Effects of Artificial Sweeteners on the Musculoskeletal System: A Systematic Review of Current Evidence
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Data Analysis
2.6. Quality Assessment
3. Results
3.1. Skeletal System
3.1.1. Influence of ASs on Bone Quality
3.1.2. Toxicity to Skeletal Development
3.1.3. Genetic and Cellular Effects
3.2. Muscular System
3.3. Joint
4. Discussion
4.1. Effects on the Skeletal System
4.1.1. Effects on Genotoxicity
4.1.2. Effects on Phenotypes
4.2. Effects on the Muscle System
4.3. Effects on Joint
4.4. Limitations, Challenges and Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schernhammer, E.S.; Bertrand, K.A.; Birmann, B.M.; Sampson, L.; Willett, W.C.; Feskanich, D. Consumption of artificial sweetener- and sugar-containing soda and risk of lymphoma and leukemia in men and women. Am. J. Clin. Nutr. 2012, 96, 1419–1428. [Google Scholar] [CrossRef]
- Chowaniec, J.; Hicks, R.M. Response of the rat to saccharin with particular reference to the urinary bladder. Br. J. Cancer 1979, 39, 355–375. [Google Scholar] [CrossRef]
- Suez, J.; Cohen, Y.; Valdés-Mas, R.; Mor, U.; Dori-Bachash, M.; Federici, S.; Zmora, N.; Leshem, A.; Heinemann, M.; Linevsky, R.; et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022, 185, 3307–3328.e3319. [Google Scholar] [CrossRef]
- Wu, W.; Sui, W.; Chen, S.; Guo, Z.; Jing, X.; Wang, X.; Wang, Q.; Yu, X.; Xiong, W.; Ji, J.; et al. Sweetener aspartame aggravates atherosclerosis through insulin-triggered inflammation. Cell Metab. 2025, 37, 1075–1088.e7. [Google Scholar] [CrossRef]
- Gardener, H.; Elkind, M.S.V. Artificial Sweeteners, Real Risks. Stroke 2019, 50, 549–551. [Google Scholar] [CrossRef]
- Debras, C.; Chazelas, E.; Sellem, L.; Porcher, R.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Agaësse, C.; De Sa, A.; Lutchia, R.; et al. Artificial sweeteners and risk of cardiovascular diseases: Results from the prospective NutriNet-Santé cohort. BMJ 2022, 378, e071204. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.L.; McMillin, S.L.; Weyrauch, L.A.; Witczak, C.A. Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 2019, 11, 2432. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Moon, J.H.; Choi, S.H.; Lim, S.; Lim, J.Y.; Kim, K.W.; Jang, H.C. Lower baseline value and greater decline in BMD as independent risk factors for mortality in community dwelling elderly. Bone 2019, 121, 204–211. [Google Scholar] [CrossRef]
- Malbert, C.H.; Horowitz, M.; Young, R.L. Low-calorie sweeteners augment tissue-specific insulin sensitivity in a large animal model of obesity. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2380–2391. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.S.; Ruy, C.C.; Rabelo Paiva Caria, C.; Gambero, A. Effects of long-term consumption of sucralose associated with high-fat diet in male mice. Food Funct. 2021, 12, 9904–9911. [Google Scholar] [CrossRef]
- Luna, M.; Guss, J.D.; Vasquez-Bolanos, L.S.; Castaneda, M.; Rojas, M.V.; Strong, J.M.; Alabi, D.A.; Dornevil, S.D.; Nixon, J.C.; Taylor, E.A.; et al. Components of the Gut Microbiome That Influence Bone Tissue-Level Strength. J. Bone Miner. Res. 2021, 36, 1823–1834. [Google Scholar] [CrossRef] [PubMed]
