The Way Calories Are Displayed on Restaurant Menus May Not Affect Calorie Intake: Evidence from an Online Experiment
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Meal Selection from a Restaurant Menu
2.1.2. Demographic Characteristics, Anthropometric Measurements, and Nutrition
2.1.3. Restrained Eating Questionnaire
2.1.4. Impulsivity Assessment
2.1.5. Income
2.2. Data Preparation
2.2.1. Calorie Levels
- Low (787–950 kcal): all meals including one of the two lowest-calorie mains, the lowest-calorie side and any dessert except the highest-calorie dessert.
- Medium (951–1350 kcal): all meals including exactly two of: one of the two lowest-calorie mains; the lowest-calorie side; any dessert except the highest-calorie dessert.
- High (1351–1675 kcal): all meals including: one of the two highest-calorie mains, one of the two highest-calorie sides and not the highest-calorie dessert; or, one of the two highest-calorie mains, the highest-calorie dessert and not the highest-calorie side; or, one of the two lowest-calorie mains, the highest-calorie dessert and not the lowest-calorie side.
- Very High (1676–1963 kcal): all meals including one of the two highest-calorie mains, one of the two highest-calorie sides and the highest-calorie dessert.
2.2.2. Age, BMI, Education and Nutrition-Related Variables
2.3. Data Analysis
2.3.1. Statistical Methodology
- Model 1: regresses calorie levels of chosen meals only on the randomly- assigned menu design and on intercepts.
- Model 2: extends Model 1 to include, as controls, demographic characteristics (except nationality), BMI, nutrition-related variables, income, DEBQ-R scores and SUPP-S scores.
- Model 3: extends Model 2 to include the interaction of gender with the randomly assigned menu design.
- Model 4: extends Model 2 to include the interaction of declared nutrition knowledge with the randomly assigned menu design.
2.3.2. Sensitivity Analyses
2.3.3. Statistical Software
3. Results
3.1. Participants’ Characteristics
3.2. Calorie Levels and Composition of Participants’ Selected Meals
3.3. Factors Affecting the Chance of Ordering Higher-Calorie Meals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PACE | Physical Activity Calorie Equivalent |
| PDI | Percent Daily Intake |
| BMI | Body Mass Index |
| DEBQ | Dutch Eating Behavior Questionnaire |
| SUPPS-P | Short—Urgency, Premeditation, Perseverance, Sensation Seeking and Positive Urgency questionnaire |
References
- WHO. WHO European Regional Obesity Report 2022. 2022. Available online: https://www.who.int/europe/publications/i/item/9789289057738 (accessed on 6 June 2024).
- Cawley, J.; Biener, A.; Meyerhoefer, C.; Ding, Y.; Zvenyach, T.; Smolarz, B.G.; Ramasamy, A. Direct Medical Costs of Obesity in the United States and the Most Populous States. J. Manag. Care Spec. Pharm. 2021, 27, 354–366. [Google Scholar] [CrossRef]
- United States Congress. The Patient Protection and Affordable Care Act 2010. Available online: https://www.hhs.gov/healthcare/about-the-aca/index.html (accessed on 6 June 2024).
- UK Government Calorie Labelling (Out of Home Sector) (England) Regulations 2021. 2021. Available online: https://www.legislation.gov.uk/ukdsi/2021/9780348223538 (accessed on 6 June 2024).
- Todd, J.E.; Mancino, L.; Lin, B.-H. The Impact of Food Away from Home on Adult Diet Quality; ERR-90; U.S. Department of Agriculture, Economic Research Service: February 2010. Volume 90. Available online: https://ageconsearch.umn.edu/record/58298 (accessed on 6 June 2024). [CrossRef]
- Abel, M.L.; Lee, K.; Loglisci, R.; Righter, A.; Hipper, T.J.; Cheskin, L.J. Consumer Understanding of Calorie Labeling: A Healthy Monday E-Mail and Text Message Intervention. Health Promot. Pract. 2015, 16, 236–243. [Google Scholar] [CrossRef]
- Dupuis, R.; Block, J.P.; Barrett, J.L.; Long, M.W.; Petimar, J.; Ward, Z.J.; Kenney, E.L.; Musicus, A.A.; Cannuscio, C.C.; Williams, D.R.; et al. Cost Effectiveness of Calorie Labeling at Large Fast-Food Chains Across the U.S. Am. J. Prev. Med. 2024, 66, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Rummo, P.E.; Mijanovich, T.; Wu, E.; Heng, L.; Hafeez, E.; Bragg, M.A.; Jones, S.A.; Weitzman, B.C.; Elbel, B. Menu Labeling and Calories Purchased in Restaurants in a US National Fast Food Chain. JAMA Netw. Open 2023, 6, e2346851. [Google Scholar] [CrossRef] [PubMed]
