A Systematic Review of the Correlation Between Micronutrient Levels and Perinatal Depression
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
- “Postpartum depression” OR “Postnatal depression” OR “Antepartum depression” OR “Antenatal depression: OR “Peripartum depression” OR “Perinatal depression”
- “Micronutrient*” OR “Biological marker*” OR “Biomarker*” OR “Trace element*” OR “Trace metal*” OR “Zinc” OR “Copper” OR “Selenium” OR “Magnesium” OR “Iron” OR “Vitamin*” OR “Folate”.
2.2. Eligibility Criteria
- -
- Peer-reviewed journal articles or dissertations written in English.
- -
- Population (P): Women of any age who were pregnant or within 12 months postpartum.
- -
- Intervention/Exposure (I): Assessment of blood micronutrient levels, where micronutrients are defined as vitamins and minerals essential for human life [15]. Measurements in terms of serum levels, plasma levels, whole blood levels, or blood cell levels of the micronutrient were all considered acceptable.
- -
- Comparator (C): The comparator groups include women with differing micronutrient levels, women without micronutrient deficiency, or no comparator group (as applicable to the study design).
- -
- Outcome (O): Presence and/or severity of perinatal depression, determined either by a validated rating scale or by a clinical diagnosis according to recognised classification systems, such as the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM) or the World Health Organization’s International Classification of Diseases (ICD) [16,17].
2.3. Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Selection and Description of Studies
3.2. Main Findings
3.2.1. Vitamin D
3.2.2. Iron
3.2.3. Folate
3.2.4. Vitamin B12
3.2.5. Zinc
3.2.6. Copper
3.2.7. Other Micronutrients
4. Methodological Quality
5. Discussion
Strengths, Limitations, and Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Woody, C.A.; Ferrari, A.J.; Siskind, D.J.; Whiteford, H.A.; Harris, M.G. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. J. Affect. Disord. 2017, 219, 86–92. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetrics and Gynecology. Treatment and Management of Mental Health Conditions During Pregnancy and Postpartum: ACOG Clinical Practice Guidelines number 5. Obs. Gynecol. 2023, 141, 1262–1288. [Google Scholar] [CrossRef]
- Oates, M. Perinatal psychiatry disroders: A leading cause of maternal morbidity and mortality. Br. Med. Bull. 2003, 67, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Davalos, D.B.; Yaden, C.A.; Tregallos, H.C. Untreated prenatal maternal depression and the potential risks to the offspring: A review. Arch. Women’s Ment. Health 2012, 15, 1–14. [Google Scholar] [CrossRef]
- Paulson, J.F.; Bazelmore, S.D. Prenatal and postpartum depression in fathers and its association with maternal depression: A meta-analysis. JAMA Psychiatry 2010, 303, 1961–1969. [Google Scholar]
- Wickramaratne, P.; Gameroff, M.J.; Pilowsky, D.J.; Hughes, C.W.; Garber, J.; Malloy, E.; King, C.; Cerda, G.; Sood, A.B.; Alpert, J.E.; et al. Children of depressed mothers 1 year after remission of maternal depression: Findings from the STAR*D-child study. Am. J. Psychiatry 2011, 168, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Wisner, K.L. Nutrition and depression: Implications for improving mental health among childbearing-aged women. Biol. Psychiatry 2005, 58, 679–685. [Google Scholar] [CrossRef]
- Bottiglieri, T. Homocysteine and folate metabolism in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 1103–1112. [Google Scholar] [CrossRef]
- Barrondo, S.; Salles, J. Allosteric modulation of 5HT1A receptors in zinc: Binding studies. Neuropharmacology 2009, 56, 455–462. [Google Scholar] [CrossRef]
- Roomruangwong, C.; Kanchanatawan, B.; Sirivichayakul, S.; Mahieu, B.; Nowak, G.; Maes, M. Lower Serum Zinc and Higher CRP Strongly Predict Prenatal Depression and Physio-somatic Symptoms, Which All Together Predict Postnatal Depressive Symptoms. Mol. Neurobiol. 2017, 54, 1500–1512. [Google Scholar] [CrossRef]
- Centre of Perinatal Excellence (COPE). Mental Health Care in the Perinatal Period: Australian Clinical Practice Guideline; Department of Health and Aged Care: Phillip, Australia, 2023; Available online: https://www.cope.org.au/uploads/images/Health-professionals/COPE_2023_Perinatal_Mental_Health_Practice_Guideline.pdf (accessed on 30 October 2025).
- RANZCOG. Distress, Depression and Anxiety During Pregnancy and Following Birth. 2017. Available online: https://ranzcog.edu.au/wp-content/uploads/Depression-Anxiety-During-Pregnancy.pdf (accessed on 30 October 2025).
- Malhi, G.S.; Bell, E.; Bassett, D.; Boyce, P.; Bryant, R.; Hazell, P.; Hopwood, M.; Lyndon, B.; Mulder, R.; Porter, R.; et al. The 2020 Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust. New Zealand J. Psychiatry 2021, 55, 7–117. [Google Scholar] [CrossRef]
- RANZCP. Perinatal mental health services. RANZCP. 2021. Available online: https://www.ranzcp.org/clinical-guidelines-publications/clinical-guidelines-publications-library/perinatal-mental-health-services (accessed on 30 October 2025).
- World Health Organisation. Micronutrients. Available online: https://www.who.int/health-topics/micronutrients#tab=tab_1 (accessed on 30 October 2025).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders Fifth Edition Text Revision DSM-5-TR; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- World Health Organisation. International Classification of Diseases for Mortality and Morbidity Statistics (11th Revision); World Health Organisation: Geneva, Switzerland, 2019. [Google Scholar]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 30 October 2025).
- Barker, T.H.; Stone, J.C.; Sears, K.; Klugar, M.; Tufanaru, C.; Leonardi-Bee, J.; Aromataris, E.; Munn, Z. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evid. Synth. 2023, 21, 494–506. [Google Scholar] [CrossRef]
- Trujillo, J.; Vieira, M.C.; Lepsch, J.; Rebelo, F.; Poston, L.; Pasupathy, D.; Kac, G. A systematic review of the associations between maternal nutritional biomarkers and depression and/or anxiety during pregnancy and postpartum. J. Affect. Disord. 2018, 232, 185–203. [Google Scholar] [CrossRef]
- Abedi, P.; Bovayri, M.; Fakhri, A.; Jahanfar, S. The Relationship Between Vitamin D and Postpartum Depression in Reproductive-Aged Iranian Women. J. Med. Life 2018, 11, 286–292. [Google Scholar] [CrossRef]
