compounds: Modulation of Chronic Inflammation Related to Obesity. Int. J. Mol. Sci. 2025, 26, 3358. [Google Scholar] [CrossRef]
  221. Gil-Cardoso, K.; Ginés, I.; Pinent, M.; Ardévol, A.; Blay, M.; Terra, X. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr. Res. Rev. 2016, 29, 234–248. [Google Scholar] [CrossRef]
  222. Mahboob, A.; Samuel, S.M.; Mohamed, A.; Wani, M.Y.; Ghorbel, S.; Miled, N.; Büsselberg, D.; Chaari, A. Role of flavonoids in controlling obesity: Molecular targets and mechanisms. Front. Nutr. 2023, 10, 1177897. [Google Scholar] [CrossRef]
  223. Peng, J.; Li, H.; Olaolu, O.A.; Ibrahim, S.; Ibrahim, S.; Wang, S. Natural Products: A Dependable Source of Therapeutic Alternatives for Inflammatory Bowel Disease through Regulation of Tight Junctions. Molecules 2023, 28, 6293. [Google Scholar] [CrossRef] [PubMed]
  224. Zhang, H.X.; Li, Y.Y.; Liu, Z.J.; Wang, J.F. Quercetin effectively improves LPS-induced intestinal inflammation, pyroptosis, and disruption of the barrier function through the TLR4/NF-κB/NLRP3 signaling pathway in vivo and in vitro. Food Nutr. Res. 2022, 66, 10-29219. [Google Scholar] [CrossRef] [PubMed]
  225. Luo, Y.; Li, Y.; Shi, C.; Min, S.; Li, B.; Lu, Y.; Cao, B.; Su, H.; He, Y. Recent advances in flavonoids benefiting intestinal homeostasis. Trends Food Sci. Technol. 2025, 165, 105311. [Google Scholar] [CrossRef]
  226. Martins-Gomes, C.; Nunes, F.M.; Silva, A.M. Natural Products as Dietary Agents for the Prevention and Mitigation of Oxidative Damage and Inflammation in the Intestinal Barrier. Antioxidants 2024, 13, 65. [Google Scholar] [CrossRef]
  227. Coutinho-Wolino, K.S.; Almeida, P.P.; Mafra, D.; Stockler-Pinto, M.B. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: Pathways involved and future perspectives. Nutr. Res. 2022, 107, 96–116. [Google Scholar] [CrossRef]
  228. Neurath, M.F.; Artis, D.; Becker, C. The intestinal barrier: A pivotal role in health, inflammation, and cancer. Lancet Gastroenterol. Hepatol. 2025, 10, 573–592. [Google Scholar] [CrossRef]
  229. Zhao, Z.; Liu, X.; Zhang, R.; Ke, R.; Zhang, S.; Chen, Y. Intestinal Barrier in Inflammatory Bowel Disease: Mechanisms and Treatment. J. Transl. Gastroenterol. 2025, 3, 62–73. [Google Scholar] [CrossRef]
  230. Guo, F.; Zhang, S. Chinese Medicine-Derived Natural Compounds and Intestinal Regeneration: Mechanisms and Experimental Evidence. Biomolecules 2025, 15, 1212. [Google Scholar] [CrossRef]
  231. Zhu, P.; Wu, Y.; Sun, Y.; Yan, Y.; Wang, Y.; Yu, Y.; Yang, J.; Wang, Y.; Guo, Z.; Wang, S.; et al. SAA1 Promotes Ulcerative Colitis and Activating Colonic TLR4/NF-κB/NLRP3 Signaling Pathway. Inflammation 2025, 1–14. [Google Scholar] [CrossRef]
  232. Zhuang, S.; Zhong, J.; Zhou, Q.; Zhong, Y.; Liu, P.; Liu, Z. Rhein protects against barrier disruption and inhibits inflammation in intestinal epithelial cells. Int. Immunopharmacol. 2019, 71, 321–327. [Google Scholar] [CrossRef]
  233. Lu, S.; Xu, Y.; Zhang, H.; Liu, Z.; Xu, J.; Zheng, B.; Shi, D.; Qiu, F. Glycyrol Relieves Ulcerative Colitis by Promoting the Fusion of ZO-1 with the Cell Membrane through the Enteric Glial Cells GDNF/RET Pathway. J. Agric. Food Chem. 2024, 72, 14653–14662. [Google Scholar] [CrossRef]
  234. Nakadate, K.; Ito, N.; Kawakami, K.; Yamazaki, N. Anti-Inflammatory Actions of Plant-Derived Compounds and Prevention of Chronic Diseases: From Molecular Mechanisms to Applications. Int. J. Mol. Sci. 2025, 26, 5206. [Google Scholar] [CrossRef]
  235. Askarizadeh, F.; Karav, S.; Sahebkar, A. Phytochemicals as Modulators of NETosis: A Comprehensive Review on Their Mechanisms and Therapeutic Potential. Phytother. Res. 2025, 39, 3545–3577. [Google Scholar] [CrossRef]
  236. Yadav, V.; C, M.; Kumarasamy, M. Natural products as potential modulators of pro-inflammatory cytokines signalling in Alzheimer’s disease. Brain Behav. Immun. Integr. 2024, 5, 100048. [Google Scholar] [CrossRef]
  237. Hsu, Y.; Yang, J.; Cao, M.; Xu, T.; He, J.; Hong, H.; Jiang, L.; Peng, S.; Xiong, P. Advancements in nasal drug delivery system of natural products. Front. Pharmacol. 2025, 16, 1667517. [Google Scholar] [CrossRef] [PubMed]
  238. Li, X.; Li, S.; Li, N. Research Progress on Natural Products Alleviating Liver Inflammation and Fibrosis via NF-κB Pathway. Chem. Biodivers. 2025, 22, e202402248. [Google Scholar] [CrossRef] [PubMed]