- Cyphert, E.L.; Liu, C.; Morales, A.L.; Nixon, J.C.; Blackford, E.; Garcia, M.; Cevallos, N.; Turnbaugh, P.J.; Brito, I.L.; Booth, S.L.; et al. Effects of long-term high dose aspartame on body mass, bone strength, femoral geometry, and microbiota composition in a young and aged cohort of male and female mice. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Pandaram, A.; Paul, J.; Wankhar, W.; Thakur, A.; Verma, S.; Vasudevan, K.; Wankhar, D.; Kammala, A.K.; Sharma, P.; Jaganathan, R.; et al. Aspartame Causes Developmental Defects and Teratogenicity in Zebra Fish Embryo: Role of Impaired SIRT1/FOXO3a Axis in Neuron Cells. Biomedicines 2024, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Raben, A.; Vasilaras, T.H.; Møller, A.C.; Astrup, A. Sucrose compared with artificial sweeteners: Different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am. J. Clin. Nutr. 2002, 76, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Chakrabarti, J. In vivo cytogenetic studies on mice exposed to acesulfame-K--a non-nutritive sweetener. Food Chem. Toxicol. 1997, 35, 1177–1179. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Mukherjee, A.; Chakrabarti, J. In vivo cytogenetic studies on blends of aspartame and acesulfame-K. Food Chem. Toxicol. 2000, 38, 75–77. [Google Scholar] [CrossRef]
- Alsuhaibani, E.S. In vivo cytogenetic studies on aspartame. Comp. Funct. Genom. 2010, 2010, 605921. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Ghoshal, S.; Mukherjee, A. Genotoxicity testing of low-calorie sweeteners: Aspartame, acesulfame-K, and saccharin. Drug Chem. Toxicol. 2008, 31, 447–457. [Google Scholar] [CrossRef]
- Gombos, K.; Varjas, T.; Orsós, Z.; Polyák, E.; Peredi, J.; Varga, Z.; Nowrasteh, G.; Tettinger, A.; Mucsi, G.; Ember, I. The effect of aspartame administration on oncogene and suppressor gene expressions. In Vivo 2007, 21, 89–92. [Google Scholar]
- Parlee, S.D.; Simon, B.R.; Scheller, E.L.; Alejandro, E.U.; Learman, B.S.; Krishnan, V.; Bernal-Mizrachi, E.; MacDougald, O.A. Administration of saccharin to neonatal mice influences body composition of adult males and reduces body weight of females. Endocrinology 2014, 155, 1313–1326. [Google Scholar] [CrossRef]
- Manion, C.V.; Hochgeschwender, U.; Edmundson, A.B.; Hugli, T.E.; Gabaglia, C.R. Dietary aspartyl-phenylalanine-1-methyl ester delays osteoarthritis and prevents associated bone loss in STR/ORT mice. Rheumatology 2011, 50, 1244–1249. [Google Scholar] [CrossRef]
- Maersk, M.; Belza, A.; Stødkilde-Jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef]
- Steffen, B.T.; Jacobs, D.R.; Yi, S.Y.; Lees, S.J.; Shikany, J.M.; Terry, J.G.; Lewis, C.E.; Carr, J.J.; Zhou, X.; Steffen, L.M. Long-term aspartame and saccharin intakes are related to greater volumes of visceral, intermuscular, and subcutaneous adipose tissue: The CARDIA study. Int. J. Obes. 2023, 47, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Rajawat, J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int. J. Mol. Sci. 2021, 22, 3553. [Google Scholar] [CrossRef]
- Walton, M. The effects of long-term administration of ethane-1-hydroxy-1, 1-diphosphonate on osteoarthrosis and heterotopic ossification in the mouse knee joint. Clin. Orthop. Relat. Res. 1981, 155, 218–223. [Google Scholar] [CrossRef]
- Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015, 22, 377–388. [Google Scholar] [CrossRef]
- Qu, D.; Jiang, M.; Huang, D.; Zhang, H.; Feng, L.; Chen, Y.; Zhu, X.; Wang, S.; Han, J. Synergistic Effects of The Enhancements to Mitochondrial ROS, p53 Activation and Apoptosis Generated by Aspartame and Potassium Sorbate in HepG2 Cells. Molecules 2019, 24, 457. [Google Scholar] [CrossRef]