- Accortt, E.; Schetter, C.; Peters, R.; Cassidy-Bushrow, A. Lower prenatal vitamin D status and postpartum depressive symptomatology in African American women: Preliminary evidence for moderation by inflammatory cytokines. Arch. Women’s Ment. Health 2016, 19, 373–383. [Google Scholar] [CrossRef]
- Accortt, E.E.; Arora, C.; Mirocha, J.; Jackman, S.; Liang, R.; Karumanchi, S.A.; Berg, A.H.; Hobel, C.J. Low prenatal vitamin D metabolite ratio and subsequent postpartum depression risk. J. Women’s Health 2021, 30, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Amini, S.; Amani, R.; Jafarirad, S.; Cheraghian, B.; Sayyah, M.; Hemmati, A.A. The effect of vitamin D and calcium supplementation on inflammatory biomarkers, estradiol levels and severity of symptoms in women with postpartum depression: A randomized double-blind clinical trial. Nutr. Neurosci. 2022, 25, 22–32. [Google Scholar] [CrossRef]
- Brandenbarg, J.; Vrijkotte, T.G.M.; Goedhart, G.; Van Eijsden, M. Maternal early-pregnancy vitamin d status is associated with maternal depressive symptoms in the amsterdam born children and their development cohort. Psychosom. Med. 2012, 74, 751–757. [Google Scholar] [CrossRef]
- Cassidy-Bushrow, A.E.; Peters, R.M.; Johnson, D.A.; Li, J.; Rao, D.S. Vitamin D nutritional status and antenatal depressive symptoms in African American women. J. Women’s Health 2012, 21, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Cunha Figueiredo, A.C.; Trujillo, J.; Freitas-Vilela, A.A.; Franco-Sena, A.B.; Rebelo, F.; Cunha, G.M.; de Castro, M.B.T.; Farnum, A.; Mokhtar, R.R.; Holick, M.F.; et al. Association between plasma concentrations of vitamin D metabolites and depressive symptoms throughout pregnancy in a prospective cohort of Brazilian women. J. Psychiatr. Res. 2017, 95, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dabbaghmanesh, M.H.; Vaziri, F.; Najib, F.; Nasiri, S.; Pourahmad, S. The effect of vitamin D consumption during pregnancy on maternal thyroid function and depression: A randomized, placebo-controlled, clinical trial. Jundishapur J. Nat. Pharm. Prod. 2019, 14, e65328. [Google Scholar] [CrossRef]
- Evanchuk, J.L.; Kozyrskyj, A.; Vaghef-Mehrabani, E.; Lamers, Y.; Giesbrecht, G.F.; Letourneau, N.; Aghajafari, F.; Dewey, D.; Leung, B.; Bell, R.C.; et al. Maternal Iron and Vitamin D Status during the Second Trimester Is Associated with Third Trimester Depression Symptoms among Pregnant Participants in the APrON Cohort. J. Nutr. 2024, 154, 174–184. [Google Scholar] [CrossRef]
- Huang, J.Y.; Arnold, D.; Qiu, C.-f.; Miller, R.S.; Williams, M.A.; Enquobahrie, D.A. Association of serum vitamin D with symptoms of depression and anxiety in early pregnancy. J. Women’s Health 2014, 23, 588–595. [Google Scholar] [CrossRef]
- King, C.E.; Wilkerson, A.; Newman, R.; Wagner, C.L.; Guille, C. Sleep, Anxiety, and Vitamin D Status and Risk for Peripartum Depression. Reprod. Sci. 2022, 29, 1851–1858. [Google Scholar] [CrossRef]
- Lamb, A.R.; Lutenbacher, M.; Wallston, K.A.; Pepkowitz, S.H.; Holmquist, B.; Hobel, C.J. Vitamin D deficiency and depressive symptoms in the perinatal period. Arch. Women’s Ment. Health 2018, 21, 745–755. [Google Scholar] [CrossRef]
- Murphy, P.K.; Mueller, M.; Hulsey, T.C.; Ebeling, M.D.; Wagner, C.L. An exploratory study of postpartum depression and vitamin D. J. Am. Psychiatr. Nurses Assoc. 2010, 16, 170–177. [Google Scholar] [CrossRef]
- Nassr, O.A.; Mohammed, M.M.; Showman, H.A. Relationship between inflammatory biomarkers, vitamin D levels, and depressive symptoms in late pregnancy and during the postpartum period: A prospective, observational study. Middle East Curr. Psychiatry 2022, 29, 78. [Google Scholar] [CrossRef]
- Uslu Yuvaci, H.; Yazar, H.; Kose, E.; Coban, B.N.; Aslan, M.M.; Yazici, E.; Akdemir, N.; Cevrioglu, A.S. Evaluation of the relationship between the level of vitamin D in maternal blood and breast milk and postpartum depression. J. Clin. Obstet. Gynecol. 2020, 30, 58–64. [Google Scholar] [CrossRef]
- Vaziri, F.; Nasiri, S.; Tavana, Z.; Dabbaghmanesh, M.H.; Sharif, F.; Jafari, P. A randomized controlled trial of vitamin D supplementation on perinatal depression: In Iranian pregnant mothers. BMC Pregnancy Childbirth 2016, 16, 239. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, W.; Zhao, A.; Szeto, I.M.-Y.; Lan, H.; Zhang, J.; Li, P.; Ren, Z.; Mao, S.; Jiang, H.; et al. Perinatal depression and serum vitamin D status: A cross-sectional study in urban China. J. Affect. Disord. 2023, 322, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Romero, V.C.; Clinton, C.M.; Vazquez, D.M.; Marcus, S.M.; Chilimigras, J.L.; Hamilton, S.E.; Allbaugh, L.J.; Vahratian, A.M.; Schrader, R.M.; et al. Vitamin D levels and perinatal depressive symptoms in women at risk: A secondary analysis of the mothers, omega-3, and mental health study. BMC Pregnancy Childbirth 2016, 16, 203. [Google Scholar] [CrossRef]
- Woo, J.G. What Is the Relationship Between Vitamin D Status, Pregnancy Symptoms, and Quality of Life? Ph.D. Thesis, Loyola University Chicago, Chicago, IL, USA, 2017. [Google Scholar]
- Jani, R.; Knight-Agarwal, C.R.; Bloom, M.; Takito, M.Y. The association between pre-pregnancy body mass index, perinatal depression and maternal vitamin D status: Findings from an australian cohort study. Int. J. Women’s Health 2020, 12, 213–219. [Google Scholar] [CrossRef]
- Noshiro, K.; Umazume, T.; Inubashiri, M.; Tamura, M.; Hosaka, M.; Watari, H. Association between Edinburgh Postnatal Depression Scale and Serum Levels of Ketone Bodies and Vitamin D, Thyroid Function, and Iron Metabolism. Nutrients 2023, 15, 768. [Google Scholar] [CrossRef] [PubMed]
- Bahramy, P.; Mohammad-Alizadeh-Charandabi, S.; Ramezani-Nardin, F.; Mirghafourvand, M. Serum Levels of Vitamin D, Calcium, Magnesium, and Copper, and their Relations with Mental Health and Sexual Function in Pregnant Iranian Adolescents. Biol. Trace Elem. Res. 2020, 198, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabah, R.; Al-Taiar, A.; Ziyab, A.H.; Akhtar, S.; Hammoud, M.S. Antenatal Depression and its Associated Factors: Findings from Kuwait Birth Cohort Study. J. Epidemiol. Glob. Health 2024, 14, 847–859. [Google Scholar] [CrossRef]
- Basutkar, R.S.; Eipe, T.; Divya, P.; Sivasankaran, P. Correlation of antenatal depression among the iron and s-25(OH)D deficient pregnant women: An observational study in a south Indian population. Int. J. Pharm. Res. 2021, 13, 3414–3420. [Google Scholar]
- Lin, Y.-H.; Chen, C.-M.; Su, H.-M.; Mu, S.-C.; Chang, M.-L.; Chu, P.-Y.; Li, S.-C. Association between Postpartum Nutritional Status and Postpartum Depression Symptoms. Nutrients 2019, 11, 1204. [Google Scholar] [CrossRef]