  239. Mahomoodally, M.F.; Aumeeruddy, M.Z.; Legoabe, L.J.; Dall’Acqua, S.; Zengin, G. Plants’ bioactive secondary metabolites in the management of sepsis: Recent findings on their mechanism of action. Front. Pharmacol. 2022, 13, 1046523. [Google Scholar] [CrossRef]
  240. Wu, Z.; Chen, J.; Luo, W.; Kuang, T. Natural products for intervertebral disc degeneration: Mechanistic insights and therapeutic potentials. Front. Pharmacol. 2025, 16, 1605764. [Google Scholar] [CrossRef]
  241. Merecz-Sadowska, A.; Sitarek, P.; Śliwiński, T.; Zajdel, R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int. J. Mol. Sci. 2020, 21, 9605. [Google Scholar] [CrossRef]
  242. Huang, Z.; Zhao, Y.; Yang, W.; Duan, C.; Sheng, J.; Tian, Y.; Peng, L.; Gao, X. Amomum tsaoko flavonoids attenuate ulcerative colitis by inhibiting TLR4/NF-κB/NLRP3 signaling pathway and modulating gut microbiota in mice. Front. Microbiol. 2025, 16, 1557778. [Google Scholar] [CrossRef] [PubMed]
  243. Zhang, F.; Ma, N.; Gao, Y.F.; Sun, L.L.; Zhang, J.G. Therapeutic effects of 6-gingerol, 8-gingerol, and 10-gingerol on dextran sulfate sodium-induced acute ulcerative colitis in rats. Phytother. Res. 2017, 31, 1427–1432. [Google Scholar] [CrossRef]
  244. Kim, H.-R.; Noh, E.-M.; Kim, S.-Y. Anti-inflammatory effect and signaling mechanism of 8-shogaol and 10-shogaol in a dextran sodium sulfate-induced colitis mouse model. Heliyon 2023, 9, e12778. [Google Scholar] [CrossRef] [PubMed]
  245. Kim, M.S.; Kim, J.Y. Ginger attenuates inflammation in a mouse model of dextran sulfate sodium-induced colitis. Food Sci. Biotechnol. 2018, 27, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
  246. Ayvaz, H.; Cabaroglu, T.; Akyildiz, A.; Pala, C.U.; Temizkan, R.; Ağçam, E.; Ayvaz, Z.; Durazzo, A.; Lucarini, M.; Direito, R.; et al. Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants 2022, 12, 48. [Google Scholar] [CrossRef]
  247. Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
  248. Zang, Z.; Tang, S.; Li, Z.; Chou, S.; Shu, C.; Chen, Y.; Chen, W.; Yang, S.; Yang, Y.; Tian, J.; et al. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4378–4401. [Google Scholar] [CrossRef]
  249. Kamiloglu, S.; Capanoglu, E.; Grootaert, C.; Van Camp, J. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. Int. J. Mol. Sci. 2015, 16, 21555–21574. [Google Scholar] [CrossRef]
  250. Xu, L.; Tian, Z.; Chen, H.; Zhao, Y.; Yang, Y. Anthocyanins, Anthocyanin-Rich Berries, and Cardiovascular Risks: Systematic Review and Meta-Analysis of 44 Randomized Controlled Trials and 15 Prospective Cohort Studies. Front. Nutr. 2021, 8, 747884. [Google Scholar] [CrossRef]
  251. Jang, H.H.; Hwang, I.G.; Lee, Y.M. Effects of anthocyanin supplementation on blood lipid levels: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1207751. [Google Scholar] [CrossRef]
  252. Pan, J.; Liang, J.; Xue, Z.; Meng, X.; Jia, L. Effect of dietary anthocyanins on the risk factors related to metabolic syndrome: A systematic review and meta-analysis. PLoS ONE 2025, 20, e0315504. [Google Scholar] [CrossRef] [PubMed]
  253. Yan, Y.; Li, J. Association of dietary anthocyanidins intake with all-cause mortality and cardiovascular diseases mortality in USA adults: A prospective cohort study. Sci. Rep. 2024, 14, 26595. [Google Scholar] [CrossRef] [PubMed]
  254. Yang, L.; Ling, W.; Du, Z.; Chen, Y.; Li, D.; Deng, S.; Liu, Z. Effects of Anthocyanins on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2017, 8, 684–693. [Google Scholar] [CrossRef] [PubMed]
  255. Eker, M.E.; Aaby, K.; Budic-Leto, I.; Brnčić, S.R.; El, S.N.; Karakaya, S.; Simsek, S.; Manach, C.; Wiczkowski, W.; Pascual-Teresa, S. A Review of Factors Affecting Anthocyanin Bioavailability: Possible Implications for the Inter-Individual Variability. Foods 2019, 9, 2. [Google Scholar] [CrossRef]
  256. de Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The pharmacokinetics of anthocyanins and their metabolites in humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [Google Scholar] [CrossRef]
  257. Fang, J. Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: Extensive presystemic metabolism reduces apparent bioavailability. J. Agric. Food Chem. 2014, 62, 3904–3911. [Google Scholar] [CrossRef]