- Petimar, J.; Zhang, F.; Cleveland, L.P.; Simon, D.; Gortmaker, S.L.; Polacsek, M.; Bleich, S.N.; Rimm, E.B.; Roberto, C.A.; Block, J.P. Estimating the Effect of Calorie Menu Labeling on Calories Purchased in a Large Restaurant Franchise in the Southern United States: Quasi-Experimental Study. BMJ 2019, 367, l5837. [Google Scholar] [CrossRef] [PubMed]
- Petimar, J.; Zhang, F.; Rimm, E.B.; Simon, D.; Cleveland, L.P.; Gortmaker, S.L.; Bleich, S.N.; Polacsek, M.; Roberto, C.A.; Block, J.P. Changes in the Calorie and Nutrient Content of Purchased Fast Food Meals after Calorie Menu Labeling: A Natural Experiment. PLoS Med. 2021, 18, e1003714. [Google Scholar] [CrossRef]
- Zlatevska, N.; Neumann, N.; Dubelaar, C. Mandatory Calorie Disclosure: A Comprehensive Analysis of Its Effect on Consumers and Retailers. J. Retail. 2018, 94, 89–101. [Google Scholar] [CrossRef]
- Agarwal, D.; Ravi, P.; Purohit, B.; Priya, H. The Effect of Energy and Fat Content Labeling on Food Consumption Pattern: A Systematic Review and Meta-Analysis. Nutr. Rev. 2022, 80, 453–466. [Google Scholar] [CrossRef]
- Cantu-Jungles, T.M.; McCormack, L.A.; Slaven, J.E.; Slebodnik, M.; Eicher-Miller, H.A. A Meta-Analysis to Determine the Impact of Restaurant Menu Labeling on Calories and Nutrients (Ordered or Consumed) in US Adults. Nutrients 2017, 9, 1088. [Google Scholar] [CrossRef]
- Petimar, J.; Ramirez, M.; Rifas-Shiman, S.L.; Linakis, S.; Mullen, J.; Roberto, C.A.; Block, J.P. Evaluation of the Impact of Calorie Labeling on McDonald’s Restaurant Menus: A Natural Experiment. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 99. [Google Scholar] [CrossRef]
- Tapper, K.; Yarrow, K.; Farrar, S.T.; Mandeville, K.L. Effects of Calorie Labelling and Contextual Factors on Hypothetical Coffee Shop Menu Choices. Appetite 2022, 172, 105963. [Google Scholar] [CrossRef] [PubMed]
- Polden, M.; Jones, A.; Essman, M.; Adams, J.; Bishop, T.R.; Burgoine, T.; Sharp, S.J.; White, M.; Smith, R.; Donohue, A.; et al. Evaluating the Association between the Introduction of Mandatory Calorie Labelling and Energy Consumed Using Observational Data from the Out-of-Home Food Sector in England. Nat. Hum. Behav. 2025, 9, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.; Burton, S.; Howlett, E.; Newman, C.L. Understanding the Calorie Labeling Paradox in Chain Restaurants: Why Menu Calorie Labeling Alone May Not Affect Average Calories Ordered. J. Public Policy Mark. 2019, 38, 192–213. [Google Scholar] [CrossRef]
- Bleich, S.N.; Economos, C.D.; Spiker, M.L.; Vercammen, K.A.; VanEpps, E.M.; Block, J.P.; Elbel, B.; Story, M.; Roberto, C.A. A Systematic Review of Calorie Labeling and Modified Calorie Labeling Interventions: Impact on Consumer and Restaurant Behavior. Obesity 2017, 25, 2018–2044. [Google Scholar] [CrossRef] [PubMed]
- Vadiveloo, M.K.; Dixon, L.B.; Elbel, B. Consumer Purchasing Patterns in Response to Calorie Labeling Legislation in New York City. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 51. [Google Scholar] [CrossRef]
- Wisdom, J.; Downs, J.S.; Loewenstein, G. Promoting Healthy Choices: Information versus Convenience. Am. Econ. J. Appl. Econ. 2010, 2, 164–178. [Google Scholar] [CrossRef]
- Restrepo, B.J. Adults Noticing Calorie Counts on Restaurant Menus: Evidence From Nationally Representative Data, 2022. Am. J. Prev. Med. 2024, 66, 1043–1048. [Google Scholar] [CrossRef]
- Larson, N.; Haynos, A.F.; Roberto, C.A.; Loth, K.A.; Neumark-Sztainer, D. Calorie Labels on the Restaurant Menu: Is the Use of Weight-Control Behaviors Related to Ordering Decisions? J. Acad. Nutr. Diet. 2018, 118, 399–408. [Google Scholar] [CrossRef]
- Vasiljevic, M.; Fuller, G.; Pilling, M.; Hollands, G.J.; Pechey, R.; Jebb, S.A.; Marteau, T.M. What Is the Impact of Increasing the Prominence of Calorie Labelling? A Stepped Wedge Randomised Controlled Pilot Trial in Worksite Cafeterias. Appetite 2019, 141, 104304. [Google Scholar] [CrossRef]