- Shaher, S.A.A.; Mihailescu, D.F.; Amuzescu, B. Aspartame Safety as a Food Sweetener and Related Health Hazards. Nutrients 2023, 15, 3627. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.K.; Lee, Y.Y. Neurophysiological symptoms and aspartame: What is the connection? Nutr. Neurosci. 2018, 21, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Španěl, P.; Dryahina, K.; Vicherková, P.; Smith, D. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion. J. Breath Res. 2015, 9, 047104. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, F.; Cheng, Y.; Holmes, B.; Dhakal, B.; Gera, J.F.; Janz, S.; Lichtenstein, A. Critical Role for Cap-Independent c-MYC Translation in Progression of Multiple Myeloma. Mol. Cancer Ther. 2022, 21, 502–510. [Google Scholar] [CrossRef]
- Piedra, M.E.; Delgado, M.D.; Ros, M.A.; León, J. c-Myc overexpression increases cell size and impairs cartilage differentiation during chick limb development. Cell Growth Differ. 2002, 13, 185–193. [Google Scholar] [PubMed]
- Chen, D.; Hou, X. Aspartame carcinogenic potential revealed through network toxicology and molecular docking insights. Sci. Rep. 2024, 14, 11492. [Google Scholar] [CrossRef] [PubMed]
- Uebanso, T.; Ohnishi, A.; Kitayama, R.; Yoshimoto, A.; Nakahashi, M.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice. Nutrients 2017, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.; Shanahan, F. The normal intestinal microbiota. Curr. Opin. Infect. Dis. 2007, 20, 508–513. [Google Scholar] [CrossRef]
- Weaver, C.M. Diet, gut microbiome, and bone health. Curr. Osteoporos. Rep. 2015, 13, 125–130. [Google Scholar] [CrossRef]
- Zaiss, M.M.; Axmann, R.; Zwerina, J.; Polzer, K.; Gückel, E.; Skapenko, A.; Schulze-Koops, H.; Horwood, N.; Cope, A.; Schett, G. Treg cells suppress osteoclast formation: A new link between the immune system and bone. Arthritis Rheum. 2007, 56, 4104–4112. [Google Scholar] [CrossRef]
- Gaboriau-Routhiau, V.; Rakotobe, S.; Lécuyer, E.; Mulder, I.; Lan, A.; Bridonneau, C.; Rochet, V.; Pisi, A.; De Paepe, M.; Brandi, G.; et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31, 677–689. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Rother, K.I. Nonnutritive Sweeteners in Weight Management and Chronic Disease: A Review. Obesity 2018, 26, 635–640. [Google Scholar] [CrossRef]
- Magnuson, B.A.; Roberts, A.; Nestmann, E.R. Critical review of the current literature on the safety of sucralose. Food Chem. Toxicol. 2017, 106, 324–355. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Bian, X.; Tu, P.; Chi, L.; Gao, B.; Ru, H.; Lu, K. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol. 2017, 107, 530–539. [Google Scholar] [CrossRef]
- Ibáñez, L.; Rouleau, M.; Wakkach, A.; Blin-Wakkach, C. Gut microbiome and bone. Jt. Bone Spine 2019, 86, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.; Acharjee, A.; Birch, R.; de Magalhães, J.P.; Duggal, N.A.; Hainsworth, A.; Hombrebueno, J.R.; Jones, S.W.; Lewis, J.; Mazaheri, A.; et al. Protocol for the REBOUND study: A cohort study to uncover fundamental mechanisms of accelerated ageing and impaired resilience following cancer surgery and treatment. BMC Geriatr. 2025, 25, 502. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Thaete, F.L.; Kelley, D.E. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am. J. Clin. Nutr. 2000, 71, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Bergman, B.C.; Brennan, A.M.; Sparks, L.M. Intermuscular adipose tissue in metabolic disease. Nat. Rev. Endocrinol. 2023, 19, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Addison, O.; Marcus, R.L.; Lastayo, P.C.; Ryan, A.S. Intermuscular fat: A review of the consequences and causes. Int. J. Endocrinol. 2014, 2014, 309570. [Google Scholar] [CrossRef]