  258. Speciale, A.; Cimino, F.; Saija, A.; Canali, R.; Virgili, F. Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes Nutr. 2014, 9, 404. [Google Scholar] [CrossRef]
  259. Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.; Lamaison, J.L.; Rémésy, C. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J. Agric. Food Chem. 2005, 53, 3902–3908. [Google Scholar] [CrossRef]
  260. Kalt, W. Anthocyanins and Their C. Molecules 2019, 24, 4024. [Google Scholar] [CrossRef]
  261. Kalt, W.; Blumberg, J.B.; McDonald, J.E.; Vinqvist-Tymchuk, M.R.; Fillmore, S.A.; Graf, B.A.; O’Leary, J.M.; Milbury, P.E. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J. Agric. Food Chem. 2008, 56, 705–712. [Google Scholar] [CrossRef]
  262. Ichiyanagi, T.; Shida, Y.; Rahman, M.M.; Hatano, Y.; Konishi, T. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. J. Agric. Food Chem. 2006, 54, 6578–6587. [Google Scholar] [CrossRef]
  263. Kiyimba, T.; Yiga, P.; Bamuwamye, M.; Ogwok, P.; Van der Schueren, B.; Matthys, C. Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 270–282. [Google Scholar] [CrossRef]
  264. Pinto, A.M.; Hobden, M.R.; Brown, K.D.; Farrimond, J.; Targett, D.; Corpe, C.P.; Ellis, P.R.; Todorova, Y.; Socha, K.; Bahsoon, S.; et al. Acute effects of drinks containing blackcurrant and citrus (poly)phenols and dietary fibre on postprandial glycaemia, gut hormones, cognitive function and appetite in healthy adults: Two randomised controlled trials. Food Funct. 2023, 14, 10163–10176. [Google Scholar] [CrossRef]
  265. Favari, C.; Rinaldi de Alvarenga, J.F.; Sánchez-Martínez, L.; Tosi, N.; Mignogna, C.; Cremonini, E.; Manach, C.; Bresciani, L.; Del Rio, D.; Mena, P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol. 2024, 71, 103095. [Google Scholar] [CrossRef] [PubMed]
  266. Vitali Čepo, D.; Radić, K.; Turčić, P.; Anić, D.; Komar, B.; Šalov, M. Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020, 9, 1831. [Google Scholar] [CrossRef] [PubMed]
  267. Verediano, T.A.; Stampini Duarte Martino, H.; Dias Paes, M.C.; Tako, E. Effects of Anthocyanin on Intestinal Health: A Systematic Review. Nutrients 2021, 13, 1331. [Google Scholar] [CrossRef] [PubMed]
  268. Igwe, E.O.; Charlton, K.E.; Probst, Y.C.; Kent, K.; Netzel, M.E. A systematic literature review of the effect of anthocyanins on gut microbiota populations. J. Hum. Nutr. Diet. 2019, 32, 53–62. [Google Scholar] [CrossRef]
  269. Xu, L.; Tang, Z.; Herrera-Balandrano, D.D.; Qiu, Z.; Li, B.; Yang, Y.; Huang, W. In vitro fermentation characteristics of blueberry anthocyanins and their impacts on gut microbiota from obese human. Food Res. Int. 2024, 176, 113761. [Google Scholar] [CrossRef]
  270. Shehata, E.; Day-Walsh, P.; Kellingray, L.; Narbad, A.; Kroon, P.A. Spontaneous and Microbiota-Driven Degradation of Anthocyanins in an In Vitro Human Colon Model. Mol. Nutr. Food. Res. 2023, 67, e2300036. [Google Scholar] [CrossRef]
  271. Duan, X.; Zhang, L.; Liao, Y.; Lin, Z.; Guo, C.; Luo, S.; Wang, F.; Zou, Z.; Zeng, Z.; Chen, C.; et al. Semaglutide alleviates gut microbiota dysbiosis induced by a high-fat diet. Eur. J. Pharmacol. 2024, 969, 176440. [Google Scholar] [CrossRef]
  272. Hu, W.; Gong, W.; Yang, F.; Cheng, R.; Zhang, G.; Gan, L.; Zhu, Y.; Qin, W.; Gao, Y.; Li, X.; et al. Dual GIP and GLP-1 receptor agonist tirzepatide alleviates hepatic steatosis and modulates gut microbiota and bile acid metabolism in diabetic mice. Int. Immunopharmacol. 2025, 147, 113937. [Google Scholar] [CrossRef]
  273. Wang, R.; Lin, Z.; He, M.; Liao, Y.; Xu, Y.; Chen, C.; Duan, X.; Jiang, X.; Qiu, J. The role of gut microbiota in Tirzepatide-mediated alleviation of high-fat diet-induced obesity. Eur. J. Pharmacol. 2025, 1002, 177827. [Google Scholar] [CrossRef] [PubMed]
  274. Feng, J.; Teng, Z.; Yang, Y.; Liu, J.; Chen, S. Effects of semaglutide on gut microbiota, cognitive function and inflammation in obese mice. PeerJ 2024, 12, e17891. [Google Scholar] [CrossRef] [PubMed]
  275. Xiong, C.; Wu, J.; Ma, Y.; Li, N.; Wang, X.; Li, Y.; Ding, X. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Gut Microbiota in Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome Mice: Compared Evaluation of Liraglutide and Semaglutide Intervention. Diabetes Metab. Syndr. Obes. 2024, 17, 865–880. [Google Scholar] [CrossRef] [PubMed]