- Sinclair, S.E.; Cooper, M.; Mansfield, E.D. The Influence of Menu Labeling on Calories Selected or Consumed: A Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet. 2014, 114, 1375–1388. [Google Scholar] [CrossRef]
- Fogolari, N.; Souza, A.D.; Bernardo, G.L.; Uggioni, P.L.; Oliveira, R.C.; Rodrigues, V.M.; Proença, R.P.C.; Fernandes, A.C. Qualitative Menu Labelling in University Restaurants and Its Influence on Food Choices: A Systematic Review and Synthesis without Meta-Analysis. Nutr. Bull. 2023, 48, 160–178. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Oliveira, R.C.; Proença, R.P.C.; Curioni, C.C.; Rodrigues, V.M.; Fiates, G.M.R. Influence of Menu Labeling on Food Choices in Real-Life Settings: A Systematic Review. Nutr. Rev. 2016, 74, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Erdem, S. Investigating the Effect of Restaurant Menu Labelling on Consumer Food Choices Using a Field Experiment. Br. Food J. 2022, 124, 3447–3467. [Google Scholar] [CrossRef]
- Ellison, B.; Lusk, J.L.; Davis, D. Looking at the Label and beyond: The Effects of Calorie Labels, Health Consciousness, and Demographics on Caloric Intake in Restaurants. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Daley, A.J.; McGee, E.; Bayliss, S.; Coombe, A.; Parretti, H.M. Effects of Physical Activity Calorie Equivalent Food Labelling to Reduce Food Selection and Consumption: Systematic Review and Meta-Analysis of Randomised Controlled Studies. J. Epidemiol. Community Health 2020, 74, 269–275. [Google Scholar] [CrossRef]
- Daley, A.J.; Kettle, V.E.; Roalfe, A.K. Implementing Physical Activity Calorie Equivalent (PACE) Food Labelling: Views of a Nationally Representative Sample of Adults in the United Kingdom. PLoS ONE 2023, 18, e0290509. [Google Scholar] [CrossRef]
- Iris, N.; Munir, F.; Daley, A.J. Examining Young People’s Views and Understanding of Traffic Light and Physical Activity Calorie Equivalent (PACE) Food Labels. BMC Public Health 2023, 23, 1143. [Google Scholar] [CrossRef]
- Mehlhose, C.; Schmitt, D.; Risius, A. PACE Labels on Healthy and Unhealthy Snack Products in a Laboratory Shopping Setting: Perception, Visual Attention, and Product Choice. Foods 2021, 10, 904. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y.; Han, M.; Wen, X.; Zheng, Q.; Chen, Q.; Chen, Q. The Differential Effects of Physical Activity Calorie Equivalent Labeling on Consumer Preferences for Healthy and Unhealthy Food Products: Evidence from a Choice Experiment. Int. J. Environ. Res. Public Health 2021, 18, 1860. [Google Scholar] [CrossRef]
- Viera, A.J.; Gizlice, Z.; Tuttle, L.; Olsson, E.; Gras-Najjar, J.; Hales, D.; Linnan, L.; Lin, F.-C.; Noar, S.M.; Ammerman, A. Effect of Calories-Only vs Physical Activity Calorie Expenditure Labeling on Lunch Calories Purchased in Worksite Cafeterias. BMC Public Health 2019, 19, 107. [Google Scholar] [CrossRef]
- Seyedhamzeh, S.; Bagheri, M.; Keshtkar, A.A.; Qorbani, M.; Viera, A.J. Physical Activity Equivalent Labeling vs. Calorie Labeling: A Systematic Review and Meta-Analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Daley, A.J.; Bleich, S.N. Should Physical Activity Calorie Equivalent (PACE) Labelling Be Introduced on Food Labels and Menus to Reduce Excessive Calorie Consumption? Issues and Opportunities. Prev. Med. 2021, 153, 106813. [Google Scholar] [CrossRef] [PubMed]
- Zaffou, M.; Campbell, B. The Effect of Restaurant Menu Labeling on Consumer’s Choice: Evidence from a Choice Experiment Involving Eye-Tracking; Agricultural and Applied Economics Association: Milwaukee, WI, USA, 2015. [Google Scholar]
- Winarno, D.; Link, S.; Muslim, E.; Moch, B. Design of Effective Positioning and Form of Front-of-Pack Nutrition Labelling on Food Products Based on Eye-Tracking Method. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Medan, Indonesia, 3–4 September 2020; IOP Publishing: Bristol, UK, 2020; Volume 1003, p. 012008. [Google Scholar]