- Bajahzer, M.F.; Bruun, J.M.; Rosqvist, F.; Marklund, M.; Richelsen, B.; Risérus, U. Effects of sugar-sweetened soda on plasma saturated and monounsaturated fatty acids in individuals with obesity: A randomized study. Front. Nutr. 2022, 9, 936828. [Google Scholar] [CrossRef]
- Kuk, J.L.; Brown, R.E. Aspartame intake is associated with greater glucose intolerance in individuals with obesity. Appl. Physiol. Nutr. Metab. 2016, 41, 795–798. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Krishnaswami, S.; Resnick, H.; Kelley, D.E.; Haggerty, C.; Harris, T.B.; Schwartz, A.V.; Kritchevsky, S.; Newman, A.B. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 2003, 26, 372–379. [Google Scholar] [CrossRef]
- Griebsch, L.V.; Theiss, E.L.; Janitschke, D.; Erhardt, V.K.J.; Erhardt, T.; Haas, E.C.; Kuppler, K.N.; Radermacher, J.; Walzer, O.; Lauer, A.A.; et al. Aspartame and Its Metabolites Cause Oxidative Stress and Mitochondrial and Lipid Alterations in SH-SY5Y Cells. Nutrients 2023, 15, 1467. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Jiang, S.; Li, H.; Chen, L.; Wu, Y.; Essien, A.E.; Opoku, M.; Naranmandakh, S.; Liu, S.; et al. SIRT1 signaling pathways in sarcopenia: Novel mechanisms and potential therapeutic targets. Biomed. Pharmacother. 2024, 177, 116917. [Google Scholar] [CrossRef] [PubMed]
- Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]
- Barbe, P.; Larrouy, D.; Boulanger, C.; Chevillotte, E.; Viguerie, N.; Thalamas, C.; Oliva Trastoy, M.; Roques, M.; Vidal, H.; Langin, D. Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J. 2001, 15, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Della Guardia, L.; Luzi, L.; Codella, R. Muscle-UCP3 in the regulation of energy metabolism. Mitochondrion 2024, 76, 101872. [Google Scholar] [CrossRef] [PubMed]
- Codella, R.; Alves, T.C.; Befroy, D.E.; Choi, C.S.; Luzi, L.; Rothman, D.L.; Kibbey, R.G.; Shulman, G.I. Overexpression of UCP3 decreases mitochondrial efficiency in mouse skeletal muscle in vivo. FEBS Lett. 2023, 597, 309–319. [Google Scholar] [CrossRef]
- Huppertz, C.; Fischer, B.M.; Kim, Y.B.; Kotani, K.; Vidal-Puig, A.; Slieker, L.J.; Sloop, K.W.; Lowell, B.B.; Kahn, B.B. Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. J. Biol. Chem. 2001, 276, 12520–12529. [Google Scholar] [CrossRef]
- García-Martinez, C.; Sibille, B.; Solanes, G.; Darimont, C.; Macé, K.; Villarroya, F.; Gómez-Foix, A.M. Overexpression of UCP3 in cultured human muscle lowers mitochondrial membrane potential, raises ATP/ADP ratio, and favors fatty acid vs. glucose oxidation. FASEB J. 2001, 15, 2033–2035. [Google Scholar] [CrossRef]
- López-Lluch, G.; Hunt, N.; Jones, B.; Zhu, M.; Jamieson, H.; Hilmer, S.; Cascajo, M.V.; Allard, J.; Ingram, D.K.; Navas, P.; et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl. Acad. Sci. USA 2006, 103, 1768–1773. [Google Scholar] [CrossRef]