  276. Kapoor, P.; Tiwari, A.; Sharma, S.; Tiwari, V.; Sheoran, B.; Ali, U.; Garg, M. Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: A systematic review via meta-analysis. Sci. Rep. 2023, 13, 1729. [Google Scholar] [CrossRef]
  277. Mao, T.; Akshit, F.N.U.; Mohan, M.S. Effects of anthocyanin supplementation in diet on glycemic and related cardiovascular biomarkers in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Front. Nutr. 2023, 10, 1199815. [Google Scholar] [CrossRef]
  278. May, K.S.; den Hartigh, L.J. Modulation of Adipocyte Metabolism by Microbial Short-Chain Fatty Acids. Nutrients 2021, 13, 3666. [Google Scholar] [CrossRef]
  279. Baek, K.R.; Singh, S.; Hwang, H.S.; Seo, S.O. Using Gut Microbiota Modulation as a Precision Strategy Against Obesity. Int. J. Mol. Sci. 2025, 26, 6282. [Google Scholar] [CrossRef]
  280. Zhu, C.W.; Lü, H.; Du, L.L.; Li, J.; Chen, H.; Zhao, H.F.; Wu, W.L.; Chen, J.; Li, W.L. Five blueberry anthocyanins and their antioxidant, hypoglycemic, and hypolipidemic effects in vitro. Front. Nutr. 2023, 10, 1172982. [Google Scholar] [CrossRef]
  281. Castro-Acosta, M.L.; Smith, L.; Miller, R.J.; McCarthy, D.I.; Farrimond, J.A.; Hall, W.L. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J. Nutr. Biochem. 2016, 38, 154–161. [Google Scholar] [CrossRef]
  282. Shi, M.; Mathai, M.L.; Xu, G.; Su, X.Q.; McAinch, A.J. The effect of dietary supplementation with blueberry, cyanidin-3-O-β-glucoside, yoghurt and its peptides on gene expression associated with glucose metabolism in skeletal muscle obtained from a high-fat-high-carbohydrate diet induced obesity model. PLoS ONE 2022, 17, e0270306. [Google Scholar] [CrossRef] [PubMed]
  283. Parra-Vargas, M.; Sandoval-Rodriguez, A.; Rodriguez-Echevarria, R.; Dominguez-Rosales, J.A.; Santos-Garcia, A.; Armendariz-Borunda, J. Delphinidin Ameliorates Hepatic Triglyceride Accumulation in Human HepG2 Cells, but Not in Diet-Induced Obese Mice. Nutrients 2018, 10, 1060. [Google Scholar] [CrossRef] [PubMed]
  284. Teparak, C.; Uriyapongson, J.; Phoemsapthawee, J.; Tunkamnerdthai, O.; Aneknan, P.; Tong-Un, T.; Panthongviriyakul, C.; Leelayuwat, N.; Alkhatib, A. Diabetes Therapeutics of Prebiotic Soluble Dietary Fibre and Antioxidant Anthocyanin Supplement in Patients with Type 2 Diabetes: Randomised Placebo-Controlled Clinical Trial. Nutrients 2025, 17, 1098. [Google Scholar] [CrossRef] [PubMed]
  285. Frumuzachi, O.; Mocan, A.; Rohn, S.; Gavrilaș, L. Impact of a Chokeberry (Aronia melanocarpa (Michx.) Elliott) Supplementation on Cardiometabolic Outcomes: A Critical Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2025, 17, 1488. [Google Scholar] [CrossRef]
  286. Neyestani, T.R.; Yari, Z.; Rasekhi, H.; Nikooyeh, B. How effective are anthocyanins on healthy modification of cardiometabolic risk factors: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2023, 15, 106. [Google Scholar] [CrossRef]
  287. García-Conesa, M.-T.; Chambers, K.; Combet, E.; Pinto, P.; Garcia-Aloy, M.; Andrés-Lacueva, C.; de Pascual-Teresa, S.; Mena, P.; Konic Ristic, A.; Hollands, W.J. Meta-analysis of the effects of foods and derived products containing ellagitannins and anthocyanins on cardiometabolic biomarkers: Analysis of factors influencing variability of the individual responses. Int. J. Mol. Sci. 2018, 19, 694. [Google Scholar] [CrossRef]
  288. Luna-Vital, D.; Luzardo-Ocampo, I.; Cuellar-Nuñez, M.L.; Loarca-Piña, G.; de Mejia, E.G. Maize extract rich in ferulic acid and anthocyanins prevents high-fat-induced obesity in mice by modulating SIRT1, AMPK and IL-6 associated metabolic and inflammatory pathways. J. Nutr. Biochem. 2020, 79, 108343. [Google Scholar] [CrossRef]
  289. DeFuria, J.; Bennett, G.; Strissel, K.J.; James, W.P.; Milbury, P.E.; Greenberg, A.S.; Obin, M.S. Dietary Blueberry Attenuates Whole-Body Insulin Resistance in High Fat-Fed Mice by Reducing Adipocyte Death and Its Inflammatory Sequelae. J. Nutr. 2009, 139, 1510–1516. [Google Scholar] [CrossRef]
  290. Prior, R.L.; Wu, X.; Gu, L.; Hager, T.J.; Hager, A.; Howard, L.R. Whole Berries versus Berry Anthocyanins: Interactions with Dietary Fat Levels in the C57BL/6J Mouse Model of Obesity. J. Agric. Food Chem. 2008, 56, 647–653. [Google Scholar] [CrossRef]