- Pillai, R.R.; Premkumar, N.R.; Kattimani, S.; Sagili, H.; Wilson, A.B.; Sharon, L.; Rajendiran, S. Reduced Maternal Serum Total, Free and Bioavailable Vitamin D Levels and its Association with the Risk for Postpartum Depressive Symptoms. Arch. Med. Res. 2021, 52, 84–92. [Google Scholar] [CrossRef]
- Albacar, G.; Sans, T.; Martin-Santos, R.; Garcia-Esteve, L.; Guillamat, R.; Sanjuan, J.; Canellas, F.; Gratacos, M.; Cavalle, P.; Arija, V.; et al. An association between plasma ferritin concentrations measured 48h after delivery and postpartum depression. J. Affect. Disord. 2011, 131, 136–142. [Google Scholar] [CrossRef]
- Armony-Sivan, R.; Shao, J.; Li, M.; Zhao, G.; Zhao, Z.; Xu, G.; Zhou, M.; Zhan, J.; Bian, Y.; Ji, C.; et al. No relationship between maternal iron status and postpartum depression in two samples in China. J. Pregnancy 2012, 2012, 521431. [Google Scholar] [CrossRef] [PubMed]
- Basutkar, R.S.; Sudarsan, P.; Vinod, C.E.; Varghese, R.; Perumal, D.; Sivasankaran, P. Association between iron-deficiency anemia and antenatal depression in a semi-urban population of South India: A cross-sectional study. Int. J. Acad. Med. 2022, 8, 137–144. [Google Scholar] [CrossRef]
- Chandrasekaran, N.; De Souza, L.R.; Urquia, M.L.; Young, B.; McLeod, A.; Windrim, R.; Berger, H. Is anemia an independent risk factor for postpartum depression in women who have a cesarean section?—A prospective observational study. BMC Pregnancy Childbirth 2018, 18, 400. [Google Scholar] [CrossRef]
- Dama, M.; Van Lieshout, R.J.; Mattina, G.; Steiner, M. Iron Deficiency and Risk of Maternal Depression in Pregnancy: An Observational Study. J. Obstet. Gynaecol. Can. 2018, 40, 698–703. [Google Scholar] [CrossRef]
- Hasdemir, O.K.; Bilgic, D.; Altun, I.K. Relationship Between Gestasyonel Depression and Iron Deficiency Anemia In Pregnancy: A Case-Control Study. Int. J. Caring Sci. 2022, 15, 1545–1555. [Google Scholar]
- Ohsuga, T.; Egawa, M.; Kii, M.; Ikeda, Y.; Ueda, A.; Chigusa, Y.; Mogami, H.; Mandai, M. Association between non-anemic iron deficiency in early pregnancy and perinatal mental health: A retrospective pilot study. J. Obstet. Gynaecol. Res. 2022, 48, 2730–2737. [Google Scholar] [CrossRef]
- Paoletti, A.M.; Orru, M.M.; Marotto, M.F.; Pilloni, M.; Zedda, P.; Fais, M.F.; Piras, B.; Piano, C.; Pala, S.; Lello, S.; et al. Observational study on the efficacy of the supplementation with a preparation with several minerals and vitamins in improving mood and behaviour of healthy puerperal women. Gynecol. Endocrinol. 2013, 29, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Avalos, L.A.; Nance, N.; Caan, B.; Sujan, A.C.; Uriu-Adams, J.Y.; Li, D.-K.; Quesenberry, C.P.; Hedderson, M.M. Association of serum folate levels during pregnancy and prenatal depression. J. Matern.-Fetal Neonatal Med. 2023, 36, 2145878. [Google Scholar] [CrossRef]
- Blunden, C.H.; Inskip, H.M.; Robinson, S.M.; Cooper, C.; Godfrey, K.M.; Kendrick, T.R. Postpartum depressive symptoms: The B-vitamin link. Ment. Health Fam. Med. 2012, 9, 5–13. [Google Scholar]
- Morris, E.; Slomp, C.; Hippman, C.; Inglis, A.; Carrion, P.; Batallones, R.; Andrighetti, H.; Austin, J. A Matched Cohort Study of Postpartum Placentophagy in Women With a History of Mood Disorders: No Evidence for Impact on Mood, Energy, Vitamin B12 Levels, or Lactation. J. Obstet. Gynaecol. Can. 2019, 41, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- van Lee, L.; Quah, P.L.; Saw, S.M.; Yap, F.K.P.; Godfrey, K.M.; Chong, Y.S.; Meaney, M.J.; Chen, H.; Chong, M.F.-F. Maternal choline status during pregnancy, but not that of betaine, is related to antenatal mental well-being: The growing up in Singapore toward healthy outcomes cohort. Depress. Anxiety 2017, 34, 877–887. [Google Scholar] [CrossRef]
- Aishwarya, S.; Rajendiren, S.; Kattimani, S.; Dhiman, P.; Haritha, S.; AnanthaNarayanan, P.H. Homocysteine and serotonin: Association with postpartum depression. Asian J. Psychiatry 2013, 6, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Abou-Saleh, M.T.; Ghubash, R.; Karim, L.; Krymski, M.; Anderson, D.N. The role of pterins and related factors in the biology of early postpartum depression. Eur. Neuropsychopharmacol. 1999, 9, 295–300. [Google Scholar] [PubMed]
- Bodnar, L.M.; Wisner, K.L.; Luther, J.F.; Powers, R.W.; Evans, R.W.; Gallaher, M.J.; Newby, P.; Bodnar, L.M.; Wisner, K.L.; Luther, J.F.; et al. An exploratory factor analysis of nutritional biomarkers associated with major depression in pregnancy. Public Health Nutr. 2012, 15, 1078–1086. [Google Scholar] [CrossRef]
- Lukose, A.; Ramthal, A.; Thomas, T.; Bosch, R.; Kurpad, A.V.; Duggan, C.; Srinivasan, K. Nutritional factors associated with antenatal depressive symptoms in the early stage of pregnancy among Urban South Indian women. Matern. Child Health J. 2014, 18, 161–170. [Google Scholar] [CrossRef]
- Peppard, L.; Oh, K.M.; Gallo, S.; Milligan, R. Risk of depression in pregnant women with low-normal serum Vitamin B12. Res. Nurs. Health 2019, 42, 264–272. [Google Scholar] [CrossRef]
- Chong, M.F.F.; Wong, J.X.Y.; Colega, M.; Chen, L.-W.; van Dam, R.M.; Tan, C.S.; Lim, A.L.; Cai, S.; Broekman, B.F.P.; Lee, Y.S.; et al. Relationships of maternal folate and vitamin B12 status during pregnancy with perinatal depression: The GUSTO study. J. Psychiatr. Res. 2014, 55, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Batalha, M.A.; Costa, P.N.D.; Ferreira, A.L.L.; Freitas-Costa, N.C.; Figueiredo, A.C.C.; Shahab-Ferdows, S.; Hampel, D.; Allen, L.H.; Perez-Escamilla, R.; Kac, G. Maternal Mental Health in Late Pregnancy and Longitudinal Changes in Postpartum Serum Vitamin B-12, Homocysteine, and Milk B-12 Concentration Among Brazilian Women. Front. Nutr. 2022, 9, 923569. [Google Scholar] [CrossRef]
- Cruz-Rodriguez, J.; Canals-sans, J.; Hernandez-Martinez, C.; Arija, V. Association between of vitamin b12 status during pregnancy and probable postpartum depression: The eclipses study. J. Reprod. Infant Psychol. 2024, 43, 1111–1125. [Google Scholar] [CrossRef]
- Dhiman, P.; Pillai, R.R.; Wilson, A.B.; Premkumar, N.; Bharadwaj, B.; Ranjan, V.P.; Rajendiran, S. Cross-sectional association between vitamin B12 status and probable postpartum depression in Indian women. BMC Pregnancy Childbirth 2021, 21, 146. [Google Scholar] [CrossRef]
- Morris, E.; Hippman, C.; Albert, A.; Slomp, C.; Inglis, A.; Carrion, P.; Batallones, R.; Andrighetti, H.; Ross, C.; Dyer, R.; et al. A prospective study to explore the relationship between MTHFR C677T genotype, physiological folate levels, and postpartum psychopathology in at-risk women. PLoS ONE 2020, 15, e0243936. [Google Scholar] [CrossRef]
- Kurniati, Y.; Sinrang, W.; Syamsuddin, S. Postpartum blues syndrome: Serum zinc and psychosocial factors. Enferm. Clin. 2020, 30, 18–21. [Google Scholar]
- Kavitha, M.M.; Dharambhat, S.; Mutalik, N.; Chandrashekaraya, S.H.; Kashinakunti, S.V. Correlation of serum zinc levels with post-partum depression—A case-control study in North Karnataka. J. Clin. Diagn. Res. 2021, 15, 1–3. [Google Scholar]
- Wojcik, J.; Dudek, D.; Schlegel-Zawadzka, M.; Grabowska, M.; Marcinek, A.; Florek, E.; Piekoszewski, W.; Nowak, R.J.; Opoka, W.; Nowak, G. Antepartum/postpartum depressive symptoms and serum zinc and magnesium levels. Pharmacol. Rep. 2006, 58, 571–576. [Google Scholar]
- Rokoff, L.B.; Cardenas, A.; Lin, P.-I.D.; Rifas-Shiman, S.L.; Wright, R.O.; Bosquet Enlow, M.; Coull, B.A.; Oken, E.; Korrick, S.A. Early pregnancy essential and non-essential metal mixtures and maternal antepartum and postpartum depressive symptoms. Neurotoxicology 2023, 94, 206–216. [Google Scholar] [CrossRef]
- Crayton, J.W.; Walsh, W.J. Elevated serum copper levels in women with a history of post-partum depression. J. Trace Elem. Med. Biol. 2007, 21, 17–21. [Google Scholar] [CrossRef]
- Jin, Y.; Coad, J.; Pond, R.; Kim, N.; Brough, L. Selenium intake and status of postpartum women and postnatal depression during the first year after childbirth in New Zealand—Mother and Infant Nutrition Investigation (MINI) study. J. Trace Elem. Med. Biol. 2020, 61, 126503. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Bradley, H.A.; Vlasiuk, E.; Pierard, H.; Beddow, J.; Rucklidge, J.J. Inflammation and Vitamin C in Women with Prenatal Depression and Anxiety: Effect of Multinutrient Supplementation. Antioxidants 2023, 12, 941. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.L.; Holden, J.M.; Sagovsky, K. Detection of postnatal depression: Development. Br. J. Psychiatry 1987, 150, 782–786. [Google Scholar] [CrossRef]
- Fu, C.W.; Liu, J.T.; Tu, W.J.; Yang, J.Q.; Cao, Y. Association between serum 25-hydroxyvitamin D levels measured 24 hours after delivery and postpartum depression. BJOG Int. J. Obstet. Gynaecol. 2015, 122, 1688–1694. [Google Scholar]
- British Committee For Standards in Haematology. Guidelines on the investigation and diagnosis of cobalamin and folate deficiencies. Clin. Lab. Haematol. 1994, 16, 101–115. [Google Scholar]
- Indriasari, R.; Kurniati, Y.; Syam, A.; Syamsuddin, S.; Mansur, M.A.; Amir, S. Relationship between serum zinc concentration with post-partum depression among women in coastal area of Indonesia. Pak. J. Nutr. 2019, 18, 747–752. [Google Scholar] [CrossRef]
- Flynn, A. Estrogen Modulation of Blood Copper and Other Essential Metal Concentrations. In Inflammatory Diseases and Copper: The Metabolic and Therapeutic Roles of Copper and Other Essential Metalloelements in Humans; Sorenson, J.R.J., Ed.; Humana Press: Totowa, NJ, USA, 1982; pp. 17–30. [Google Scholar]
- Vir, S.C.; Love, A.H.G.; Thompson, W. Serum and hair concentrations of copper during pregnancy. Am. J. Clin. Nutr. 1981, 34, 2382–2388. [Google Scholar] [CrossRef]
- Chen, J.; Song, W.; Zhang, W. The emerging role of copper in depression. Front. Neurosci. 2023, 17, 01–08. [Google Scholar] [CrossRef]
- Ni, M.; You, Y.; Chen, J.; Zhang, L. Copper in depressive disorder: A systematic review and meta-analysis of observational studies. Psychiatry Res. 2018, 267, 506–515. [Google Scholar] [CrossRef]
- Hulsbosch, L.P.; Boekhorst, M.; Gigase, F.A.J.; Broeren, M.A.C.; Krabbe, J.G.; Maret, W.; Pop, V.J.M. The first trimester plasma copper-zinc ratio is independently related to pregnancy-specific psychological distress symptoms throughout pregnancy. Nutrition 2023, 109, 111938. [Google Scholar] [CrossRef]
- Tiderencel, K.A.; Zelig, R.; Parker, A. The Relationship Between Vitamin D and Postpartum Depression: A Review of Current Literature. Top. Clin. Nutr. 2019, 34, 301–314. [Google Scholar] [CrossRef]
- Aghajafari, F.; Letourneau, N.; Mahinpey, N.; Cosic, N.; Giesbrecht, G. Vitamin D Deficiency and Antenatal and Postpartum Depression: A Systematic Review. Nutrients 2018, 10, 478. [Google Scholar] [CrossRef]
- Wang, J.; Liu, N.; Sun, W.; Chen, D.; Zhao, J.; Zhang, W. Association between vitamin D deficiency and antepartum and postpartum depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gynecol. Obstet. 2018, 298, 1045–1059. [Google Scholar] [CrossRef] [PubMed]
- Fallah, M.; Askari, G.; Asemi, Z. Is Vitamin D Status Associated with Depression, Anxiety and Sleep Quality in Pregnancy: A Systematic Review. Adv. Biomed. Res. 2020, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Liu, S.; Chen, D. Poor vitamin D status and the risk of maternal depression: A dose-response meta-analysis of observational studies. Public Health Nutr. 2021, 24, 2161–2170. [Google Scholar] [CrossRef]
- Fang, P. Data on the Association between Vitamin D and Perinatal Depression. In Proceedings of the 2021 International Conference on Public Health and Data Science, Chengdu, China, 9–11 July 2021; pp. 206–212. [Google Scholar]
- Chai, Y. Recent Advance in Understanding Vitamin D in Postpartum Depression. Int. J. Biomed. Sci. 2022, 18, 60–65. [Google Scholar] [CrossRef]
- Ribamar, A.; Almeida, B.; Soares, A.; Peniche, B.; Jesus, P.; Cruz, S.P.d.; Ramalho, A. Relationship between vitamin D deficiency and both gestational and postpartum depression. Nutr. Hosp. 2020, 37, 1238–1245. [Google Scholar] [CrossRef]
- Gould, J.F.; Gibson, R.A.; Green, T.J.; Makrides, M. A Systematic Review of Vitamin D during Pregnancy and Postnatally and Symptoms of Depression in the Antenatal and Postpartum Period from Randomized Controlled Trials and Observational Studies. Nutrients 2022, 14, 2300. [Google Scholar] [CrossRef]
- Mahmood, I.; Owens, C.T.; Hoover, R.M. Association Between Vitamin D Levels During Pregnancy and Postpartum Depression. J. Pharm. Technol. 2015, 31, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Amini, S.; Jafarirad, S.; Amani, R. Postpartum depression and vitamin D: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Eyles, D.W.; Feron, F.; Cui, X.; Kesby, J.P.; Harms, L.H.; Ko, P.; McGrath, J.J.; Burne, T.H.J. Developmental vitamin D causes abnormal brain development. Psychoneuroendocrinology 2009, 34, S247–S257. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (IOM). Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Musazadeh, V.; Keramati, M.; Ghalichi, F.; Kavyani, Z.; Ghoreishi, Z.; Alras, K.A.; Albadawi, N.; Salem, A.; Albadawi, M.I.; Salem, R.; et al. Vitamin D protects against depression: Evidence from an umbrella meta-analysis on interventional and observational meta-analyses. Pharmacol. Res. 2023, 187, 106605. [Google Scholar] [CrossRef]
- Kouba, B.R.; Camargo, A.; Gil-Mohapel, J.; Rodrigues, A.L.S. Molecular Basis Underlying the Therapeutic Potential of Vitamin D for the Treatment of Depression and Anxiety. Int. J. Mol. Sci. 2022, 23, 7077. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Q.; Wang, L.; Zhang, C.; Li, Y.; Zhang, Y. Effects of 25-hydroxyvitamin d3 and oral calcium bolus on lactation performance, ca homeostasis, and health of multiparous dairy cows. Animals 2021, 11, 1576. [Google Scholar] [CrossRef]
- Moretti, R.; Morelli, M.E.; Caruso, P. Vitamin D in neurological diseases: A rationale for a pathogenic impact. Int. J. Mol. Sci. 2018, 19, 2245. [Google Scholar] [CrossRef]
- Berridge, M.J. Vitamin D and Depression: Cellular and Regulatory Mechanisms. Pharmacol. Rev. 2017, 69, 80–92. [Google Scholar] [CrossRef]
- Duarte-Silva, E.; Maes, M.; Peixoto, C.A. Iron metabolism dysfunction in neuropsychiatric disorders: Implications for therapeutic intervention. Behav. Brain Res. 2025, 479, 115343. [Google Scholar] [CrossRef]
- Thachil, J. The beneficial effect of acute phase increase in serum ferritin. Eur. J. Intern. Med. 2016, 35, e16–e17. [Google Scholar] [CrossRef]
- Stevens, A.J.; Rucklidge, J.J.; Kennedy, M.A. Epigenetics, nutrition and mental health. Is there a relationship? Nutr. Neurosci. 2018, 21, 602–613. [Google Scholar] [CrossRef]
- Bjelland, I.; Tell, G.S.; Vollset, S.E.; Refsum, H.; Ueland, P.M. Folate, vitamin B12, Homocysteine and the MTHFR 677C-> T polymorphism in anxiety and depression. The Hordaland Homocysteine Study. Arch. Gen. Psychiatry 2003, 60, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmio, L. B vitamins and one carbon metabolism: Implications in human health and disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef] [PubMed]
- Selhub, J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J. Nutr. Health Aging 2002, 6, 39–42. [Google Scholar]
- Kominiarek, M.A.; Rajan, P. Nutrition Recommendations in Pregnancy and Lactation. Med. Clin. N. Am. 2016, 100, 1199–1215. [Google Scholar] [CrossRef]
- McDonald, C.M.; Suchdev, P.S.; Krebs, N.F.; Hess, S.Y.; Wessells, K.R.; Ismaily, S.; Rahman, S.; Wieringa, F.T.; Williams, A.M.; Brown, K.H.; et al. Adjusting plasma or serum zinc concentrations for inflammation: Biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am. J. Clin. Nutr. 2020, 111, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.A.; Zapalowski, C.; Kappy, M.S. Disorders of calcium, phosphate, parathyroid hormone and vitamin D. In Principles and Practice of Pediatric Endocrinology; Kappy, M.S., Allen, D.B., Geffner, M.D., Eds.; Charles C Thomas Co.: Springfield, IL, USA, 2005. [Google Scholar]
- Zhang, H.; Liu, S.; Si, Y.; Zhang, S.; Tian, Y.; Liu, Y.; Li, H.; Zhu, Z. Natural sunlight plus vitamin D supplementation ameliorate delayed early motor development in newborn infants from maternal perinatal depression. J. Affect. Disord. 2019, 257, 241–249. [Google Scholar] [CrossRef]
- Ma, S.-S.; Zhu, D.-M.; Yin, W.-J.; Hao, J.-H.; Huang, K.; Tao, F.-B.; Tao, R.-X.; Zhu, P. The role of neonatal vitamin D in the association of prenatal depression with toddlers ADHD symptoms: A birth cohort study. J. Affect. Disord. 2021, 281, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.; Munir, N.; Iqbal, S.S.; Bacha, U.; Amir, S.; Umar, H.; Riaz, M.; Tahir, I.M.; Shah, S.M.A.; Shafiq, A.; et al. Maternal vitamin D status and attention deficit hyperactivity disorder (ADHD), an under diagnosed risk factor; A review. Eur. J. Inflamm. 2023, 21, 1–15. [Google Scholar] [CrossRef]
- Lisi, G.; Ribolsi, M.; Siracusano, A.; Niolu, C. Maternal vitamin D and its role in determining fetal origins of mental health. Curr. Pharm. Des. 2020, 26, 2497–2509. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.; Huang, H.; Wang, D. Serum vitamin D level and efficacy of vitamin D supplementation in children with atopic dermatitis: A systematic review and meta-analysis. Comput. Math. Methods Med. 2022, 2022, 9407888. [Google Scholar] [CrossRef]
- Wang, Q.; Ying, Q.; Zhu, W.; Chen, J. Vitamin D and asthma occurrence in children: A systematic review and meta-analysis. J. Pediatr. Nurs. 2022, 62, e60–e68. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Jin, Y.; Luo, J.; Jiang, F.; Zhang, L.; Wang, X.; Zhang, H.; Ma, S.; Li, Y. Comparison of the vitamin D level between children with and without cow’s milk protein allergy: A systematic review with meta-analysis. Front. Pediatr. 2025, 13, 1649825. [Google Scholar] [CrossRef] [PubMed]
- Sabir, M.S.; Haussler, M.R.; Mallick, S.; Kaneko, I.; Lucas, D.A.; Haussler, C.A.; Whitfield, G.K.; Jurutka, P.W. Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines. Genes Nutr. 2018, 13, 19. [Google Scholar] [CrossRef]
- Bouillon, R. Vitamin D and Extraskeletal Health. UpToDate. 2025. Available online: https://www.uptodate.com/contents/vitamin-d-and-extraskeletal-health (accessed on 30 October 2025).
- Rosen, H.N. Calcium and Vitamin D Supplement in Osteoporosis. Up to Date. 2023. Available online: https://www.uptodate.com/contents/calcium-and-vitamin-d-supplementation-in-osteoporosis (accessed on 30 October 2025).
- Munns, C.F.; Simm, P.J.; Rodda, C.P.; Garnett, S.P.; Zacharin, M.R.; Ward, L.M.; Geddes, J.; Cherian, S.; Zurynski, Y.; Cowell, C.T. Incidence of vitamin D deficiency rickets among Australian children: An Australian Paediatric Surveillance Unit study. Med. J. Aust. 2012, 196, 466–468. [Google Scholar] [CrossRef]
- Royal Australian and New Zealand College of Obstetrics and Gynaecology (RANZCOG). Routine Antenatal Assessment in the Absence of Pregnancy Complications 2022. Available online: https://ranzcog.edu.au/wp-content/uploads/Routine-Antenatal-Assessment.pdf (accessed on 30 October 2025).
- Australian Government Department of Health and Ageing. MBS Online Medicare Benefits Schedule: Department of Health, Disability and Ageing. 2025. Available online: https://www9.health.gov.au/mbs (accessed on 30 October 2025).

| Author | Study Type | Marker and Method Assay | (N) | Time of Testing | Ax* Tool | Timing of Ax* | Results |
|---|---|---|---|---|---|---|---|
| Brandenbarg et al. [25] | CRS | 25[OH]D via enzyme immunoassay | 4101 | Median: 13 wks GA | CES-D ≥ 16 | 14–18 wks GA | ↓ Vit D → ↑ EPDS (Spearman p = −0.188 (p < 0.001) Adj. OR for vit D def. and EPDS scores: 1.48 (95% CI 1.13–1.95) |
| Cassidy-Bushrow et al. [26] | CRS | 25[OH]D via chemiluminescence immunoassay | 178 | Median: 9.5 wks GA | CES-D ≥ 16 | 14–18 wks GA | Sig. inverse assoc. btw log vit D and CES-D ≥ 16 (OR = 0.54, 95% CI 0.29–0.99, p = 0.046) |
| Cunha Figueiredo et al. [27] | CHT | 25[OH]D and 1,25[OH]2D via LC-MS | 128 | 5–13 wks GA; 20–26 wks GA; 30–36 wks GA | EPDS ≥ 13 | Assessed at each trimester of pregnancy | ↑ Vit D → ↓ EPDS One-unit ↑ in vit D conc → 2% ↓ in the odds of AND* (Adj. OR = 0.98, 95% CI 0.96–0.99, p-value 0.047). |
| Huang et al. [30] | CRS | 25[OH]D2 and 25[OH]D3 via LC-MS | 498 | 15 wks GA | DASS-21 (≥14 mod depn); PHQ-9 (≥10 mod depn) | Mean: 15 wks GA | ↓ Vit D → ↑ DASS-21. Lowest quartile of Vit D conc had 2.6 point ↑ DASS-21 scores cf highest quartile. |
| Woo et al. [39] | CHT | 25[OH]D via radioimmunoassay | 125 | 24–32 wks GA | EPDS ≥ 12 | 24–32 wks GA | No assoc. |
| Accortt et al., 2021 [23] | CHT | 25[OH]D via chemiluminescence immunoassay | 89 | 28–30 wks GA | BDI and CES-D ≥ 16 | BDI at 28–30 wks GA; CES-D at 6–10 wks PP | PPD group had lower vit D metabolite ratio (VMR). A lower VMR had an OR for PPD of 1.43 (1.10–1.87), p = 0.007. |
| King et al. [31] | CHT | 25[OH]D via radioimmunoassay | 105 | 8–12 wks GA; 24–28 wks GA; 6–8 wks PP; 10–12 wks PP | EPDS ≥ 10 | 8–12 wks GA; 24–28 wks GA; 6–8 wks PP; 10–12 wks PP | Adj. OR for vit D def. and depn scores was 2.40 (95% CI 0.92–6.27) but not statistically sig. (p = 0.07) |
| Lamb et al. [32] | CHT | 25[OH]D via LC-MS | 88 | 14 wks GA; 32 wks GA; 10 wks PP | EPDS ≥ 10 | 14 wks GA; 32 wks GA; 10 wks PP | ↑ EPDS → ↓ Vit D at all three timepoints (t = −2.09, p = 0.039) |
| Nassr et al. [34] | CHT | 25[OH]D via electro-chemiluminescence | 80 | Third trimester | EPDS (Arabic) ≥ 13 | Third trimester of pregnancy; 6 mths PP | No assoc. |
| Vaziri et al. [36] | RCT | 25[OH]D via chemiluminescence immunoassay | 169 | 26–28 wks GA and 48 h PP | EPDS (Persian) ≥ 9 | 26–28 wks GA; 38–40 wks GA; 4 wks PP and 8 wks PP | depn scores ↓ in vit D grp cf. control grp at 38–40 wks GA (p = 0.01) and 4–8 wks PP (p < 0.001). |
| Wang et al. [37] | CRS | 25[OH]D2 and 25[OH]D3 to give total of 25[OH]D. | 1805 | Antenatal and postpartum (at time of enrolment) | EPDS (Chinese) ≥ 13 | Antenatal and postpartum (at time of enrolment) | No assoc. antenatally Vit D def. → ↑ PPD (OR = 1.71, 95% CI 1.01–2.88, p = 0.044). |
| Williams et al. [38] | RCHT | 25[OH]D via radioimmunoassay | 105 | 12–20 wks GA; 34–36 wks | EPDS (≥9), BDI and MINI | 12–20 wks GA; 26–28 wks GA; 34–36 wks GA and 6–8 wks PP. | ↑ Vit D → ↓ BDI antenatally (p < 0.05) For each one-unit ↑ Vit D → ↓ 0.14 point BDI at 12–20-wks (95% CI −0.26 to −0.017). Nil assoc. postnatally. |
| Dabbaghmanesh et al. [28] | RCT | 25[OH]D—method not clear | 98 | 26–28 wks GA and 4 wks PP | EPDS ≥ 13 | 26–28 wks GA and 4 wks PP | ↓ Mean depression scores in the vit D suppl. grp at 4 wks PP (4.48 +/− 3.30) cf. control grp (7.07 +/− 4.52). |
| Murphy et al. [33] | CHT | 25[OH]D—rapid radioimmunoassay | 978 | 4–6 wks PP and monthly thereafter until 7 mths PP | EPDS ≥ 9 | 4–6 wks PP and monthly thereafter until 7 mths PP | ↓ Vit D → ↑ EPDS scores over time (p = 0.02). |
| Uslu Yuvaci et al. [35] | CRS | 25[OH]D3—chemi-luminescence immunoassay | 75 | 4–6 wks PP | EPDS ≥ 13 | 4–6 wks PP | No assoc. |
| Abedi et al. [21] | CC | 25[OH]D via ELIZA | 120 | 6–8 wks PP | BDI, cut-off score unclear | 4–6 wks PP | Vit D sig. ↓ in women with PPD grp cf. control grp, p = 0.001. Vit D < 20 ng/mL were more likely to have PPD, OR 3.30 (95% CI 1.32–8.24), p value = 0.01. |
| Accortt et al., 2016 [22] | CHT | 25[OH]D—via chemi-luminescence | 91 | First trimester | EPDS ≥ 12 | 4–6 wks PP | ↑ Log vit D → ↓ EPDS scores (adjusted β = −0.209, p = 0.058) inflammatory markers moderated the effect (p < 0.05) |
| Pillai et al. [46] | CC | 25[OH]D via ELISA | 660 | 6 wks PP | EPDS (Tamil or English) ≥ 12 | 6 wks PP | Negative correlation btw vit D levels and EPDS scores (r = −0.19, p < 0.001). PPD grp had greater Vit D def. (35%) and insufficiency (43%) cf control grp (29% and 35%, respectively). |
| Amini et al. [24] | RCT | 25[OH]D via ELISA | 76 | 1–6 mths PP | EPDS ≥ 12 | 1–6 mths PP | Greatest improvement in EPDS was in the vit D suppl + Ca placebo grp. Vit D increased from 39.82 to 58.03, (p value < 0.001). PPD scores fell by 4.16 points, p = 0.004. No sig. change in EPDS scores in the placebo grp. |
| Jani et al. [40] | CHT | 25[OH]D—method not clear | 16,528 | 14 wks GA | EPDS ≥ 13 | 12–14 wks GA | ↑ Depression scores had ↑ odds of being vitamin D def. Adjusted OR 1.321, 95% CI 1.105–1.579 |
| Fu et al. [77] | CHT | 25[OH]D—via electro-chemiluminescence | 213 | 24–48 h PP | EPDS (Chinese) ≥ 12 | 3 mths PP | Vit D was a predictor of PPD with adjusted OR of 0.81 (95% CI 0.70–0.92, p < 0.0001) Vit D levels sig. in PPD cf. those without (14.3 vs. 8.3, p < 0.0001) |
| Noshiro et al. [41] | CHT | 25[OH]D (from 25[OH]D2 + 25[OH]D3) via electro-chemiluminescence | 99 | 24–27 wks GA, 33–35 wks GA and 1 mth PP | EPDS ≥ 9 | 3 days PP and 1 mth PP | No assoc. |
| Bahramy et al. [42] | CRS | 25[OH]D via ELISA | 200 | 26–32 wks GA | EPDS (≥13), DASS-21 | 26–32 wks GA | No assoc. |
| Lin et al. [45] | CRS | 25[OH]D via electro-chemiluminescence | 120 | 6–8 wks PP | EPDS (Chinese) ≥ 10 | 6–8 wks PP | No assoc. |
| Basutkar et al. [44] | CRS | 25[OH]D—method not clear | 120 | 26–28 wks GA | EPDS (Tamil) ≥ 8 | 26–28 wks PP | ↑ Vit D → ↓ EPDS (f = −0.294, p = 0.001) E very one unit ↑ vit D → ↓ EPDS by 0.236 (95% CI −0.377 to −0.96, p = 0.01) |
| Evanchuk et al. [29] | CHT | 25[OH]D3 + epi-25[OH]D3 via LC-MS | 627 | Each trimester of pregnancy and 3 mths PP | EPDS ≥ 13 | 3 mths PP | ↑ Vit D → ↓ EPDS in third trimester (p = 0.001). |
| Al-Sabah et al. [43] | CRS | 25[OH]D via electro-chemiluminescence | 1070 | 2nd or 3rd trimester | EPDS (Arabic) ≥ 13 | 2nd or 3rd trimester | No assoc. |
| Bodnar et al. [61] | CRS | 25[OH]D via ELISA | 135 | 20 wks GA | SCID (DSM-IV) | 20-, 30- and 36 wks GA | No assoc. |
| Author | Study Type | Markers Used | (N) | Time of Testing | Ax* Tool | Timing of Ax* | Results |
|---|---|---|---|---|---|---|---|
| Hasdemir et al. [52] | CRS | FBC, serum iron, TIBC, t/f sat, ferritin | 408 | 24 wks GA | EPDS ≥ 12 | ~24 wks GA | No assoc. |
| Ohsuga et al. [53] | CRS | Hb, MCV, MCH, MCHC, ferritin | 31 | <16 wks GA; 24–34 wks GA; 35 wks GA | EPDS ≥ 8 | Mid-pregnancy and 1 mth PP | No assoc. |
| Albacar et al. [47] | CHT | Serum iron, t/f sat, ferritin, CRP | 729 | 48 h PP | EPDS (Spanish) ≥ 9 | 48 h PP; 8 wks PP and 32 wks PP | PPD group had ↓ ferritin levels cf. non-PPD group (p = 0.002) |
| Armony-Sivan et al. [48] | CHT | FBC, Hb, MCV, ferritin, sTfR* | 567 | Mid-pregnancy and late pregnancy | EPDS (Chinese) ≥ 10 | 6 wks PP | No assoc. |
| Chandrasekaran et al. [50] | CRS | Hb, StfR, ferritin | 103 | 24 h PP and 3 wks PP | EPDS ≥ 10 | 24 h PP; 3 wks PP and 6 wks PP | No assoc. |
| Paoletti et al. [54] | RCT | Hb, serum iron, ferritin | 852 | Day 3 PP; Day 15 PP; Day 30 PP | EPDS ≥ 12 | Day 3 PP; Day 15 PP and day 30 PP | No assoc. |
| Lin et al. [45] | CRS | FBC, ferritin | 120 | 6–8 wks PP | EPDS (Chinese) ≥ 10 | 6–8 wks PP | No assoc. |
| Basutkar et al., 2021 [44] | CRS | Hb, ferritin | 120 | 26–28 wks GA | EPDS (Tamil) ≥ 8 | 26–28 wks PP | No assoc. |
| Evanchuk et al. [29] | CHT | Ferritin, sTfR, Hepcidin | 627 | Each trimester and 3 mths PP | EPDS ≥ 13 | 3 mths PP | ↓ Serum ferritin mid-pregnancy → ↑ EPDS scores in third trimester (β: −0.8; 95% CI −1.5, −0.01) No assoc. for Fe postpartum. |
| Basutkar et al., 2022 [49] | CRS | FBC (inc Hb, MCV, MCH, MCHC), Hct, serum iron, ferritin | 210 | 2nd trimester | EPDS ≥ 14 | 13–28 wks GA | ↓ Fe markers → ↑ EPDS scores 1. Ferritin: r = −0.50, p < 0.001; 2. Serum iron: r = −0.038, p < 0.001 |
| Dama et al. [51] | CRS | Ferritin | 142 | ≥20 wks GA | EPDS ≥ 12 | 20wks GA | ↓ Ferritin → ↑ Depression scores Adj OR for depn in iron def. was 2.51 (95% CI 1.14–5.52). |
| Bodnar et al. [61] | CRS | Ferritin | 135 | 20 wks GA | SCID (DSM-IV) | 20-, 30- and 36 wks GA | No assoc. |
| Noshiro et al. [41] | CHT | Ferritin, iron, TIBC | 99 | 24–27 wks GA, 33–35 wks GA and 1 mth PP | EPDS ≥ 9 | 3 days PP and 1 mth PP | No assoc. |
| Author | Study Type | (N) | Timing of Testing | Depression Screening Tool, Cut-Off | Timing of Ax* | Main Outcome |
|---|---|---|---|---|---|---|
| Avalos et al. [55] | CRS | 318 | 15 wks GA | CES-D ≥ 21 | 15 wks GA | No assoc. |
| Hasdemir et al. [52] | CRS | 408 | 24 wks GA | EPDS ≥ 12 | ~24 ks GA | No assoc. |
| van Lee et al. [58] | CHT | 1247 | 26–28 wks GA | EPDS ≥ 15 antenatal; EPDS ≥ 13 postnatal | 26–28 wks GA and 3 mths PP | No assoc. |
| Morris et al., 2020 [68] | CRS | 305 | >15 wks GA | EPDS - cut-off score unclear | 15 wks GA; 1–2 wks PP; 1–2 mths PP and 3–4 mths PP | No assoc. |
| Blunden et al. [56] | CRS | 1976 | ~11 wks GA | EPDS ≥ 13 | 6 mths PP 12 mths PP | No assoc. |
| Lukose et al. [62] | CRS | 365 | 11.5 wks GA | K-10 ≥ 6 | ~11.5 wks GA | No assoc. |
| Chong et al. [64] | CHT | 709 | 26–28 wks GA | EPDS ≥ 15 antenatal; EPDS ≥ 13 postnatal | 26–28 wks GA and 3 mths PP | ↓ Folate → ↑ AND (p = 0.001) Antenatal: mean folate 27.3 +/− 113.8 in depressed group vs. 40.4 +/− 336.5 nmol/L in non-depressed group; p = 0.011 |
| Abou-Saleh et al. [60] | CRS | 62 | Third trimester; Day 7 PP | EPDS (Arabic) ≥ 11 | Day 7 PP | ↓ Folate → PPD (p < 0.01) |
| Aishwarya et al. [59] | CC | 103 | 24–48 h PP; 6 wks PP | EPDS ≥ 10 | 24–48 h PP and 6 wks PP | No assoc. |
| Peppard et al. [63] | CRS | 174 | Antenatally | PHQ-9 ≥ 10 | Antenatally | No assoc. |
| Al-Sabah et al. [43] | CRS | 1070 | 2nd or 3rd trimester | EPDS (Arabic) ≥ 13 | 2nd or 3rd trimester | No assoc. |
| Bodnar et al. [61] | CRS | 135 | 20 wks GA | SCID (DSM-IV) | 20-, 30- and 36 wks GA | No assoc. |
| Author | Study Type | (N) | Testing Timing | Ax* Tool | Ax* Timing | Results |
|---|---|---|---|---|---|---|
| Al-Sabah et al. [43] | CRS | 1070 | 2nd or 3rd trimester | EPDS (Arabic) ≥ 13 | 2nd or 3rd trimester | Vit B12 → inverse assoc with EPDS (p = 0.009). |
| Lukose et al. [62] | CRS | 365 | 11.5 wks GA | K-10 ≥ 6 | ~11.5 wks GA | No assoc. |
| Chong et al. [64] | CHT | 709 | 26–28 wks GA | EPDS ≥ 15 antenatal; EPDS ≥ 13 postnatal | 26–28 wks GA and 3 mths PP | No assoc. |
| Abou-Saleh et al. [60] | CRS | 62 | 3rd trimester; Day 7 PP | EPDS (Arabic) ≥ 11 | Day 7 PP | ↑ Vit B12 → ↑ EPDS scores (r = 0.39, p < 0.01). |
| Aishwarya et al. [59] | CC | 103 | 24–48 h PP; 6 wks PP | EPDS ≥ 10 | 24–48 h PP and 6 wks PP | No assoc. |
| Peppard et al. [63] | CRS | 174 | Antenatally | PHQ-9 ≥ 10 | Antenatally | ↓ Vit B12 → ↑ depn scores. OR = 3.82, 95% CI (1.10–13.31), p < 0.04. |
| Batalha et al. [65] | CHT | 101 | Third trimester; Day 2–8 PP; 28–50 days PP; 88–199 days PP | EPDS ≥ 11 | Third trimester of pregnancy | No assoc. |
| Cruz-Rodriguez et al. [66] | CHT | 336 | 12 wks GA; 36 wks GA | EPDS (Spanish) ≥ 10 | ~ 54 days PP | ↑ Vit B12 → ↓ EPDS in 1st trimester (B = −1.267, CI −2.461 to −0.073, p = 0.038) |
| Dhiman et al. [67] | CC | 434 | 6 wks PP | EPDS (Tamil) ≥ 10 | 6 wks PP | ↓ Vit B12 → ↑ EPDS Lowest B12 quartile had 4.53 times likelihood of PPD (p = 0.001) |
| Morris et al., 2019 [57] | RCHT | 365 | 1–2 wks; 1–2 mths PP; 3–4 mths PP | EPDS cut-off not specified | 1–2 wks; 1–2 mths PP; 3–4 mths PP | No assoc. |
| Author | Study Type | (N) | Testing Timing | Ax* Tool | Ax* Timing | Results |
|---|---|---|---|---|---|---|
| Roomruangwong et al. [10] | CRS | 71 | 3rd trimester and 4–6 wks PP | MINI, EPDS (≥11) and BDI | 3rd trimester, 4–6 wks PP | Zn inversely assoc. with depn scores antenatally and postnatally. EPDS (r = −0.425, p < 0.001, n + 71), HAMD (r = −0.478, p < 0.001, n = 71) and BDI (r = −0.507, p < 0.001, n = 71). |
| Kurniati et al. [69] | CRS | 70 | PP unclear timepoint | EPDS, unclear cut-off score | PP unclear timepoint | No assoc. |
| Indriasari et al. [79] | CRS | 87 | ≥4 wks PP | EPDS ≥ 13 | 4 wks PP | Inverse assoc. btw Zn and EPDS (r = −0.063, p = 0.564) |
| Kavitha et al. [70] | CC | 80 | Up to 6 mths PP | EPDS ≥ 10 | Up to 6 mths PP | Inverse assoc. btw Zn and EPDS (r = −0.24, p < 0.05) |
| Wojcik et al. [71] | CHT | 58 | 3rd trimester; 3rd day PP; 30th day PP | EPDS ≥ 9, BDI | BDI at 3rd trimester, EPDS 3rd and 30th day PP | Inverse relationship found btw Zn and depn scores but not qualified statistically. Day 3: 42% with PPD—mean Zn 0.61 mg/mL (+/−0.01). Day 30: 29 % with PPD—mean Zn 0.80 mg/L (+/−0.02). |
| Author | Study Type | (N) | Testing Timing | Ax* Tool | Ax* Timing | Results |
|---|---|---|---|---|---|---|
| Crayton et al. [73] | RCHT | 902 | Unspecified | DSM-IV based Dx | Unspecified | ↑ Cu is associated with PPD. Mean Cu level 131 mcg/dL in PPD cf 111 mcg/dL +/− 25 for women without PPD, p < 0.001). |
| Bahramy et al. [42] | CRS | 200 | 26–32 wks GA | EPDS (cut-off score ≥ 13), DASS-21 | 26–32 wks GA | ↑ Mean serum Cu in AND cf those without (100.6 vs. 93.0, p = 0.048). No other associations were found. |
| Rokoff et al. [72] | CRS | 1226 | Median 9.6 wks GA | EPDS ≥ 13 | Mid-pregnancy, 6 mths PP, 12 mths PP | No assoc. |
| Author | Mn* Studied | Study Type | (N) | Testing Timing | Ax* Tool | Ax* Timing | Results |
|---|---|---|---|---|---|---|---|
| Rokoff et al. [72] | Cu, Mg, Mn, Se, Zn | CRS | 1226 | Median 9.6 wks GA | EPDS ≥ 13 | Mid-pregnancy, 6 mths PP, 12 mths PP | No associations found |
| Jin et al. [74] | Se | CRS | 87 | 3 mths PP; 6 mths PP; 12 mths PP | EPDS ≥ 10 | 3 mths PP; 6 mths PP; 12 mths PP | No associations found |
| Bahramy et al. [42] | Vitamin D, Ca, Mg, Cu | CRS | 200 | 26–32 wks GA | EPDS ≥ 13, DASS-21 | 26–32 wks GA | ↑ Mean serum Cu in depression cf those without (100.6 vs. 93.0, p = 0.048). No other associations were found. |
| Wojcik et al. [71] | Zn, Mg | CHT | 58 | 3rd trimester; 3rd day PP; 30th day PP | EPDS ≥ 9, BDI | BDI at 3rd trimester, EPDS 3rd and 30th day PP | No assoc. found for Mg. |
| Bodnar et al. [61] | Folate, Vitamins A, C, D, E, B-carotene | CRS | 135 | 20 wks GA | SCID (DSM-IV) | 20-, 30- and 36 wks GA | No associations found |
| Lin et al. [45] | Iron studies, Vitamins B2, D and E | CRS | 120 | 6–8 wks PP | EPDS (Chinese) ≥ 10 | 6–8 wks PP | ↑ Riboflavin → ↓ PPD. OR = 0.747, 95% CI 0.566–0.987, p = 0.040. No associations found for other micronutrients |
| Carr et al. [75] | Vitamin C | CRS | 4101 | 12 wks GA; 24 wks GA | EPDS ≥ 13 | 12 wks GA and 24 wks GA | No assoc. |
| Author | NOS Score | Micronutrients Studied | ||||
|---|---|---|---|---|---|---|
| Rokoff et al., 2023 [72] | 8 | |||||
| Crayton et al., 2007 [73] | 3 | |||||
| Avalos et al., 2023 [55] | 7 | Folate | ||||
| van Lee et al., 2017 [58] | 8 | Folate | ||||
| Morris et al., 2020 [68] | 5 | Folate | ||||
| Blunden et al., 2012 [56] | 9 | Folate | ||||
| Lukose et al., 2014 [62] | 8 | Vitamin B12 | ||||
| Chong et al., 2014 [64] | 8 | Folate | Vitamin B12 | |||
| Abou-Saleh et al., 1999 [60] | 6 | Folate | Vitamin B12 | |||
| Aishwarya et al., 2013 [59] | 5 | Folate | Vitamin B12 | |||
| Peppard et al., 2019 [63] | 7 | Folate | Vitamin B12 | |||
| Bodnar et al., 2012 [61] | 8 | Folate | ||||
| Basutkar et al., 2022 [49] | 9 | Iron | ||||
| Dama et al., 2018 [51] | 8 | Iron | ||||
| Hasdemir et al., 2022 [52] | 8 | Folate | Iron | |||
| Ohsuga et al., 2022 [53] | 7 | Iron | ||||
| Albacar et al., 2011 [47] | 8 | Iron | ||||
| Armony-Sivan et al., 2012 [48] | 8 | Iron | ||||
| Chandrasekaran et al., 2018 [50] | 8 | Iron | ||||
| Lin et al., 2019 [45] | 8 | Iron | ||||
| Basutkar et al., 2021 [44] | 9 | Iron | ||||
| Evanchuk et al., 2024 [29] | 9 | Iron | ||||
| Jin et al., 2020 [74] | 6 | |||||
| Batalha et al., 2022 [65] | 8 | Vitamin B12 | ||||
| Cruz-Rodriguez et al., 2024 [66] | 8 | Vitamin B12 | ||||
| Dhiman et al., 2021 [67] | 9 | Vitamin B12 | ||||
| Morris et al., 2019 [57] | 8 | Vitamin B12 | ||||
| Carr et al., 2023 [75] | 7 | |||||
| Brandenbarg et al., 2012 [25] | 7 | Vitamin D | ||||
| Cunha Figueiredo et al., 2017 [27] | 8 | Vitamin D | ||||
| Huang et al., 2014 [30] | 8 | Vitamin D | ||||
| Woo et al., 2017 [39] | 8 | Vitamin D | ||||
| Accortt et al., 2021 [23] | 8 | Vitamin D | ||||
| King et al., 2022 [31] | 7 | Vitamin D | ||||
| Lamb et al., 2018 [32] | 8 | Vitamin D | ||||
| Nassr et al., 2022 [34] | 7 | Vitamin D | ||||
| Wang et al., 2023 [37] | 7 | Vitamin D | ||||
| Williams et al., 2016 [38] | 8 | Vitamin D | ||||
| Murphy et al., 2010 [33] | 7 | Vitamin D | ||||
| Uslu Yuvaci et al., 2020 [35] | 7 | Vitamin D | ||||
| Abedi et al., 2018 [21] | 7 | Vitamin D | ||||
| Accortt et al., 2016 [22] | 7 | Vitamin D | ||||
| Pillai et al., 2021 [46] | 9 | Vitamin D | ||||
| Jani et al., 2020 [40] | 8 | Vitamin D | ||||
| Fu et al., 2015 [77] | 8 | Vitamin D | ||||
| Noshiro et al., 2023 [41] | 5 | Vitamin D | Iron | |||
| Bahramy et al., 2020 [42] | 7 | Vitamin D | ||||
| Al-Sabah et al., 2024 [43] | 7 | Vitamin D | Folate | Vitamin B12 | Iron | |
| Roomruangwong et al., 2017 [10] | 7 | Zinc | ||||
| Kurniati et al., 2020 [69] | 4 | Zinc | ||||
| Indriasari et al., 2019 [79] | 6 | Zinc | ||||
| Kavitha et al., 2021 [70] | 8 | Zinc | ||||
| Wojcik et al. [71] | 5 | Zinc |
| Author | JBI Quality Assessment |
|---|---|
| Paoletti et al., 2013 [54] | True randomisation was used to assign participants to two groups. Concealment and blinding of allocation were not made clear. The two groups were comparable in terms of age and BMI. Strict inclusion and exclusion criteria aimed to limit the effect of confounding factors. Treatment groups were treated identically, with the exception of intervention. Follow-up was complete. |
| Vaziri et al., 2016 [36] | Block randomisation was used to create roughly equal groups. The two groups were similar in terms of baseline demographic characteristics. It is not clear whether the investigators were blind or the participants were blind to the allocation. Losses to follow-up were described. Confounding factors were identified. |
| Dabbaghmanesh et al., 2019 [28] | Block randomisation was used. The study was double-blinded, with allocation concealed from all. The treatment groups were similar at baseline. Only a few confounding variables were described. Limited information was provided regarding follow-up and the difference between the groups. |
| Amini et al., 2022 [24] | True randomisation and double-blind allocation occurred. Treatment groups were comparable at baseline. Loss to follow-up was described. ANCOVA was used to adjust for confounding variables. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, N.; Semmler, A.; Starling, J.; Voisey, J. A Systematic Review of the Correlation Between Micronutrient Levels and Perinatal Depression. Nutrients 2025, 17, 3479. https://doi.org/10.3390/nu17213479
Islam N, Semmler A, Starling J, Voisey J. A Systematic Review of the Correlation Between Micronutrient Levels and Perinatal Depression. Nutrients. 2025; 17(21):3479. https://doi.org/10.3390/nu17213479
Chicago/Turabian StyleIslam, Nabilah, Annalese Semmler, Jean Starling, and Joanne Voisey. 2025. "A Systematic Review of the Correlation Between Micronutrient Levels and Perinatal Depression" Nutrients 17, no. 21: 3479. https://doi.org/10.3390/nu17213479
APA StyleIslam, N., Semmler, A., Starling, J., & Voisey, J. (2025). A Systematic Review of the Correlation Between Micronutrient Levels and Perinatal Depression. Nutrients, 17(21), 3479. https://doi.org/10.3390/nu17213479