- Haas, R.H. Mitochondrial Dysfunction in Aging and Diseases of Aging. Biology 2019, 8, 48. [Google Scholar] [CrossRef]
- Ghosh, H.S.; McBurney, M.; Robbins, P.D. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 2010, 5, e9199. [Google Scholar] [CrossRef]
- Olivier-Van Stichelen, S.; Rother, K.I.; Hanover, J.A. Maternal Exposure to Non-nutritive Sweeteners Impacts Progeny’s Metabolism and Microbiome. Front. Microbiol. 2019, 10, 1360. [Google Scholar] [CrossRef]
- Srivastava, S. The Mitochondrial Basis of Aging and Age-Related Disorders. Genes 2017, 8, 398. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.E.; Klancic, T.; Schick, A.; Choo, A.C.; Shearer, J.; Borgland, S.L.; Chleilat, F.; Mayengbam, S.; Reimer, R.A. Low-Dose Stevia (Rebaudioside A) Consumption Perturbs Gut Microbiota and the Mesolimbic Dopamine Reward System. Nutrients 2019, 11, 1248. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Jain, N.K.; Kulkarni, S.K. Possible analgesic and anti-inflammatory interactions of aspartame with opioids and NSAIDs. Indian J. Exp. Biol. 2005, 43, 498–502. [Google Scholar]
- Lawal, A.O.; Agboola, O.O.; Akinjiyan, M.O.; Ijatuyi, T.T.; Dahunsi, D.T.; Okeowo, O.M.; Folorunso, I.M.; Olajuyigbe, O.J.; Elekofehinti, O.O. The Antioxidative, Anti-inflammatory and Anti-apoptotic Effects of Tetrapleura Tetraptera (Aidan) Ethanol Leaf Extract in the Brain of Wistar Rats Exposed to Aspartame. Mol. Neurobiol. 2025, 62, 9430–9448. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Kfir, E.; Artsi, H.; Levin, A.; Abramowitz, E.; Bajayo, A.; Gurt, I.; Zhong, L.; D’Urso, A.; Toiber, D.; Mostoslavsky, R.; et al. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology 2011, 152, 4514–4524. [Google Scholar] [CrossRef]
- Simic, P.; Zainabadi, K.; Bell, E.; Sykes, D.B.; Saez, B.; Lotinun, S.; Baron, R.; Scadden, D.; Schipani, E.; Guarente, L. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin. EMBO Mol. Med. 2013, 5, 430–440. [Google Scholar] [CrossRef]
- Sun, W.; Qiao, W.; Zhou, B.; Hu, Z.; Yan, Q.; Wu, J.; Wang, R.; Zhang, Q.; Miao, D. Overexpression of Sirt1 in mesenchymal stem cells protects against bone loss in mice by FOXO3a deacetylation and oxidative stress inhibition. Metabolism 2018, 88, 61–71. [Google Scholar] [CrossRef]
- Liu, C.; Cheung, W.H.; Li, J.; Chow, S.K.; Yu, J.; Wong, S.H.; Ip, M.; Sung, J.J.Y.; Wong, R.M.Y. Understanding the gut microbiota and sarcopenia: A systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 1393–1407. [Google Scholar] [CrossRef]
- Li, J.; Ho, W.T.P.; Liu, C.; Chow, S.K.; Ip, M.; Yu, J.; Wong, H.S.; Cheung, W.H.; Sung, J.J.Y.; Wong, R.M.Y. The role of gut microbiota in bone homeostasis. Bone Jt. Res. 2021, 10, 51–59. [Google Scholar] [CrossRef]
- Choy, M.V.; Wong, R.M.; Li, M.C.; Wang, B.Y.; Liu, X.D.; Lee, W.; Cheng, J.C.; Chow, S.K.; Cheung, W.H. Can we enhance osteoporotic metaphyseal fracture healing through enhancing ultrastructural and functional changes of osteocytes in cortical bone with low-magnitude high-frequency vibration? FASEB J. 2020, 34, 4234–4252. [Google Scholar] [CrossRef]
- Chow, S.K.; Chim, Y.N.; Wang, J.Y.; Wong, R.M.; Choy, V.M.; Cheung, W.H. Inflammatory response in postmenopausal osteoporotic fracture healing. Bone Jt. Res. 2020, 9, 368–385. [Google Scholar] [CrossRef]
- Zhang, N.; Chim, Y.N.; Wang, J.; Wong, R.M.Y.; Chow, S.K.H.; Cheung, W.H. Impaired Fracture Healing in Sarco-Osteoporotic Mice Can Be Rescued by Vibration Treatment Through Myostatin Suppression. J. Orthop. Res. 2020, 38, 277–287. [Google Scholar] [CrossRef]