  291. Vilhena, R.; Figueiredo, I.; Baviera, A.; Silva, D.; Marson, B.; Oliveira, J.; Peccinini, R.; Borges, I.; Pontarolo, R. Antidiabetic activity of Musa x paradisiaca extracts in streptozotocin-induced diabetic rats and chemical characterization by HPLC-DAD-MS. J. Ethnopharmacol. 2020, 254, 112666. [Google Scholar] [CrossRef]
  292. Cremonini, E.; Daveri, E.; Iglesias, D.E.; Kang, J.; Wang, Z.; Gray, R.; Mastaloudis, A.; Kay, C.D.; Hester, S.N.; Wood, S.M.; et al. A randomized placebo-controlled cross-over study on the effects of anthocyanins on inflammatory and metabolic responses to a high-fat meal in healthy subjects. Redox Biol. 2022, 51, 102273. [Google Scholar] [CrossRef]
  293. Kalt, W.; Foote, K.; Fillmore, S.A.E.; Lyon, M.; Van Lunen, T.A.; McRae, K.B. Effect of blueberry feeding on plasma lipids in pigs. Br. J. Nutr. 2008, 100, 70–78. [Google Scholar] [CrossRef]
  294. Collins, B.; Hoffman, J.; Martinez, K.; Grace, M.; Lila, M.A.; Cockrell, C.; Nadimpalli, A.; Chang, E.; Chuang, C.C.; Zhong, W.; et al. A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice. J. Nutr. Biochem. 2016, 31, 150–165. [Google Scholar] [CrossRef] [PubMed]
  295. Domínguez-Avila, J.A.; González-Aguilar, G.A.; Alvarez-Parrilla, E.; de la Rosa, L.A. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets. Int. J. Mol. Sci. 2016, 17, 1002. [Google Scholar] [CrossRef] [PubMed]
  296. Lee, I.-C.; Bae, J.-S. Suppressive effects of pelargonidin on PolyPhosphate-mediated vascular inflammatory responses. Arch. Pharmacal Res. 2017, 40, 258–267. [Google Scholar] [CrossRef] [PubMed]
  297. Biagioli, M.; Carino, A.; Fiorucci, C.; Annunziato, G.; Marchianò, S.; Bordoni, M.; Roselli, R.; Giorgio, C.D.; Castiglione, F.; Ricci, P.; et al. The Aryl Hydrocarbon Receptor (AhR) Mediates the Counter-Regulatory Effects of Pelargonidins in Models of Inflammation and Metabolic Dysfunctions. Nutrients 2019, 11, 1820. [Google Scholar] [CrossRef]
  298. Ghattamaneni, N.K.R.; Sharma, A.; Panchal, S.K.; Brown, L. Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. Eur. J. Nutr. 2020, 59, 2905–2918. [Google Scholar] [CrossRef]
  299. Venturi, S.; Rendine, M.; Marino, M.; Klimis-Zacas, D.; Riso, P.; Del Bo, C. Differential Effects of Wild Blueberry (Poly)Phenol Metabolites in Modulating Lipid Metabolism and Oxidative Stress in 3T3-L1 Adipocytes. Mol. Nutr. Food Res. 2025, 69, e70101. [Google Scholar] [CrossRef]
  300. Koh, E.S.; Lim, J.H.; Kim, M.Y.; Chung, S.; Shin, S.J.; Choi, B.S.; Kim, H.W.; Hwang, S.Y.; Kim, S.W.; Park, C.W.; et al. Anthocyanin-rich Seoritae extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice. J. Transl. Med. 2015, 13, 203. [Google Scholar] [CrossRef]
  301. Herrera-Balandrano, D.D.; Chai, Z.; Hutabarat, R.P.; Beta, T.; Feng, J.; Ma, K.; Li, D.; Huang, W. Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPK activation: In vitro and in vivo studies. Redox Biol. 2021, 46, 102100. [Google Scholar] [CrossRef]
  302. Daveri, E.; Cremonini, E.; Mastaloudis, A.; Hester, S.N.; Wood, S.M.; Waterhouse, A.L.; Anderson, M.; Fraga, C.G.; Oteiza, P.I. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol. 2018, 18, 16–24. [Google Scholar] [CrossRef]
  303. Lee, D.Y.; Park, Y.J.; Song, M.G.; Kim, D.R.; Zada, S.; Kim, D.H. Cytoprotective Effects of Delphinidin for Human Chondrocytes against Oxidative Stress through Activation of Autophagy. Antioxidants 2020, 9, 83. [Google Scholar] [CrossRef]
  304. Kuo, H.D.; Wu, R.; Li, S.; Yang, A.Y.; Kong, A.N. Anthocyanin Delphinidin Prevents Neoplastic Transformation of Mouse Skin JB6 P+ Cells: Epigenetic Re-activation of Nrf2-ARE Pathway. AAPS J. 2019, 21, 83. [Google Scholar] [CrossRef] [PubMed]
  305. Xu, J.; Zhang, Y.; Ren, G.; Yang, R.; Chen, J.; Xiang, X.; Qin, H.; Chen, J. Inhibitory Effect of Delphinidin on Oxidative Stress Induced by H(2)O(2) in HepG2 Cells. Oxid. Med. Cell. Longev. 2020, 2020, 4694760. [Google Scholar] [CrossRef] [PubMed]
  306. Hassellund, S.S.; Flaa, A.; Kjeldsen, S.E.; Seljeflot, I.; Karlsen, A.; Erlund, I.; Rostrup, M. Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: A double-blind randomized placebo-controlled crossover study. J. Hum. Hypertens. 2013, 27, 100–106. [Google Scholar] [CrossRef] [PubMed]