- Morley, B.; Scully, M.; Martin, J.; Niven, P.; Dixon, H.; Wakefield, M. What Types of Nutrition Menu Labelling Lead Consumers to Select Less Energy-Dense Fast Food? An Experimental Study. Appetite 2013, 67, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.L.; Ribera, A.P.; Senye-Mir, A.; Eves, F.F. Promoting Healthy Choices in Workplace Cafeterias: A Qualitative Study. J. Nutr. Educ. Behav. 2016, 48, 138–145. [Google Scholar] [CrossRef]
- Blackwell, A.K.M.; Drax, K.; Attwood, A.S.; Munafò, M.R.; Maynard, O.M. Informing Drinkers: Can Current UK Alcohol Labels Be Improved? Drug Alcohol Depend. 2018, 192, 163–170. [Google Scholar] [CrossRef]
- Bleich, S.N.; Pollack, K.M. The Publics’ Understanding of Daily Caloric Recommendations and Their Perceptions of Calorie Posting in Chain Restaurants. BMC Public Health 2010, 10, 121. [Google Scholar] [CrossRef]
- Dowray, S.; Swartz, J.J.; Braxton, D.; Viera, A.J. Potential Effect of Physical Activity Based Menu Labels on the Calorie Content of Selected Fast Food Meals. Appetite 2013, 62, 173–181. [Google Scholar] [CrossRef]
- Glanz, K.; Basil, M.; Maibach, E.; Goldberg, J.; Snyder, D. Why Americans Eat What They Do: Taste, Nutrition, Cost, Convenience, and Weight Control Concerns as Influences on Food Consumption. J. Am. Diet. Assoc. 1998, 98, 1118–1126. [Google Scholar] [CrossRef]
- Beardsworth, A.; Bryman, A.; Keil, T.; Goode, J.; Haslam, C.; Lancashire, E. Women, Men and Food: The Significance of Gender for Nutritional Attitudes and Choices. Br. Food J. 2002, 104, 470–491. [Google Scholar] [CrossRef]
- Antonelli, R.; Viera, A.J. Potential Effect of Physical Activity Calorie Equivalent (PACE) Labeling on Adult Fast Food Ordering and Exercise. PLoS ONE 2015, 10, e0134289. [Google Scholar] [CrossRef]
- Feng, W.; Fox, A. Menu Labels, for Better, and Worse? Exploring Socio-Economic and Race-Ethnic Differences in Menu Label Use in a National Sample. Appetite 2018, 128, 223–232. [Google Scholar] [CrossRef]
- Jeong, E.; Jang, S.; Behnke, C.; Anderson, J.; Day, J. A Scale for Restaurant Customers’ Healthy Menu Choices: Individual and Environmental Factors. Int. J. Contemp. Hosp. Manag. 2019, 31, 217–246. [Google Scholar] [CrossRef]
- Guerrieri, R.; Nederkoorn, C.; Schrooten, M.; Martijn, C.; Jansen, A. Inducing Impulsivity Leads High and Low Restrained Eaters into Overeating, Whereas Current Dieters Stick to Their Diet. Appetite 2009, 53, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Nederkoorn, C.; Guerrieri, R.; Havermans, R.; Roefs, A.; Jansen, A. The Interactive Effect of Hunger and Impulsivity on Food Intake and Purchase in a Virtual Supermarket. Int. J. Obes. 2009, 33, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Lattimore, P.; Mead, B.R. See It, Grab It, or STOP! Relationships between Trait Impulsivity, Attentional Bias for Pictorial Food Cues and Associated Response Inhibition Following in-Vivo Food Cue Exposure. Appetite 2015, 90, 248–253. [Google Scholar] [CrossRef]
- Moore, K.; Walker, D.; Laczniak, R. Attention Mediates Restrained Eaters’ Food Consumption Intentions. Food Qual. Prefer. 2022, 96, 104382. [Google Scholar] [CrossRef]
- Oh, G.G.; Huh, Y.E.; Mukhopadhyay, A. Informed indulgence: The effects of nutrition information provision and dietary restraint on consecutive food consumption decisions. Psychol. Health 2021, 36, 1314–1335. [Google Scholar] [CrossRef]
- Cutello, C.A.; Foerster, F.R.; Dens, N. Food for Thought: Reinforced Learning and Recall of Physical Activity Calorie Equivalent (PACE) and Numerical Calorie Content in an Associative Learning Task. Appetite 2024, 193, 107129. [Google Scholar] [CrossRef]
- Clarke, N.; Pechey, E.; Shemilt, I.; Pilling, M.; Roberts, N.W.; Marteau, T.M.; Jebb, S.A.; Hollands, G.J. Calorie (Energy) Labelling for Changing Selection and Consumption of Food or Alcohol. Cochrane Database Syst. Rev. 2025, 1, CD014845. [Google Scholar] [CrossRef]
- Penzavecchia, C.; Todisco, P.; Muzzioli, L.; Poli, A.; Marangoni, F.; Poggiogalle, E.; Giusti, A.M.; Lenzi, A.; Pinto, A.; Donini, L.M. The Influence of Front-of-Pack Nutritional Labels on Eating and Purchasing Behaviors: A Narrative Review of the Literature. Eat. Weight Disord.-Stud. Anorex. Bulim. Obes. 2022, 27, 3037–3051. [Google Scholar] [CrossRef]
- Leng, G.; Adan, R.A.; Belot, M.; Brunstrom, J.M.; De Graaf, K.; Dickson, S.L.; Hare, T.; Maier, S.; Menzies, J.; Preissl, H.; et al. The Determinants of Food Choice. Proc. Nutr. Soc. 2017, 76, 316–327. [Google Scholar] [CrossRef]
- Nestle, M.; Wing, R.; Birch, L.; DiSogra, L.; Drewnowski, A.; Middleton, S.; Sigman-Grant, M.; Sobal, J.; Winston, M.; Economos, C. Behavioral and Social Influences on Food Choice. Nutr. Rev. 1998, 56, S50–S64. [Google Scholar] [CrossRef]
- Malhi, H.; Fletcher, J.; Balhatchet, D. The Impact of Restaurant Menu Calorie Information on People with Eating Disorders: A Scoping Review. Dietetics 2025, 4, 4. [Google Scholar] [CrossRef]
- Monteleone, E.; Spinelli, S.; Dinnella, C.; Endrizzi, I.; Laureati, M.; Pagliarini, E.; Sinesio, F.; Gasperi, F.; Torri, L.; Aprea, E.; et al. Exploring Influences on Food Choice in a Large Population Sample: The Italian Taste Project. Food Qual. Prefer. 2017, 59, 123–140. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- van Strien, T.; Frijters, J.E.R.; Bergers, G.P.A.; Defares, P.B. The Dutch Eating Behavior Questionnaire (DEBQ) for Assessment of Restrained, Emotional, and External Eating Behavior. Int. J. Eat. Disord. 1986, 5, 295–315. [Google Scholar] [CrossRef]
- Dakanalis, A.; Zanetti, M.A.; Clerici, M.; Madeddu, F.; Riva, G.; Caccialanza, R. Italian Version of the Dutch Eating Behavior Questionnaire. Psychometric Proprieties and Measurement Invariance across Sex, BMI-Status and Age. Appetite 2013, 71, 187–195. [Google Scholar] [CrossRef]
- van Strien, T.; Frijters, J.E.R.; van Staveren, W.A.; Defares, P.B.; Deurenberg, P. The Predictive Validity of the Dutch Restrained Eating Scale. Int. J. Eat. Disord. 1986, 5, 747–755. [Google Scholar] [CrossRef]
- Larsen, J.K.; van Strien, T.; Eisinga, R.; Herman, C.P.; Engels, R.C.M.E. Dietary Restraint: Intention versus Behavior to Restrict Food Intake. Appetite 2007, 49, 100–108. [Google Scholar] [CrossRef]
- Lynam, D.R.; Smith, G.T.; Whiteside, S.P.; Cyders, M.A. The UPPS-P: Assessing Five Personality Pathways to Impulsive Behavior. West Lafayette Purdue Univ. 2006, 10. [Google Scholar]
- Billieux, J.; Rochat, L.; Ceschi, G.; Carré, A.; Offerlin-Meyer, I.; Defeldre, A.-C.; Khazaal, Y.; Besche-Richard, C.; Van der Linden, M. Validation of a Short French Version of the UPPS-P Impulsive Behavior Scale. Compr. Psychiatry 2012, 53, 609–615. [Google Scholar] [CrossRef]
- Cyders, M.A.; Littlefield, A.K.; Coffey, S.; Karyadi, K.A. Examination of a short English version of the UPPS-P Impulsive Behavior Scale. Addict. Behav. 2014, 39, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- D’Orta, I.; Burnay, J.; Aiello, D.; Niolu, C.; Siracusano, A.; Timpanaro, L.; Khazaal, Y.; Billieux, J. Development and Validation of a Short Italian UPPS-P Impulsive Behavior Scale. Addict. Behav. Rep. 2015, 2, 19–22. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity: Preventing and Managing the Global Epidemic: World Health Organization; World Health Organization: Geneva, Switzerland, 2000.
- Agresti, A. An Introduction to Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 978-1-119-40526-9. [Google Scholar]
- Yee, T. Vector Generalized Linear and Additive Models: With an Implementation in R; Springer: New York, NY, USA, 2015; ISBN 978-1-4939-2817-0. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Yee, T.W. VGAM: Vector Generalized Linear and Additive Models. 2017. Available online: https://cran.r-project.org/web/packages/VGAM/index.html (accessed on 4 March 2025).
- Greenwell, B.; McCarthy, A.; Boehmke, B. Sure: Surrogate Residuals for Ordinal and General Regression Models. 2017. Available online: https://cran.r-project.org/web/packages/sure/sure.pdf (accessed on 4 March 2025).
- Kassambara, A. Ggpubr: “ggplot2” Based Publication Ready Plots 2023. Available online: https://rpkgs.datanovia.com/ggpubr/ (accessed on 4 March 2025).
- Brunson, J.C. Ggalluvial: Layered Grammar for Alluvial Plots. J. Open Source Softw. 2020, 5, 2017. [Google Scholar] [CrossRef]
- Taillie, L.S.; Bercholz, M.; Popkin, B.; Rebolledo, N.; Reyes, M.; Corvalán, C. Decreases in Purchases of Energy, Sodium, Sugar, and Saturated Fat 3 Years after Implementation of the Chilean Food Labeling and Marketing Law: An Interrupted Time Series Analysis. PLoS Med. 2024, 21, e1004463. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo, N.; Ferrer-Rosende, P.; Reyes, M.; Taillie, L.S.; Corvalán, C. Food Industry Compliance With the Display of Front-of-Package Warning Labels at the Final Phase (2020) of Chile’s Labeling and Advertising Law. Am. J. Public Health 2024, 114, 1398–1405. [Google Scholar] [CrossRef]
- Hartley, C.; Keast, R.S.; Liem, D.G. The Response of More Health Focused and Less Health Focused People to a Physical Activity Calorie Equivalent Label on Discretionary Snack Foods. Nutrients 2019, 11, 525. [Google Scholar] [CrossRef]
- Chung, D.H.; Han, D.B.; Nayga, R.M., Jr.; Lee, S.H. Does More Information Mean Better Choices? A Study on Calorie Display and Consumer Behavior in Restaurants. Food Qual. Prefer. 2024, 113, 105044. [Google Scholar] [CrossRef]
- Grunert, K.G.; Fernández-Celemín, L.; Wills, J.M.; Storcksdieck genannt Bonsmann, S.; Nureeva, L. Use and Understanding of Nutrition Information on Food Labels in Six European Countries. J. Public Health 2010, 18, 261–277. [Google Scholar] [CrossRef]
- Pilgrim, A.L.; Robinson, S.M.; Sayer, A.A.; Roberts, H.C. An Overview of Appetite Decline in Older People. Nurs. Older People 2015, 27, 29–35. [Google Scholar] [CrossRef]
- Roberts, S.B.; Rosenberg, I. Nutrition and Aging: Changes in the Regulation of Energy Metabolism with Aging. Physiol. Rev. 2006, 86, 651–667. [Google Scholar] [CrossRef]
- VanEpps, E.M.; Downs, J.S.; Loewenstein, G. Calorie Label Formats: Using Numeric and Traffic Light Calorie Labels to Reduce Lunch Calories. J. Public Policy Mark. 2016, 35, 26–36. [Google Scholar] [CrossRef]
- Kim, G.; Oh, J.; Cho, M. Differences between Vegetarians and Omnivores in Food Choice Motivation and Dietarian Identity. Foods 2022, 11, 539. [Google Scholar] [CrossRef]
- Graham, D.J.; Laska, M.N. Nutrition Label Use Partially Mediates the Relationship between Attitude toward Healthy Eating and Overall Dietary Quality among College Students. J. Acad. Nutr. Diet. 2012, 112, 414–418. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamamiya, Y.; Yazawa, M. Relationship Between Impulsivity and Binge Eating in Japanese Adult Women: Using a Japanese Version of S-UPPS-P Impulsive Behavior Scale. Jpn. Psychol. Res. 2023, 65, 336–346. [Google Scholar] [CrossRef]
- Moreno-Padilla, M.; Fernández-Serrano, M.J.; Reyes del Paso, G.A. Risky Decision-Making after Exposure to a Food-Choice Task in Excess Weight Adolescents: Relationships with Reward-Related Impulsivity and Hunger. PLoS ONE 2018, 13, e0202994. [Google Scholar] [CrossRef]
- Migliavada, R.; Coricelli, C.; Bolat, E.E.; Uçuk, C.; Torri, L. The Modulation of Sustainability Knowledge and Impulsivity Traits on the Consumption of Foods of Animal and Plant Origin in Italy and Turkey. Sci. Rep. 2022, 12, 20036. [Google Scholar] [CrossRef] [PubMed]
- Rising, C.J.; Bol, N. Nudging Our Way to a Healthier Population: The Effect of Calorie Labeling and Self-Control on Menu Choices of Emerging Adults. Health Commun. 2017, 32, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Medic, N.; Ziauddeen, H.; Forwood, S.E.; Davies, K.M.; Ahern, A.L.; Jebb, S.A.; Marteau, T.M.; Fletcher, P.C. The Presence of Real Food Usurps Hypothetical Health Value Judgment in Overweight People. Eneuro 2016, 3. [Google Scholar] [CrossRef] [PubMed]
- VanEpps, E.M.; Molnar, A.; Downs, J.S.; Loewenstein, G. Choosing the Light Meal: Real-Time Aggregation of Calorie Information Reduces Meal Calories. J. Mark. Res. 2021, 58, 948–967. [Google Scholar] [CrossRef]
- Gustafson, C.R.; Zeballos, E. Cognitive Aids and Food Choice: Real-Time Calorie Counters Reduce Calories Ordered and Correct Biases in Calorie Estimates. Appetite 2019, 141, 104320. [Google Scholar] [CrossRef]
- Tanasache, O.-A.; Law, C.; Smith, R.D.; Cummins, S.; De Bekker-Grob, E.; Swait, J.; Donkers, B.; Cornelsen, L. Impact of Calorie Labelling on Online Takeaway Food Choices: An Online Menu-Based Choice Experiment in England. Appetite 2025, 207, 107894. [Google Scholar] [CrossRef]
- Byrd, K.; Almanza, B.; Ghiselli, R.F.; Behnke, C.; Eicher-Miller, H.A. Adding Sodium Information to Casual Dining Restaurant Menus: Beneficial or Detrimental for Consumers? Appetite 2018, 125, 474–485. [Google Scholar] [CrossRef]


| Characteristics | Only Calories | PACE | PDI Pie Chart | Total |
|---|---|---|---|---|
| Age | ||||
| 18–30 | 86 (28.8%) | 65 (22.0%) | 78 (26.8%) | 229 (25.9%) |
| 31–40 | 38 (12.7%) | 55 (18.7%) | 36 (12.4%) | 129 (14.6%) |
| 41–50 | 62 (20.7%) | 58 (19.7%) | 55 (18.9%) | 175 (19.8%) |
| 51–60 | 71 (23.8%) | 75 (25.4%) | 71 (24.4%) | 217 (24.5%) |
| 61–70 | 35 (11.7%) | 34 (11.5%) | 38 (13.0%) | 107 (12.1%) |
| 70+ | 7 (2.3%) | 8 (2.7%) | 13 (4.5%) | 28 (3.1%) |
| Gender | ||||
| Female | 173 (57.9%) | 171 (58.0%) | 170 (58.4%) | 514 (58.1%) |
| Male | 125 (41.8%) | 123 (41.7%) | 119 (40.9%) | 367 (41.5%) |
| Prefer not to say | 1 (0.3%) | 1 (0.3%) | 2 (0.7%) | 4 (0.4%) |
| Education | ||||
| High school or below | 118 (39.5%) | 108 (36.6%) | 123 (42.3%) | 349 (39.4%) |
| Bachelor or above | 181 (60.5%) | 187 (63.4%) | 168 (57.7%) | 536 (60.6%) |
| Location | ||||
| Countryside | 69 (23.1%) | 83 (28.1%) | 87 (29.9%) | 239 (27.0%) |
| Suburbs | 47 (15.7%) | 50 (17.0%) | 46 (15.8%) | 143 (16.2%) |
| City | 183 (61.2%) | 162 (54.9%) | 158 (54.3%) | 503 (56.8%) |
| Income level | ||||
| Low | 144 (48.2%) | 129 (43.7%) | 150 (51.5%) | 423 (47.8%) |
| Medium | 99 (33.1%) | 93 (31.5%) | 80 (27.5%) | 272 (30.7%) |
| High | 41 (13.7%) | 63 (21.4%) | 47 (16.2%) | 151 (17.1%) |
| Not declared | 15 (5.0%) | 10 (3.4%) | 14 (4.8%) | 39 (4.4%) |
| Nationality | ||||
| Italy | 288 (96.3%) | 292 (99.0%) | 287 (98.6%) | 867 (98.0%) |
| Other | 11 (3.7%) | 3 (1.0%) | 4 (1.4%) | 18 (2.0%) |
| BMI level | ||||
| Underweight | 21 (7.0%) | 17 (5.7%) | 13 (4.5%) | 51 (5.8%) |
| Normal | 178 (59.5%) | 182 (61.7%) | 192 (66.0%) | 552 (62.4%) |
| Overweight | 77 (25.8%) | 71 (24.1%) | 69 (23.7%) | 217 (24.5%) |
| Obesity | 23 (7.7%) | 25 (8.5%) | 17 (5.8%) | 65 (7.3%) |
| Diet | ||||
| Does not eat meat | 7 (2.4%) | 12 (4.1%) | 5 (1.7%) | 24 (2.7%) |
| Eats little meat | 56 (18.7%) | 65 (22.0%) | 57 (19.6%) | 178 (20.1%) |
| Eats meat | 232 (77.6%) | 217 (73.6%) | 226 (77.7%) | 675 (76.3%) |
| Other | 4 (1.3%) | 1 (0.3%) | 3 (1.0%) | 8 (0.9%) |
| Weight-loss diet | ||||
| Yes | 36 (12.0%) | 36 (12.2%) | 27 (9.3%) | 99 (11.2%) |
| No | 263 (88.0%) | 259 (87.8%) | 264 (90.7%) | 786 (88.8%) |
| Eating-out frequency | ||||
| Rarely or Never | 52 (17.4%) | 50 (16.9%) | 47 (16.2%) | 149 (16.8%) |
| Up to 2 times a week | 234 (78.3%) | 228 (77.3%) | 232 (79.7%) | 694 (78.4%) |
| 3 or more times a week | 13 (4.3%) | 17 (5.8%) | 12 (4.1%) | 42 (4.8%) |
| Nutritional knowledge | ||||
| Low | 45 (15.0%) | 47 (15.9%) | 53 (18.2%) | 145 (16.4%) |
| Medium | 148 (49.5%) | 134 (45.4%) | 144 (49.5%) | 426 (48.1%) |
| High | 106 (35.5%) | 114 (38.7%) | 94 (32.3%) | 314 (35.5%) |
| Factors | Only Menu Model (Pseudo R2: 0.76) | All Factors Without Interactions (Pseudo R2: 0.81) | With Gender: Menu Interaction (Pseudo R2: 0.81) | With Nutrition Knowledge: Menu Interaction (Pseudo R2: 0.81) | ||||
|---|---|---|---|---|---|---|---|---|
| Estimate | Std. Error | Estimate | Std. Error | Estimate | Std. Error | Estimate | Std. Error | |
| Intercepts | ||||||||
| Medium or higher calories | 2.203 *** | 0.142 | 4.153 *** | 0.71 | 4.152 *** | 0.712 | 4.292 *** | 0.726 |
| High or very high calories | 0.022 | 0.11 | 1.718 * | 0.696 | 1.716 * | 0.698 | 1.849 ** | 0.712 |
| Very high calories | −2.321 *** | 0.147 | −0.87 | 0.697 | −0.872 | 0.7 | −0.753 | 0.713 |
| Menu Designs | ||||||||
| PDI pie chart | 0.134 | 0.154 | 0.168 | 0.16 | 0.176 | 0.21 | 0.178 | 0.275 |
| PACE | −0.155 | 0.153 | −0.098 | 0.159 | −0.12 | 0.208 | −0.379 | 0.262 |
| Socio-Demographics | ||||||||
| Gender (Male) | −0.033 | 0.157 | −0.044 | 0.24 | −0.039 | 0.157 | ||
| Age | −0.027 *** | 0.005 | −0.027 *** | 0.005 | −0.026 *** | 0.005 | ||
| Instruction Level | ||||||||
| High school or below | −0.005 | 0.143 | −0.004 | 0.144 | −0.015 | 0.144 | ||
| Income Levels | ||||||||
| Low | 0.055 | 0.211 | 0.057 | 0.212 | 0.03 | 0.212 | ||
| Medium | −0.125 | 0.203 | −0.123 | 0.203 | −0.13 | 0.204 | ||
| Not declared | 0.177 | 0.367 | 0.18 | 0.367 | 0.217 | 0.368 | ||
| BMI Level | ||||||||
| Underweight | −0.852 ** | 0.302 | −0.849 ** | 0.302 | −0.898 ** | 0.304 | ||
| Overweight | 0.449 ** | 0.167 | 0.448 ** | 0.167 | 0.444 ** | 0.167 | ||
| Obesity | 0.530 * | 0.267 | 0.531 * | 0.267 | 0.509. | 0.268 | ||
| Meat Consumption | ||||||||
| Eats little meat | −0.778 *** | 0.17 | −0.779 *** | 0.17 | −0.762 *** | 0.17 | ||
| Does not eat meat | −1.207 ** | 0.406 | −1.207 ** | 0.406 | −1.283 ** | 0.408 | ||
| Eating out frequency | ||||||||
| Up to 2 times a week | −0.143 | 0.314 | −0.141 | 0.314 | −0.148 | 0.315 | ||
| Rarely or never | −0.018 | 0.354 | −0.017 | 0.354 | −0.006 | 0.355 | ||
| Hunger Level | ||||||||
| Medium | 0.267 | 0.222 | 0.268 | 0.223 | 0.265 | 0.223 | ||
| High | 0.116 | 0.183 | 0.116 | 0.183 | 0.127 | 0.184 | ||
| Nutrition Knowledge | ||||||||
| Medium | 0.171 | 0.147 | 0.172 | 0.147 | 0.117 | 0.249 | ||
| Low | 0.279 | 0.209 | 0.28 | 0.209 | −0.142 | 0.349 | ||
| Weight-loss diet | ||||||||
| Yes | 0.508 * | 0.225 | 0.510 * | 0.225 | 0.520 * | 0.225 | ||
| DEBQ-R | ||||||||
| Restricted Behavior | −0.068 *** | 0.019 | −0.068 *** | 0.019 | −0.069 *** | 0.019 | ||
| Restricted Intention | 0.031 | 0.038 | 0.031 | 0.038 | 0.034 | 0.038 | ||
| SUPP-S | ||||||||
| Negative urgency | 0.005 | 0.033 | 0.005 | 0.033 | 0.003 | 0.033 | ||
| Positive urgency | 0.03 | 0.039 | 0.03 | 0.039 | 0.035 | 0.039 | ||
| Sensation seeking | 0.016 | 0.029 | 0.016 | 0.029 | 0.014 | 0.029 | ||
| Perseverance | 0.046 | 0.034 | 0.046 | 0.034 | 0.044 | 0.035 | ||
| Premeditation | −0.024 | 0.041 | −0.025 | 0.041 | −0.027 | 0.041 | ||
| Interactions Menu: Gender | ||||||||
| PDI pie chart: male | −0.02 | 0.324 | ||||||
| PACE: male | 0.053 | 0.321 | ||||||
| Interactions Menu: Nutrition Knowledge | ||||||||
| PDI pie chart: medium | −0.17 | 0.357 | ||||||
| PACE: medium | 0.328 | 0.348 | ||||||
| PDI pie chart: low | 0.472 | 0.484 | ||||||
| PACE: low | 0.826. | 0.482 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliavada, R.; Ricci, M.; Garavelli, G.; Ricci, F.Z.; Torri, L. The Way Calories Are Displayed on Restaurant Menus May Not Affect Calorie Intake: Evidence from an Online Experiment. Nutrients 2025, 17, 3642. https://doi.org/10.3390/nu17233642
Migliavada R, Ricci M, Garavelli G, Ricci FZ, Torri L. The Way Calories Are Displayed on Restaurant Menus May Not Affect Calorie Intake: Evidence from an Online Experiment. Nutrients. 2025; 17(23):3642. https://doi.org/10.3390/nu17233642
Chicago/Turabian StyleMigliavada, Riccardo, Michele Ricci, Giulia Garavelli, Federica Zoe Ricci, and Luisa Torri. 2025. "The Way Calories Are Displayed on Restaurant Menus May Not Affect Calorie Intake: Evidence from an Online Experiment" Nutrients 17, no. 23: 3642. https://doi.org/10.3390/nu17233642
APA StyleMigliavada, R., Ricci, M., Garavelli, G., Ricci, F. Z., & Torri, L. (2025). The Way Calories Are Displayed on Restaurant Menus May Not Affect Calorie Intake: Evidence from an Online Experiment. Nutrients, 17(23), 3642. https://doi.org/10.3390/nu17233642