- Wong, R.M.Y.; Choy, V.M.H.; Li, J.; Li, T.K.; Chim, Y.N.; Li, M.C.M.; Cheng, J.C.Y.; Leung, K.S.; Chow, S.K.; Cheung, W.H. Fibrinolysis as a target to enhance osteoporotic fracture healing by vibration therapy in a metaphyseal fracture model. Bone Jt. Res. 2021, 10, 41–50. [Google Scholar] [CrossRef]

| Study | Strain, Species | Sex | Age | Sweetener | Intervention | Duration | Assessment | |
|---|---|---|---|---|---|---|---|---|
| 1 | Raben et al. [14] (2002) | Human | Male (n = 6) Female (n = 35) | 20–50 years | Aspartame Acesulfame-K Saccharin | G1: Sucrose group (n = 21) G2: Sweetener group (n = 20) | 10 weeks | Bone mineral density |
| 2 | Mukherjee et al. [15] (1997) | Swiss albino mice | Male | 8–10 weeks | Acesulfame-K | G1: Control (n = 4) G2: Acesulfame-K 15 mg/kg (n = 4) G3: Acesulfame-K 30 mg/kg (n = 4) G4: Acesulfame-K 60 mg/kg (n = 4) G5: Acesulfame-K 450 mg/kg (n = 4) G6: Acesulfame-K 1500 mg/kg (n = 4) G7: Acesulfame-K 2250 mg/kg (n = 4) | 18 h | Bone marrow chromosome analysis Damaged bone marrow cells |
| 3 | Mukhopadhyay et al. [16] (2000) | Swiss albino mice | Male | 8–10 weeks | Aspartame Acesulfame-K | G1: 3.5 mg/kg body weight ASPTM + 1.5 mg/kg body weight ASK G2: 35 mg/kg body weight ASPTM + 15 mg/kg body weight ASK G3: 350 mg/kg body weight ASPTM + 150 mg/kg body weight ASK | 18 h | Bone marrow chromosome analysis Damaged bone marrow cells |
| 4 | Entissar S. AlSuhaibani [17] (2010) | Swiss albino mice | Male | 8–10 weeks | Aspartame | G1: Control (n = 5) G2: 3.5 mg/kg body weight (n = 5) G3: 35 mg/kg body weight (n = 5) G4: 350 mg/kg body weight (n = 5) | 24 h | Bone marrow chromosome analysis Sister Chromatid Exchange Assay Mitotic Indices |
| 5 | Bandyopadhyay et al. [18] (2008) | Swiss albino mice | Male | 8–10 weeks | Aspartame | G1: ASP 0 mg/kg (n = 4) G2: ASP 7 mg/kg (n = 4) G3: ASP 14 mg/kg (n = 4) G4: ASP 28 mg/kg (n = 4) G5: ASP 35 mg/kg (n = 4) | 18 h | DNA damage in bone marrow cells |
| Acesulfame-K | G1: ASK 0 mg/kg (n = 4) G2: ASK 150 mg/kg (n = 4) G3: ASK 300 mg/kg (n = 4) G4: ASK 600 mg/kg (n = 4) | |||||||
| Saccharin | G1: Saccharin 0 mg/kg (n = 4) G2: Saccharin 50 mg/kg (n = 4) G3: Saccharin 100 mg/kg (n = 4) G4: Saccharin 200 mg/kg (n = 4) | |||||||
| 6 | Gombos et al. [19] (2007) | CBA/CA mice | Female | 5 weeks | Aspartame | G1: Control (n = 6) G2: Aspartame 40 mg/kg (n = 6) G3: Aspartame 200 mg/kg (n = 6) G4: Aspartame 2500 mg/kg (n = 6) | 1 weeks | Bone marrow gene expression |
| 7 | Cyphert et al. [12] (2024) | C57BL/6J mice | Male (n = 40) Female (n = 40) | 1 month | Aspartame | G1: chronic 10 g/L aspartame dosing from 1 to 4 months of age (n = 40) G2: untreated control 4 months of age (n = 40) | 4 months | Whole bone mass Whole bone strength Femur length Tissue strength Distance to neutral axis Maximum load Yield displacement Stiffness Yield load Work to failure |
| Male (n = 32) Female (n = 20) | 1 month | G3: chronic aspartame dosing from 1 to 22 months of age (n = 22) G4: untreated control 22 months of age (n = 30) | 22 months | |||||
| 8 | Luna et al. [11] (2021) | C57BL/6J mice | Male | 4 weeks | Aspartame Acesulfame-K | G1: Untreated control (n = 10) G2: zero-calorie sweetener (n = 9) | 12 weeks | Bone geometry Whole-bone strength Bone volume fraction Trabecular thickness Femur length |
| 9 | Parlee et al. [20] (2014) | C57BL/6J mice | Male (n = 23) Female (n = 27) | New born | Saccharin | G1: Male control (n = 13) G2: Male saccharin (n = 10) G3: Female control (n = 12) G4: Female saccharin (n = 15) | 14 weeks | Tibial bone Trabecular bone Cortical bone |
| 10 | Pandaram et al. [13] (2024) | Zebra fish | / | Fertilized Eggs | Aspartame | G1: Control (n = 10) G2: Aspartame 20 μg/mL (n = 10) G3: Aspartame 40 μg/mL (n = 10) G4: Aspartame 60 μg/mL (n = 10) G5: Aspartame 80 μg/mL (n = 10) G6: Aspartame 100 μg/mL (n = 10) | 24–48 h | Somite Development Cartilage development |
| 11 | Manion et al. [21] (2011) | STR/ORT mice | Male (n = 23) Female (n = 26) | 3 weeks | Aspartame | G1: Regular diet (n = 23) G2: Aspartame 4 mg/kg containing diet (n = 26) | 15 months | Disease score Femoral cortical bone density |
| 12 | Maersk et al. [22] (2012) | Human | Male (n = 17) Female (n = 30) | 20–50 years | Aspartame | G1: sucrose-sweetened regular cola (n = 10) G2: aspartame sweetened diet cola (n = 12) G3: semiskim milk (n = 12) G4: still mineral water (n = 13) | 6 months | Bone mass Intramyocellular fat |
| 13 | Steffen et al. [23] (2023) | Human | Male (n = 1352) Female (n = 1736) | 18–30 years | Aspartame | Quintile 1 (n = 617) Quintile 2 (n = 618) Quintile 3 (n = 618) Quintile 4 (n = 618) Quintile 5 (n = 617) | 25 years | Intermuscular adipose tissue |
| Male (n = 1352) Female (n = 1736) | 18–30 years | Saccharin | Tentile 1 (n = 1919) Tentile 2 (n = 597) Tentile 3 (n = 572) | |||||
| Male (n = 1352) Female (n = 1736) | 18–30 years | Sucralose | Quintile 1 (n = 617) Quintile 2 (n = 618) Quintile 3 (n = 618) Quintile 4 (n = 618) Quintile 5 (n = 617) | |||||
| 14 | Malbert et al. [9] (2019) | Yucatan mini-pigs | Male (n = 10) Female (n = 10) | 3 years | Sucralose Acesulfame-K | G1: Control (n = 10) G2: Low-calorie sweetener diet (n = 10) | 3 months | Glucose Uptake in Skeletal Muscle Insulin Sensitivity in Skeletal Muscle |
| 15 | Santos et al. [10] (2021) | Swiss mice | Male | 6 weeks | Sucralose | G1: Control (n = 5) G2: Control + Sucralose (n = 5) G3: High-fat diet (n = 5) G4: High-fat diet + Sucralose (n = 5) | 16 weeks | Gastrocnemius muscle Muscle gene expression |
| Study | Strain | Sweetener | Target Tissue | Direction of Effect | Results | |
|---|---|---|---|---|---|---|
| 1 | Raben et al. [14] (2002) | Human | Aspartame Acesulfame-K Saccharin | Bone | Neutral | No significant changes in bone mineral content, bone area, or bone mineral density |
| 2 | Mukherjee et al. [15] (1997) | Mouse | Acesulfame-K | Bone | Negative | Significant clastogenicity at ≥60 mg/kg (p < 0.05). |
| 3 | Mukhopadhyay et al. [16] (2000) | Mouse | Aspartame Acesulfame-K | Bone | Neutral | No significant chromosomal aberrations (CA/cell or % damaged cells) in treated groups compared to controls. |
| 4 | Entissar S. AlSuhaibani [17] (2010) | Mouse | Aspartame | Bone | Neutral | Dose-dependent induction of chromosomal aberrations (CAs) at 35 and 350 mg/kg. No significant increase in sister chromatid exchanges (SCEs). No decrease in mitotic index (MI), indicating no cytotoxic effect on cell division. |
| 5 | Bandyopadhyay et al. [18] (2008) | Mouse | Aspartame | Bone | Negative | Dose-dependent DNA damage in bone marrow cells (>35 mg/kg) |
| Acesulfame-K | Dose-dependent DNA damage in bone marrow cells >150 mg/kg) | |||||
| Saccharin | Dose-dependent DNA damage in bone marrow cells (>50 mg/kg) | |||||
| 6 | Gombos et al. [19] (2007) | Mouse | Aspartame | Bone | Negative | Elevated oncogene (c-myc, Ha-ras) and tumor suppressor gene (p53) expression. |
| 7 | Cyphert et al. [12] (2024) | Mouse | Aspartame | Bone | Positive | Young mice/females: No significant changes. Aged males: Increased bone geometry (section modulus, cross-sectional area, moment of inertia) and strength, correlated with body mass. |
| 8 | Luna et al. [11] (2021) | Mouse | Aspartame Acesulfame-K | Bone | Positive | Increased tissue-level strength and trabecular BV/TV (+21% vs. untreated). |
| 9 | Parlee et al. [20] (2014) | Mouse | Saccharin | Bone | Positive | Males: Increased tibial length, trabecular bone volume (+35%), trabecular thickness (+13%), cortical bone volume (+11%), and bone mineral content. Females: Altered cortical bone (increased bone volume fraction and mineral content) but no trabecular changes. |
| 10 | Pandaram et al. [13] (2024) | Fish | Aspartame | Bone/Joint | Negative | Reduced cartilage development in zebrafish and delayed axial growth |
| 11 | Manion et al. [21] (2011) | Mouse | Aspartame | Bone/Joint | Positive | Aspartame significantly delayed osteoarthritis onset in STR/ORT mice compared to controls. Higher femoral cortical bone density in aspartame-fed animals. |
| 12 | Maersk et al. [22] (2012) | Human | Aspartame | Bone/Muscle | Negative | Significant increase in skeletal muscle fat in the regular cola group (117–221%, p < 0.05) compared to milk, diet cola, and water. |
| 13 | Steffen et al. [23] (2023) | Human | Aspartame | Muscle | Negative | Positive associations between ASs (aspartame, saccharin) and increased adipose tissue volumes. |
| Saccharin | ||||||
| Sucralose | ||||||
| 14 | Malbert et al. [9] (2019) | Pig | Sucralose Acesulfame-K | Muscle | Neutral | Skeletal muscle glucose uptake and insulin sensitivity remained unchanged in the Low-calorie sweetener diet group compared to controls. |
| 15 | Santos et al. [10] (2021) | Mouse | Sucralose | Muscle | Neutral | Upregulation of Ucp3, Sirt1, and Pgc1a in skeletal muscle of high-fat diet + Sucralose mice. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wang, Q.; Li, B.; Liu, C.; Cui, C.; Yi, M.; Zhai, L.; Wong, R.M.Y.; Zhang, N.; Cheung, W.H. Effects of Artificial Sweeteners on the Musculoskeletal System: A Systematic Review of Current Evidence. Nutrients 2025, 17, 3489. https://doi.org/10.3390/nu17213489
Xu X, Wang Q, Li B, Liu C, Cui C, Yi M, Zhai L, Wong RMY, Zhang N, Cheung WH. Effects of Artificial Sweeteners on the Musculoskeletal System: A Systematic Review of Current Evidence. Nutrients. 2025; 17(21):3489. https://doi.org/10.3390/nu17213489
Chicago/Turabian StyleXu, Xiaoxu, Qianjin Wang, Baoqi Li, Chaoran Liu, Can Cui, Ming Yi, Liting Zhai, Ronald Man Yeung Wong, Ning Zhang, and Wing Hoi Cheung. 2025. "Effects of Artificial Sweeteners on the Musculoskeletal System: A Systematic Review of Current Evidence" Nutrients 17, no. 21: 3489. https://doi.org/10.3390/nu17213489
APA StyleXu, X., Wang, Q., Li, B., Liu, C., Cui, C., Yi, M., Zhai, L., Wong, R. M. Y., Zhang, N., & Cheung, W. H. (2025). Effects of Artificial Sweeteners on the Musculoskeletal System: A Systematic Review of Current Evidence. Nutrients, 17(21), 3489. https://doi.org/10.3390/nu17213489