  307. Sasaki, R.; Nishimura, N.; Hoshino, H.; Isa, Y.; Kadowaki, M.; Ichi, T.; Tanaka, A.; Nishiumi, S.; Fukuda, I.; Ashida, H.; et al. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol. 2007, 74, 1619–1627. [Google Scholar] [CrossRef]
  308. Ye, X.; Chen, W.; Huang, X.F.; Yan, F.J.; Deng, S.G.; Zheng, X.D.; Shan, P.F. Anti-diabetic effect of anthocyanin cyanidin-3-O-glucoside: Data from insulin resistant hepatocyte and diabetic mouse. Nutr. Diabetes 2024, 14, 7. [Google Scholar] [CrossRef]
  309. Sanjay; Shin, J.H.; Park, M.; Lee, H.J. Cyanidin-3-O-Glucoside Regulates the M1/M2 Polarization of Microglia via PPARγ and Aβ42 Phagocytosis Through TREM2 in an Alzheimer’s Disease Model. Mol. Neurobiol. 2022, 59, 5135–5148. [Google Scholar] [CrossRef]
  310. Ngamsamer, C.; Sirivarasai, J.; Sutjarit, N. The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules 2022, 12, 852. [Google Scholar] [CrossRef]
  311. Zhang, Y.; Zhang, B.; Sun, X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front. Immunol. 2024, 15, 1378202. [Google Scholar] [CrossRef]
  312. Lei, J.; Shu, Z.; Zhu, H.; Zhao, L. AMPK Regulates M1 Macrophage Polarization through the JAK2/STAT3 Signaling Pathway to Attenuate Airway Inflammation in Obesity-Related Asthma. Inflammation 2025, 48, 372–392. [Google Scholar] [CrossRef]
  313. Kim, D.M.; Lee, J.H.; Pan, Q.; Han, H.W.; Shen, Z.; Eshghjoo, S.; Wu, C.S.; Yang, W.; Noh, J.Y.; Threadgill, D.W.; et al. Nutrient-sensing growth hormone secretagogue receptor in macrophage programming and meta-inflammation. Mol. Metab. 2024, 79, 101852. [Google Scholar] [CrossRef]
  314. Ye, X.; Chen, W.; Yan, F.; Zheng, X.; Tu, P. Cyanidin-3-O-glucoside enhances GLP-1 secretion via PPARβ/δ-β-catenin-TCF-4 pathway in type 2 diabetes mellitus. NPJ Sci. Food 2025, 9, 81. [Google Scholar] [CrossRef]
  315. Daoudi, M.; Hennuyer, N.; Borland, M.G.; Touche, V.; Duhem, C.; Gross, B.; Caiazzo, R.; Kerr-Conte, J.; Pattou, F.; Peters, J.M.; et al. PPARβ/δ activation induces enteroendocrine L cell GLP-1 production. Gastroenterology 2011, 140, 1564–1574. [Google Scholar] [CrossRef]
  316. Bartel, I.; Koszarska, M.; Strzałkowska, N.; Tzvetkov, N.T.; Wang, D.; Horbańczuk, J.O.; Wierzbicka, A.; Atanasov, A.G.; Jóźwik, A. Cyanidin-3-O-glucoside as a Nutrigenomic Factor in Type 2 Diabetes and Its Prominent Impact on Health. Int. J. Mol. Sci. 2023, 24, 9765. [Google Scholar] [CrossRef] [PubMed]
  317. Chen, Y.; Li, X.; Su, L.; Hu, Q.; Li, W.; He, J.; Zhao, L. Cyanidin-3-O-Glucoside Ameliorates Palmitic-Acid-Induced Pancreatic Beta Cell Dysfunction by Modulating CHOP-Mediated Endoplasmic Reticulum Stress Pathways. Nutrients 2022, 14, 1835. [Google Scholar] [CrossRef] [PubMed]
  318. Gao, F.; Yang, P.; Wang, W.; Wang, K.; Zhao, L.; Wang, Y.; Liao, X. Unveiling the multifaceted roles of anthocyanins: A review of their bioavailability, impacts on gut and system health, and industrial implications. Curr. Res. Food Sci. 2025, 11, 101137. [Google Scholar] [CrossRef]
  319. Koistinen, V.M.; Babu, A.F.; Shad, E.; Zarei, I. Anthocyanins as protectors of gut microbiota: Mitigating the adverse effects of microplastic-induced disruption. Food Innov. Adv. 2025, 4, 238–252. [Google Scholar] [CrossRef]
  320. Ruiz-Álvarez, B.E.; Cattero, V.; Desjardins, Y. Prebiotic-like Effects of Proanthocyanidin-Rich Aronia Extract Supplementation on Gut Microbiota Composition and Function in the Twin-M-SHIME® Model. Pharmaceuticals 2025, 18, 793. [Google Scholar] [CrossRef]
  321. Andrei, C.; Zanfirescu, A.; Ormeneanu, V.-P.; Negreș, S. Evaluating the Efficacy of Secondary Metabolites in Antibiotic-Induced Dysbiosis: A Narrative Review of Preclinical Studies. Antibiotics 2025, 14, 138. [Google Scholar] [CrossRef]
  322. Francini-Pesenti, F.; Spinella, P.; Calò, L.A. Potential role of phytochemicals in metabolic syndrome prevention and therapy. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1987–2002. [Google Scholar] [CrossRef] [PubMed]
  323. Wen, Z.; Liu, W.; Li, X.; Chen, W.; Liu, Z.; Wen, J.; Liu, Z. A Protective Role of the NRF2-Keap1 Pathway in Maintaining Intestinal Barrier Function. Oxid. Med. Cell. Longev. 2019, 2019, 1759149. [Google Scholar] [CrossRef] [PubMed]
  324. Kurhaluk, N.; Kamiński, P.; Tkaczenko, H. Role of Gut Microbiota in Modulating Oxidative Stress Induced by Environmental Factors. Cell. Physiol. Biochem. 2025, 59, 2–52. [Google Scholar] [CrossRef] [PubMed]
  325. Cao, H.; Chen, X.; Jassbi, A.R.; Xiao, J. Microbial biotransformation of bioactive flavonoids. Biotechnol. Adv. 2015, 33, 214–223. [Google Scholar] [CrossRef]
  326. Mokale, M.J.; Kesavan Pillai, S.; Sivakumar, D. Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder. Foods 2025, 14, 2492. [Google Scholar] [CrossRef]
  327. Oumeddour, D.Z.; Al-Dalali, S.; Zhao, L.; Zhao, L.; Wang, C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem. Biophys. Res. Commun. 2024, 729, 150344. [Google Scholar] [CrossRef]
  328. González-Paramás, A.M.; Brighenti, V.; Bertoni, L.; Marcelloni, L.; Ayuda-Durán, B.; González-Manzano, S.; Pellati, F.; Santos-Buelga, C. Assessment of the In Vivo Antioxidant Activity of an Anthocyanin-Rich Bilberry Extract Using the Caenorhabditis elegans Model. Antioxidants 2020, 9, 509. [Google Scholar] [CrossRef]
  329. Chen, F.; Zhang, X.; Chen, S.; Wu, Y.; Wei, Q.; Chu, X.; Zhang, Z. 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone, a microbiota metabolite of flavan-3-ols, activates SIRT1-mediated autophagy to attenuate H2O2-induced inhibition of osteoblast differentiation in MC3T3-E1 cells. Free. Radic. Biol. Med. 2023, 208, 309–318. [Google Scholar] [CrossRef]
  330. Angelino, D.; Carregosa, D.; Domenech-Coca, C.; Savi, M.; Figueira, I.; Brindani, N.; Jang, S.; Lakshman, S.; Molokin, A.; Urban, J.F., Jr.; et al. 5-(Hydroxyphenyl)-γ-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence from Different in Silico, In Vitro and In Vivo Experimental Models. Nutrients 2019, 11, 2678. [Google Scholar] [CrossRef]
  331. Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients 2016, 8, 78. [Google Scholar] [CrossRef]
  332. Lippolis, T.; Cofano, M.; Caponio, G.R.; De Nunzio, V.; Notarnicola, M. Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int. J. Mol. Sci. 2023, 24, 3813. [Google Scholar] [CrossRef] [PubMed]
  333. Corrêa, T.A.F.; Rogero, M.M.; Hassimotto, N.M.A.; Lajolo, F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019, 6, 188. [Google Scholar] [CrossRef] [PubMed]
  334. Torres-Fuentes, C.; Schellekens, H.; Cryan, J.F.; Espín, J.C.; Muguerza, B. Interplay between (poly) phenols, gut microbiota, and biological rhythms: Outlook for a new paradigm in brain health. Crit. Rev. Food Sci. Nutr. 2025, 1–16. [Google Scholar] [CrossRef] [PubMed]
  335. Zeb, F.; Naqeeb, H.; Osaili, T.; Faris, M.E.; Ismail, L.C.; Obaid, R.S.; Naja, F.; Radwan, H.; Hasan, H.; Hashim, M.; et al. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr. Res. 2024, 124, 21–42. [Google Scholar] [CrossRef]
  336. Hong, M.; Zhang, R.; Liu, Y.; Wu, Z.; Weng, P. The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases. J. Food Biochem. 2022, 46, e13870. [Google Scholar] [CrossRef]
  337. Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 471–476. [Google Scholar] [CrossRef]
Figure 1. Schematic representation of the interplay between ghrelin and leptin in the immunometabolic regulation of insulin sensitivity. Ghrelin, mainly secreted by the stomach, acts through the GHSR receptor to activate AMPK signaling, promoting anti-inflammatory responses and macrophage polarization toward the M2 phenotype, which enhances insulin sensitivity. In contrast, leptin, secreted by adipocytes, signals via the ObR receptor through the JAK2/STAT3 and PI3K/MAPK pathways, leading to M1 macrophage polarization and the release of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), contributing to insulin resistance. The balance between ghrelin- and leptin-mediated pathways, together with proper AMPK activation, is essential for maintaining metabolic homeostasis and preventing chronic inflammation in metabolic tissues. GHSR—Growth Hormone Secretagogue Receptor; AMPK—AMP-Activated Protein Kinase; NF-κB—Nuclear Factor kappa-Light-Chain-Enhancer of Activated B Cells; JNK—c-Jun N-Terminal Kinase; M2—Alternatively Activated (Anti-inflammatory) Macrophage; M1—Classically Activated (Pro-inflammatory) Macrophage; TNFα—Tumor Necrosis Factor Alpha; IL-6—Interleukin 6; IL-1β—Interleukin 1 Beta; JAK2/STAT3—Janus Kinase 2/Signal Transducer and Activator of Transcription 3; PI3K/MAPK—Phosphoinositide 3-Kinase/Mitogen-Activated Protein Kinase; ObR—Leptin Receptor. ↑—Induction; ↓—Repression.
Figure 1. Schematic representation of the interplay between ghrelin and leptin in the immunometabolic regulation of insulin sensitivity. Ghrelin, mainly secreted by the stomach, acts through the GHSR receptor to activate AMPK signaling, promoting anti-inflammatory responses and macrophage polarization toward the M2 phenotype, which enhances insulin sensitivity. In contrast, leptin, secreted by adipocytes, signals via the ObR receptor through the JAK2/STAT3 and PI3K/MAPK pathways, leading to M1 macrophage polarization and the release of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), contributing to insulin resistance. The balance between ghrelin- and leptin-mediated pathways, together with proper AMPK activation, is essential for maintaining metabolic homeostasis and preventing chronic inflammation in metabolic tissues. GHSR—Growth Hormone Secretagogue Receptor; AMPK—AMP-Activated Protein Kinase; NF-κB—Nuclear Factor kappa-Light-Chain-Enhancer of Activated B Cells; JNK—c-Jun N-Terminal Kinase; M2—Alternatively Activated (Anti-inflammatory) Macrophage; M1—Classically Activated (Pro-inflammatory) Macrophage; TNFα—Tumor Necrosis Factor Alpha; IL-6—Interleukin 6; IL-1β—Interleukin 1 Beta; JAK2/STAT3—Janus Kinase 2/Signal Transducer and Activator of Transcription 3; PI3K/MAPK—Phosphoinositide 3-Kinase/Mitogen-Activated Protein Kinase; ObR—Leptin Receptor. ↑—Induction; ↓—Repression.
Nutrients 17 03727 g001
Figure 2. Integrated mechanisms of action of anthocyanins in obesity. An anthocyanin-rich diet modulates the gut microbiota, promoting the growth of beneficial bacterial genera such as Akkermansia and Parabacteroides and enhancing the production of short-chain fatty acids (SCFAs), which strengthen the intestinal barrier. SCFAs and anthocyanins stimulate the secretion of gut hormones (GLP-1 and PYY) and adipokines (leptin and adiponectin), contributing to improved metabolic signaling. In peripheral tissues such as the liver, muscle, and pancreas, anthocyanins activate key molecular pathways, including AMPK, PPARγ, NRF2/Keap1, and NF-κB, leading to reduced inflammation, increased insulin sensitivity, and decreased lipogenesis, glycemia, and dyslipidemia. [276,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,314,318,319,320,321,322,323,324]. PPAR—Peroxisome Proliferator-Activated Receptor; NF-κB—Nuclear Factor kappa-light-chain-enhancer of Activated B Cells; AMPK—AMP-Activated Protein Kinase; NRF-2/Keap1—Nuclear Factor Erythroid 2–Related Factor 2/Kelch-like ECH-Associated Protein 1; F/B—Firmicutes/Bacteroidetes; PYY—Peptide YY; GLP-1—Glucagon-Like Peptide-1; TCF-4—Transcription Factor 4; ATP—Adenosine Triphosphate; SCFA—Short-Chain Fatty Acids; M1—Classically Activated (Pro-inflammatory) Macrophage; M2—Alternatively Activated (Anti-inflammatory) Macrophage. ↑—Induction; ↓—Repression.
Figure 2. Integrated mechanisms of action of anthocyanins in obesity. An anthocyanin-rich diet modulates the gut microbiota, promoting the growth of beneficial bacterial genera such as Akkermansia and Parabacteroides and enhancing the production of short-chain fatty acids (SCFAs), which strengthen the intestinal barrier. SCFAs and anthocyanins stimulate the secretion of gut hormones (GLP-1 and PYY) and adipokines (leptin and adiponectin), contributing to improved metabolic signaling. In peripheral tissues such as the liver, muscle, and pancreas, anthocyanins activate key molecular pathways, including AMPK, PPARγ, NRF2/Keap1, and NF-κB, leading to reduced inflammation, increased insulin sensitivity, and decreased lipogenesis, glycemia, and dyslipidemia. [276,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,314,318,319,320,321,322,323,324]. PPAR—Peroxisome Proliferator-Activated Receptor; NF-κB—Nuclear Factor kappa-light-chain-enhancer of Activated B Cells; AMPK—AMP-Activated Protein Kinase; NRF-2/Keap1—Nuclear Factor Erythroid 2–Related Factor 2/Kelch-like ECH-Associated Protein 1; F/B—Firmicutes/Bacteroidetes; PYY—Peptide YY; GLP-1—Glucagon-Like Peptide-1; TCF-4—Transcription Factor 4; ATP—Adenosine Triphosphate; SCFA—Short-Chain Fatty Acids; M1—Classically Activated (Pro-inflammatory) Macrophage; M2—Alternatively Activated (Anti-inflammatory) Macrophage. ↑—Induction; ↓—Repression.
Nutrients 17 03727 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ruy, C.C.; Santos, T.W.d.; Pereira, Q.C.; Ribeiro, M.L. Anthocyanins Modulation of Gut Microbiota to Reverse Obesity-Driven Inflammation and Insulin Resistance. Nutrients 2025, 17, 3727. https://doi.org/10.3390/nu17233727

AMA Style

Ruy CC, Santos TWd, Pereira QC, Ribeiro ML. Anthocyanins Modulation of Gut Microbiota to Reverse Obesity-Driven Inflammation and Insulin Resistance. Nutrients. 2025; 17(23):3727. https://doi.org/10.3390/nu17233727

Chicago/Turabian Style

Ruy, Caio Cesar, Tanila Wood dos Santos, Quélita Cristina Pereira, and Marcelo Lima Ribeiro. 2025. "Anthocyanins Modulation of Gut Microbiota to Reverse Obesity-Driven Inflammation and Insulin Resistance" Nutrients 17, no. 23: 3727. https://doi.org/10.3390/nu17233727

APA Style

Ruy, C. C., Santos, T. W. d., Pereira, Q. C., & Ribeiro, M. L. (2025). Anthocyanins Modulation of Gut Microbiota to Reverse Obesity-Driven Inflammation and Insulin Resistance. Nutrients, 17(23), 3727. https://doi.org/10.3390/nu17233727

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop