Associations of Total Dietary Quality Score, Dietary Behavior Adherence, and Dietary Portion Adherence with Metabolic Factors Among People with Type 2 Diabetes Mellitus
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Measurement Methods
- (1)
- Intake of high-sugar foods;
- (2)
- LGI carbohydrate (CHO) foods (e.g., dried legumes such as adzuki beans, mung beans, low-fat dairy products, and starchy vegetables such as taro, maize, yam);
- (3)
- Consumption of ≥2 servings of whole grains per meal;
- (4)
- High-fiber whole grains or tubers (e.g., oats, brown rice, coix seeds, taro, sweet potato, pumpkin);
- (5)
- Fish rich in n-3 fatty acids (n-3 FAs) (e.g., Pacific saury, salmon, mackerel);
- (6)
- High-fat cooked foods (e.g., deep-fried foods, cream soups);
- (7)
- Foods high in saturated (SFA) or trans fats (trans-FAs) (e.g., high-fat meats, animal skin, whole milk, animal fat, hydrogenated oils, coffee creamer);
- (8)
- Frequency of dining out (including three main meals, snacks, and late-night meals);
- (9)
- Alcohol consumption exceeding two standard drinks per day for men or one for women;
- (10)
- Adherence to a balanced intake across the six major food groups.
2.3. Outcome Variables
2.4. Statistical Analysis
3. Results
3.1. Demographic and Anthropometric Comparison by Group and Sexes
3.2. Biochemical and Physical Examination Across Groups and Sexes
3.3. Gender Differences in Dietary Behavior Adherence (DBA) Scores
3.4. Dietary Intake and Adherence Across Groups and Sexes
3.5. Impact of TDQS on Body Composition and Metabolic Biomarkers
3.6. Associations Between TDQS, DBA, and DPA Scores and Metabolic Outcomes
4. Discussion
4.1. TDQS and Metabolic Outcomes
4.2. TDQS as a Composite Predictor of Glycemic Control
4.3. Sex Differences in Metabolic Outcomes and Lifestyle
4.4. Nutritional Intake Patterns, Gut–Brain Axis, and TDQS
4.5. Clinical Implications
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. Diabetes Atlas, 11th ed.; IDF: Brussels, Belgium, 2025. [Google Scholar]
- Almasri, A.I.; Malallah, M.A.Y.; Jamal, N.S.; AI-Sudani, Y.A.; Albedin, F.Z.Z.; Talal, Y.; Emara, A.; Majdi, A.; Haddad, Z.H.; Abukhater, N.A.K.S.N.; et al. The Critical Role of Early Glycemic Control in Preventing Long-Term Microvascular and Macrovascular Complications in Diabetes. J. Popul. Ther. Clin. Pharmacol. 2025, 32, 339–347. [Google Scholar]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. Facilitating positive health behaviors and well-being to improve health outcomes: Standards of care in diabetes—2025. Diabetes Care 2025, 48 (Suppl. 1), S86–S127. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yang, D. Overcoming dietary complexity in type 2 diabetes: Influencing factors and coping strategies. Eur. J. Med. Res. 2025, 30, 82. [Google Scholar] [CrossRef]
- Atinafu, W.T.; Tilahun, K.N. Assessment of adherence to dietary recommendations and associated factors among type 2 diabetic patients in selected hospitals in Addis Ababa, Ethiopia. Front. Nutr. 2025, 11, 1474445. [Google Scholar] [CrossRef]
- Wilson, D.; Diji, A.K.-A.; Marfo, R.; Amoh, P.; Duodu, P.A.; Akyirem, S.; Gyamfi, D.; Asare, H.; Armah, J.; Ebu Enyan, N.I.; et al. Dietary adherence among persons with type 2 diabetes: A concurrent mixed methods study. PLoS ONE 2024, 19, e0302914. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.K.; Unadkat, S.V.; Patel, B.A.; Parmar, D.V. Factors influencing adherence to dietary recommendations for type 2 diabetes mellitus and their impact on disease control: A cross-sectional study. J. Fam. Med. Prim. Care 2024, 13, 5648–5654. [Google Scholar] [CrossRef]
- Berisha, H.; Hattab, R.; Comi, L.; Giglione, C.; Migliaccio, S.; Magni, P. Unhealthy dietary patterns—Such as diets high in saturated fat and cholesterol—Are associated with elevated BMI and dyslipidemia and Cardiometabolic Risk. Nutrients 2025, 17, 776. [Google Scholar] [CrossRef]
- Gjermeni, E.; Fiebiger, R.; Bundalian, L.; Garten, A.; Schöneberg, T.; Le Duc, D.; Blüher, M. The impact of dietary interventions on cardiometabolic health. Cardiovasc. Diabetol. 2025, 24, 234. [Google Scholar] [CrossRef]
- Patel, H.R. A study to assess Dietary Habits and Their Impact on Cholesterol Levels and Heart Health. J. Heart Valve Dis. 2025, 30, 62–66. [Google Scholar]
- Vignesh, A.; Amal, T.C.; Shanmugam, A.; Vasanth, K.; Selvakumar, S. Effects of dietary approaches to prevent hypertension and enhance cardiovascular health. Discov. Food 2025, 5, 9. [Google Scholar] [CrossRef]
- Minari, T.P.; Tácito, L.H.B.; Yugar, L.B.T.; Ferreira-Melo, S.E.; Manzano, C.F.; Pires, A.C.; Moreno, H.; Vilela-Martin, J.F.; Cosenso-Martin, L.N.; Yugar-Toledo, J.C. Nutritional Strategies for the Management of Type 2 Diabetes Mellitus: A Narrative Review. Nutrients 2023, 15, 5096. [Google Scholar] [CrossRef]
- Gebreyesus, H.A.; Abreha, G.F.; Beshirie, S.D.; Abera, M.A.; Weldegerima, A.H.; Bezabih, A.M.; Lemma, T.B.; Nigatu, T.G. Patient-centered nutrition education improved the eating behavior of persons with uncontrolled type 2 diabetes mellitus in North Ethiopia: A quasi-experimental study. Front. Nutr. 2024, 11, 1352963. [Google Scholar] [CrossRef]
- Ouyang, C.M.; Dwyer, J.T.; Jacques, P.F.; Chuang, L.M.; Haas, C.F.; Weinger, K. Determinants of dietary self-care behaviours among Taiwanese patients with type 2 diabetes. Asia Pac. J. Clin. Nutr. 2015, 24, 430–437. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Misra, A.; Mohan, V.; Taylor, R.; Yancy, W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 2018, 361, k2234. [Google Scholar] [CrossRef]
- Ahmed, S.; Ripon, S.H.; Islam, M.F.; Ullah, A.; Sultan, S.; Sajid, M.; Rahman, T. Association of dietary intake and nutrition knowledge with diabetes self-management behavior among Bangladeshi type 2 diabetes mellitus adults: A multi-center cross-sectional study. Endocr. Metab. Sci. 2024, 14, 100156. [Google Scholar] [CrossRef]
- Pedersen, S.D.; Kang, J.; Kline, G.A. Portion Control Plate for Weight Loss in Obese Patients with Type 2 Diabetes Mellitus: A Controlled Clinical Trial. JAMA Intern. Med. 2007, 167, 1277–1283. [Google Scholar] [CrossRef]
- Gortzi, O.; Dimopoulou, M.; Androutsos, O.; Vraka, A.; Gousia, H.; Bargiota, A. Effectiveness of a Nutrition Education Program for Patients with Type 2 Diabetes Mellitus. Appl. Sci. 2024, 14, 2114. [Google Scholar] [CrossRef]
- Strydom, H.; Muchiri, J.; Delport, E.; White, Z. Adherence to Personalised Nutrition Education Based on Glycemic and Food Insulin Index Principles and Their Association with Blood Glucose Control in Individuals with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2025, 22, 925. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, J.W.; Tzeng, M.S. Reliability and validity of dietary quality questionnaire and effectiveness of nutrition counseling on diabetic patients attending Diabetes Shared Care Network. Master’s Thesis, Fu Jen Catholic University, New Taipei City, Taiwan, 2017. [Google Scholar]
- Schmitt, A.; Gahr, A.; Hemanns, N.; Kulzer, B.; Huber, J.; Haak, T. The Diabetes Self-Management Questionnaire (DSMQ): Development and evaluation of an instrument to assess diabetes self-care activities associated with glycaemic control. Health Qual. Life Outcomes 2013, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Bukhsh, A.; Lee, S.W.H.; Pusparajah, P.; Schmitt, A.; Khan, T.M. Psychometric properties of the Diabetes Self-Management Questionnaire (DSMQ) in Urdu. Health Qual. Life Outcomes 2017, 15, 200. [Google Scholar] [CrossRef] [PubMed]
- Maneesing, T.U.; Dawangpa, A.; Chaivanit, P.; Songsakul, S.; Prasertsri, P.; Noronha, N.Y.; Watanabe, L.M.; Nonino, C.B.; Partumvinit, B.; Sae-Lee, C. Optimising blood glucose control with portioned meal box in type 2 diabetes mellitus patients: A randomised control trial. Front. Nutr. 2023, 10, 1216753. [Google Scholar] [CrossRef]
- Foster, G.D.; Wadden, T.A.; LaGrotte, C.A.; Vander Veur, S.S.; Hesson, L.A.; Homko, C.J.; Maschak-Carey, B.J.; Barbor, N.R.; Bailer, B.; Diewald, L.; et al. A randomized comparison of a commercially available portion-controlled weight-loss intervention with a diabetes self-management education program. Nutr. Diabetes 2013, 3, e63. [Google Scholar] [CrossRef]
- Opoku, A.A.; Abushama, M.; Konje, J.C. Obesity and menopause. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102348. [Google Scholar] [CrossRef]
- van Eekelen, E.; Geelen, A.; Alssema, M.; Lamb, H.J.; de Roos, A.; Rosendaal, F.R.; de Mutsert, R. Adherence to dietary guidelines in relation to visceral fat and liver fat in middle-aged men and women: The NEO study. Int. J. Obes. 2020, 44, 297–306. [Google Scholar] [CrossRef]
- Gariballa, S.; Al-Bluwi, G.S.M.; Yasin, J. Mechanisms and Effect of Increased Physical Activity on General and Abdominal Obesity and Associated Metabolic Risk Factors in a Community with Very High Rates of General and Abdominal Obesity. Antioxidants 2023, 12, 826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhao, L.; Liang, L.; Xie, G.; Wu, Y. Factors explaining the gender disparity in lipid-lowering treatment goal attainment rate in Chinese patients with statin therapy. Lipids Health Dis. 2012, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Gavina, C.; Araújo, F.; Teixeira, C.; Ruivo, J.A.; Corte-Real, A.L.; Luz-Duarte, L.; Canelas-Pais, M.; Taveira-Gomes, T. Sex differences in LDL-C control in a primary care population: The PORTRAIT-DYS study. Atherosclerosis 2023, 384, 117148. [Google Scholar] [CrossRef]
- Billimek, J.; Malik, S.; Sorkin, D.H.; Schmalbach, P.; Ngo-Metzger, Q.; Greenfield, S.; Kaplan, S.H. Understanding disparities in lipid management among patients with type 2 diabetes: Gender differences in medication nonadherence after treatment intensification. Womens Health Issues 2015, 25, 6–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, S.R.; Castelo-Branco, C.; Chedraui, P.; Lumsden, M.A.; Nappi, R.E.; Shah, D.; Villaseca, P. Understanding weight gain at menopause. Climacteric 2012, 15, 419–429. [Google Scholar] [CrossRef]
- Takahashi, K.; Kamada, C.; Yoshimura, H.; Okumura, R.; Iimuro, S.; Ohashi, Y.; Araki, A.; Umegaki, H.; Sakurai, T.; Yoshimura, Y.; et al. Japanese Elderly Diabetes Intervention Trial Study Group. Effects of total and green vegetable intakes on glycated hemoglobin A1c and triglycerides in elderly patients with type 2 diabetes mellitus: The Japanese Elderly Intervention Trial. Geriatr. Gerontol. Int. 2012, 12 (Suppl. 1), 50–58. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.S.; Htet, M.K.; Lukito, W.; Bardosono, S.; Setiabudy, R.; Basuki, E.S.; Wibudi, A.; Martianto, D.; Subekti, I.; Fahmida, U. Increased vegetable intake improves glycaemic control in adults with type 2 diabetes mellitus: A clustered randomised clinical trial among Indonesian white-collar workers. J. Nutr. Sci. 2022, 11, e49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Golay, A.; Bobbioni, E. The role of dietary fat in obesity. Int. J. Obes. Relat. Metab. Disord. 1997, 21 (Suppl. 3), S2–S11. [Google Scholar] [PubMed]
- Szudzik, M.; Hutsch, T.; Chabowski, D.; Zajdel, M.; Ufnal, M. Normal caloric intake with high-fat diet induces metabolic dysfunction-associated steatotic liver disease and dyslipidemia without obesity in rats. Sci. Rep. 2024, 14, 22796. [Google Scholar] [CrossRef]
- Petrut, S.-M.; Bragaru, A.M.; Munteanu, A.E.; Moldovan, A.D.; Moldovan, C.A.; Rusu, E. Gut over Mind: Exploring the Powerful Gut–Brain Axis. Nutrients 2025, 17, 842. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; O’Riordan, K.J.; Clarke, G.; Cryan, J.F. Feeding gut microbes to nourish the brain: Unravelling the diet–microbiota–gut–brain axis. Nat. Metab. 2024, 6, 1454–1478. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.S.; Chambers, E.S.; Morrison, D.J.; Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. 2015, 39, 1331–1338. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- La Torre, D.; Verbeke, K.; Dalile, B. Dietary fibre and the gut–brain axis: Microbiota-dependent and independent mechanisms of action. Gut Microbiome 2021, 2, e3. [Google Scholar] [CrossRef]
- Gruber, T.; Lechner, F.; Krieger, J.-P.; García-Cáceres, C. Neuroendocrine gut–brain signaling in obesity. Trends Endocrinol. Metab. 2025, 36, 42–54. [Google Scholar] [CrossRef]
- Rosendo-Silva, D.; Viana, S.; Carvalho, E.; Reis, F.; Matafome, P. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Intern. Emerg. Med. 2023, 18, 1287–1302. [Google Scholar] [CrossRef]
- McNaughton, S.A.; Dunstan, D.W.; Ball, K.; Shaw, J.; Crawford, D. Dietary quality is associated with diabetes and cardiometabolic risk factors. J. Nutr. 2009, 139, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Salvia, M.G.; Quatromoni, P.A. Behavioral approaches to nutrition and eating patterns for managing type 2 diabetes: A review. Am. J. Med. Open 2023, 9, 100034. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Das, S.R.; Gibbons, C.H.; et al. Introduction and methodology: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46 (Suppl. 1), S1–S4. [Google Scholar] [CrossRef] [PubMed]
| Characteristics | TDQS G1 (≤106.7) | TDQS G2 (106.8–118.7) | TDQS G3 (≧118.8) | p Values Across Groups | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| All G1 | Male | Female | All G2 | Male | Female | All G3 | Male | Female | ||
| N = 324 | N = 156 | N = 168 | N = 318 | N = 151 | N = 167 | N = 339 | N = 137 | N = 202 | ||
| Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
| Male n (%) | 156 (48.1) | 151 (47.5) | 137 (40.4) | 0.09 | ||||||
| Age (years) | 59.1 ± 12.1 a | 59.0 ± 11.1 | 59.2 ± 12.9 | 61.7 ± 12.0 b | 61.5 ± 12.3 | 61.9 ± 11.8 | 65.1 ± 9.8 c | 65.4 ± 10.0 | 64.9 ± 9.7 | <0.001 |
| Smoke n (%) | p < 0.001 | p < 0.001 | p < 0.001 | <0.001 | ||||||
| None | 231 (71.3) | 73 (46.8) | 158 (94.0) | 234 (73.6) | 78 (51.7) | 156 (93.4) | 274 (80.8) | 76 (55.5) | 198 (98.0) | |
| Quit smoking | 30 (9.3) | 29 (18.6) | 1 (0.6) | 51 (16.0) | 43 (28.5) | 8 (4.8) | 45 (13.3) | 41 (29.9) | 4 (2.0) | |
| Smoking | 63 (19.4) | 54 (34.6) | 9 (5.4) | 33 (10.4) | 30 (19.9) | 3 (1.8) | 20 (5.9) | 20 (14.6) | 0 (0.0) | |
| Education n (%) | p < 0.001 | p < 0.001 | p < 0.001 | 0.19 | ||||||
| Illiterate | 11 (3.4) | 0 (0.0) | 11 (6.5) | 9 (2.8) | 2 (1.3) | 7 (4.2) | 17 (5.0) | 2 (1.5) | 15 (7.4) | |
| Elementary | 89 (27.5) | 34 (21.8) | 55 (32.7) | 97 (30.5) | 32 (21.2) | 65 (38.9) | 108 (31.9) | 31 (22.6) | 77 (38.1) | |
| Junior | 71 (21.9) | 34 (21.8) | 37 (22.0) | 41 (12.9) | 22 (14.6) | 19 (11.4) | 59 (17.4) | 25 (18.2) | 34 (16.8) | |
| High school | 75 (23.2) | 43 (27.6) | 32 (19.0) | 86 (27.0) | 41 (27.2) | 45 (26.9) | 79 (23.3) | 31 (22.6) | 48 (23.8) | |
| College | 76 (23.5) | 43 (27.6) | 33 (19.6) | 82 (25.8) | 54 (35.8) | 28 (16.8) | 74 (21.8) | 47 (43.3) | 27 (13.4) | |
| Unknown | 2 (0.6) | 2 (1.3) | 0 (0.0) | 3 (0.9) | 0 (0.0) | 3 (1.8) | 2 (0.6) | 1 (0.7) | 1 (0.5) | |
| DM duration (years) | 10.1 ± 7.7 a | 9.3 ± 6.2 | 10.8 ± 8.9 | 10.9 ± 7.5 ab | 10.6 ± 7.5 | 11.1 ± 7.5 | 11.8 ± 8.4 b | 13.8 ± 9.6 | 10.4 ± 7.2 ** | 0.02 |
| PAT (mins/week) (median (IQR)) | 0 (150) | 30 (180) | 0 (120) * | 30 (210) | 15 (180) | 60 (210) | 90 (240) | 105 (243) | 75 (210) | <0.001 |
| Count of CDE education | 6.4 ± 2.7 | 6.7 ± 2.6 | 6.1 ± 2.8 | 6.2 ± 2.8 | 6.1 ± 2.7 | 6.1 ± 2.9 | 6.4 ± 2.7 | 6.4 ± 2.8 | 6.5 ± 2.5 | 0.43 |
| BH (cm) | 161 ± 8.8 a | 168 ± 6.4 | 156 ± 6.5 *** | 161 ± 8.1 a | 167 ± 5.8 | 156 ± 6.2 *** | 159 ± 8.1 b | 166 ± 6.7 | 155 ± 5.2 *** | 0.004 |
| CBW (kg) | 72.6 ± 14.9 a | 75.5 ± 15.3 | 69.9 ± 14 ** | 68.8 ± 13.6 b | 73.9 ± 13.2 | 64.2 ± 12.3 *** | 64.6 ± 12.3 c | 70.7 ± 12.9 | 60.5 ± 10.1 *** | <0.001 |
| BMI (kg/m2) | 27.8 ± 5.0 a | 26.8 ± 4.6 | 28.8 ± 5.2 *** | 26.4 ± 4.2 b | 26.5 ± 4.1 | 26.3 ± 4.3 | 25.4 ± 4.0 c | 25.5 ± 3.8 | 25.3 ± 4.1 | <0.001 |
| Phenotype n (%) | p < 0.001 | p = 0.60 | p = 0.76 | <0.001 | ||||||
| Underweight | 0 (0.0) | 0 (0.0) | 0 (0.0) | 6 (1.9) | 3 (2.0) | 3 (1.8) | 8 (2.4) | 2 (1.5) | 6 (3.0) | |
| Normal weight | 72 (22.2) | 45 (28.8) | 27 (16.1) | 85 (26.7) | 35 (23.3) | 50 (29.9) | 119 (35.1) | 46 (33.6) | 73 (36.1) | |
| Overweight | 90 (27.8) | 48 (30.8) | 42 (25.0) | 99 (31.1) | 50 (33.1) | 49 (29.3) | 113 (33.3) | 48 (35.0) | 65 (32.2) | |
| Obese | 162 (50.0) | 63 (40.4) | 99 (58.9) | 128 (40.3) | 63 (41.7) | 65 (38.9) | 99 (29.2) | 41 (29.9) | 58 (28.7) | |
| WC (cm) | 94.0 ± 11.7 a | 94.7 ± 11.5 | 93.2 ± 12 | 91.0 ± 10.5 b | 93.3 ± 10.2 | 89.0 ± 10.6 *** | 87.7 ± 9.3 c | 90.7 ± 9.1 | 85.6 ± 8.9 *** | <0.001 |
| Abdominal obesity n (%) | 260 (80.2) | 108 (69.2) | 152 (90.5) *** | 230 (72.3) | 95 (62.9) | 135 (80.8) ** | 87 (64.6) | 74 (54.0) | 145 (71.8) ** | <0.001 |
| SBP (mmHg) | 132 ± 18 | 130 ± 16 | 133 ± 20 | 133 ± 16 | 133 ± 16 | 134 ± 16 | 133 ± 17 | 133 ± 17 | 133 ± 17 | 0.54 |
| DBP (mmHg) | 76 ± 13 | 76 ± 11 | 75 ± 15 | 76 ± 11 | 76 ± 12 | 76 ± 11 | 75 ± 11 | 75 ± 9 | 74 ± 12 | 0.35 |
| FBG (mg/dL) | 148 ± 54 a | 143 ± 46 | 152 ± 60 | 135 ± 37 bc | 133 ± 34 | 137 ± 39 | 135 ± 38 c | 134 ± 35 | 136 ± 40 | <0.001 |
| HbA1c (%) | 7.6 ± 1.6 a | 7.5 ± 1.5 | 7.7 ± 1.7 | 7.3 ± 1.3 bc | 7.3 ± 1.4 | 7.3 ± 1.2 | 7.1 ± 1.1b c | 7.2 ± 1.1 | 7.1 ± 1.1 | <0.001 |
| Total cholesterol (mg/dL) | 163 ± 38 | 158 ± 35 | 168 ± 40 * | 157 ± 34 | 154 ± 35 | 159 ± 34 | 158 ± 35 | 149 ± 30 | 164 ± 32 *** | 0.05 |
| Triglyceride (mg/dL) (median (IQR)) | 130 (103) | 123 (104) | 132 (106) | 125 (70) | 118 (75) | 131 (81) | 115 (81) | 113 (82) | 120 (80) | <0.001 |
| HDL-c (mg/dL) (median (IQR)) | 45.0 (17.4) | 42.0 (16.0) | 46.0 (19.0) * | 44.0 (16.0) | 42.0 (15.0) | 46 (18.6) ** | 46.0 (16.0) | 41.2 (13.0) | 49.0 (17.0) *** | 0.108 |
| LDL-c (mg/dL) | 90.6 ± 29.6 | 86.6 ± 27.3 | 94.4 ± 31.2 * | 89.0 ± 27.5 | 89.4 ± 28.6 | 88.7 ± 26.6 | 87.2 ± 24.1 | 85.0 ± 22.8 | 88.8 ± 24.9 | 0.30 |
| Achieving ABC targets n (%) | 46 (14.2) | 26 (16.7) | 20 (11.9) | 47 (14.8) | 25 (16.6) | 22 (13.2) | 52 (15.3) | 15 (10.9) | 37 (18.3) | 0.79 |
| A: HbA1c < 7% n (%) | 141 (43.7) | 73 (47.1) | 68 (40.5) | 163 (51.3) | 75 (49.7) | 88 (52.7) | 185 (54.6) | 67 (48.9) | 118 (58.4) | 0.016 |
| B: BP <130/80 mmHg n (%) | 128 (39.5) | 65 (41.7) | 63 (37.5) | 115 (36.2) | 54 (35.8) | 61 (36.5) | 122 (36.0) | 43 (31.4) | 79 (39.1) | 0.54 |
| C: LDL-c <100 mg/dL n (%) | 218 (67.3) | 116 (74.4) | 102 (60.7) * | 214 (67.3) | 102 (67.5) | 112 (67.1) | 244 (72.0) | 104 (75.9) | 140 (69.3) | 0.26 |
| DBA score | 61.7 ± 8.0 a | 60.9 ± 8.2 | 62.3 ± 7.7 | 69.7 ± 6.1 b | 68.8 ± 6.2 | 70.6 ± 5.9 * | 77.3 ± 6.3 c | 76.8 ± 6.3 | 77.6 ± 6.4 | <0.001 |
| Items of DBA | ||||||||||
| Less high sugar food | 7.1 ± 2.3 a | 7.3 ± 2.1 | 7.0 ± 2.4 | 7.8 ± 2.0 bc | 7.9 ± 1.9 | 7.7 ± 2.1 | 8.1 ± 1.8 c | 7.9 ± 1.8 | 8.3 ± 1.8 | <0.001 |
| LGI CHO food | 4.3 ± 1.9 a | 4.2 ± 1.9 | 4.3 ± 2.0 | 4.9 ± 2.0 b | 4.8 ± 1.9 | 5.0 ± 2.1 | 5.7 ± 2.3 c | 5.7 ± 2.4 | 5.7 ± 2.3 | <0.001 |
| CHO spacing | 8.0 ± 2.5 a | 8.0 ± 2.6 | 8.1 ± 2.5 | 8.6 ± 1.9 b | 8.8 ± 1.9 | 8.4 ± 1.9 | 9.1 ± 1.4 c | 9.2 ± 1.5 | 9.0 ± 1.4 | <0.001 |
| High fiber CHO food | 4.3 ± 2.1 a | 4.2 ± 2.1 | 4.4 ± 2.1 | 5.5 ± 2.5 b | 5.2 ± 2.5 | 5.8 ± 2.5 * | 6.6 ± 2.6 c | 6.8 ± 2.7 | 6.5 ± 2.5 | <0.001 |
| Rich n-3 FAs fish | 4.5 ± 2.2 a | 4.7 ± 2.1 | 4.4 ± 2.2 | 5.0 ± 2.3 b | 5.1 ± 2.2 | 4.9 ± 2.3 | 5.8 ± 2.6 c | 6.0 ± 2.5 | 5.7 ± 2.6 | <0.001 |
| Less high fat cooking | 6.8 ± 2.4 a | 6.8 ± 2.4 | 6.7 ± 2.4 | 7.6 ± 2.1 b | 7.5 ± 2.2 | 7.7 ± 2.0 | 8.2 ± 1.8 c | 8.2 ± 1.7 | 8.1 ± 1.9 | <0.001 |
| Less high SFA or TFA food | 6.6 ± 2.3 a | 6.2 ± 2.2 | 6.9 ± 2.3 * | 7.2 ± 2.0 b | 7.0 ± 2.0 | 7.3 ± 1.9 | 7.9 ± 2.0 c | 7.5 ± 2.2 | 8.1 ± 1.9 * | <0.001 |
| Less dining out frequency | 5.4 ± 2.8 a | 5.2 ± 2.8 | 5.6 ± 2.8 | 6.3 ± 2.8 b | 5.7 ± 2.9 | 6.9 ± 2.6 *** | 7.7 ± 2.4 c | 7.3 ± 2.6 | 8.0 ± 2.1 * | <0.001 |
| Less alcohol drinking | 9.0 ± 2.2 a | 8.5 ± 2.5 | 9.5 ± 1.6 *** | 9.4 ± 1.5 bc | 9.2 ± 1.8 | 9.7 ± 1.1 ** | 9.7 ± 1.0 c | 9.4 ± 1.5 | 9.9 ± 0.5 ** | <0.001 |
| Balanced diet | 5.6 ± 2.7 a | 5.7 ± 2.7 | 5.5 ± 2.7 | 7.4 ± 2.3 b | 7.6 ± 2.3 | 7.3 ± 2.3 | 8.5 ± 2.0 c | 8.8 ± 1.6 | 8.3 ± 2.2 * | <0.001 |
| DPA score | 33.8 ± 7.2 a | 33.4 ± 7.8 | 34.3 ± 6.7 | 42.9 ± 6.4 b | 43.8 ± 6.5 | 42.0 ± 6.2 * | 50.8 ± 6.3 c | 51 ± 5.8 | 50.6 ± 6.7 | <0.001 |
| Six major food groups intake | ||||||||||
| Whole grains and tubers (S) | 10.4 ± 4.0 a | 11.3 ± 4.3 | 9.6 ± 3.5 *** | 9.5 ± 3.0 b | 10.7 ± 3.1 | 8.4 ± 2.4 *** | 9.1 ± 2.4 b | 10 ± 2.5 | 8.5 ± 2.2 *** | <0.001 |
| Fruits (S) (median (IQR)) | 1.3 (1.7) | 1.5 (2.0) | 1.0 (1.0) | 2.0 (1.5) | 2.0 (1.0) | 2.0 (2.0) | 2.0 (1.0) | 2.0 (1.0) | 2.0 (0.5) | <0.001 |
| Vegetables (S) | 2.4 ± 1.4 a | 2.3 ± 1.4 | 2.4 ± 1.4 | 3.0 ± 1.5 b | 3.0 ± 1.4 | 3.1 ± 1.5 | 3.6 ± 1.4 c | 3.6 ± 1.5 | 3.6 ± 1.4 | 0.02 |
| Dairy products (S) (median (IQR)) | 0.0 (0.0) | 0.0 (0.0) | 0.0 (0.0) | 0.0 (1.0) | 0.0 (0.5) | 0.0 (1.0) | 0.5 (1.0) | 0.8 (1.0) | 0.5 (1.0) | <0.001 |
| Soy, fish, eggs, and meat (S) | 5.2 ± 2.5 | 5.9 ± 2.8 | 4.5 ± 1.9 *** | 4.9 ± 1.9 | 5.4 ± 1.9 | 4.5 ± 1.8 *** | 4.9 ± 1.5 | 5.2 ± 1.6 | 4.7 ± 1.5 *** | 0.12 |
| Oils and nuts (S) | 6.6 ± 3.3 a | 7.0 ± 3.5 | 6.2 ± 3.0 * | 6.1 ± 2.6 b | 6.5 ± 2.6 | 5.7 ± 2.5 * | 5.9 ± 2.1 b | 6.3 ± 2.4 | 5.6 ± 1.9 * | 0.002 |
| Six major food groups score | ||||||||||
| Whole grains and tubers | 7.5 ± 2.1 a | 7.4 ± 2.1 | 7.6 ± 2.0 | 8.1 ± 1.8 b | 8.1 ± 1.8 | 8.0 ± 1.8 | 8.8 ± 1.5 c | 8.8 ± 1.3 | 8.8 ± 1.6 | <0.001 |
| Fruits | 4.3 ± 3.7 a | 4.3 ± 3.7 | 4.4 ± 3.7 | 5.9 ± 3.8 b | 5.8 ± 3.7 | 5.9 ± 4.0 | 7.9 ± 2.9 c | 7.7 ± 2.9 | 8.0 ± 2.8 | <0.001 |
| Vegetables | 6.0 ± 2.9 a | 5.6 ± 2.7 | 6.3 ± 3.0 * | 7.6 ± 2.4 b | 7.5 ± 2.4 | 7.6 ± 2.4 | 8.8 ± 1.9 c | 8.8 ± 1.9 | 8.7 ± 1.9 | <0.001 |
| Dairy products | 4.2 ± 4.8 a | 4.8 ± 4.9 | 3.7 ± 4.6 * | 6.8 ± 4.4 b | 7.4 ± 4.2 | 6.3 ± 4.5 * | 8.5 ± 3.3 c | 8.6 ± 3.3 | 8.4 ± 3.4 | <0.001 |
| Soy, fish, egg and meat | 6.6 ± 2.6 a | 6.2 ± 2.8 | 6.9 ± 2.3 * | 7.5 ± 2.3 b | 7.7 ± 2.3 | 7.3 ± 2.4 | 8.4 ± 1.9 c | 8.6 ± 1.6 | 8.3 ± 2.1 | <0.001 |
| Oils and nuts | 5.2 ± 3.2 a | 5.0 ± 3.2 | 5.3 ± 3.2 | 7.1 ± 2.9 b | 7.3 ± 2.7 | 6.9 ± 3.0 | 8.4 ± 2.0 c | 8.5 ± 1.9 | 8.4 ± 2.1 | <0.001 |
| Total energy intake (kcal/day) | 1694 ± 507 | 1846 ± 530 | 1554 ± 443 *** | 1630 ± 373 | 1759 ± 347 | 1512 ± 357 *** | 1622 ± 285 | 1739 ± 282 | 1542 ± 259 *** | 0.04 |
| CHO (g/day) | 197 ± 68 | 211 ± 71 | 184 ± 62 *** | 192 ± 51 | 208 ± 50 | 178 ± 48 *** | 189 ± 39 | 202 ± 42 | 179 ± 35 *** | 0.15 |
| CHO (% TE) | 46.8 ± 9.2 | 46.1 ± 9.6 | 47.5 ± 8.8 | 47.3 ± 7.4 | 47.3 ± 7.3 | 47.3 ± 7.6 | 46.7 ± 6.2 | 46.6 ± 6.8 | 46.7 ± 5.9 | 0.51 |
| Protein (g/day) | 61 ± 21 | 68 ± 22 | 55 ± 18 *** | 59 ± 16 | 64 ± 15 | 54 ± 15 *** | 60 ± 13 | 65 ± 12 | 57 ± 12 *** | 0.24 |
| Protein (% TE) | 14.4 ± 2.3 a | 14.8 ± 2.3 | 14.1 ± 2.3 * | 14.5 ± 1.8 a | 14.6 ± 1.8 | 14.4 ± 1.8 | 14.9 ± 1.6 b | 15 ± 1.4 | 14.8 ± 1.7 | 0.008 |
| Fat (g/day) | 60 ± 24 a | 66 ± 26 | 54 ± 21 *** | 56 ± 18 b | 60 ± 18 | 52 ± 17 *** | 56 ± 14 b | 60 ± 16 | 53 ± 13 *** | 0.02 |
| Fat (% TE) | 31.5 ± 7.9 | 31.7 ± 8.1 | 31.3 ± 7.7 | 30.9 ± 6.6 | 30.7 ± 6.3 | 31.1 ± 6.8 | 31 ± 5.4 | 31 ± 6.2 | 31.1 ± 4.8 | 0.94 |
| Energy intake (kcal/kg CBW) | 23.9 ± 7.6 a | 25.1 ± 8.1 | 22.8 ± 7.0 * | 24.3 ± 6.2 a | 24.4 ± 5.8 | 24.2 ± 6.5 | 25.7 ± 5.6 b | 25.2 ± 5.3 | 26.1 ± 5.8 | 0.001 |
| Protein intake (g/kg CBW) | 0.9 ± 0.3 a | 0.9 ± 0.3 | 0.8 ± 0.3 *** | 0.9 ± 0.2 a | 0.9 ± 0.2 | 0.9 ± 0.3 | 1.0 ± 0.2 b | 0.9 ± 0.2 | 1.0 ± 0.3 | <0.001 |
| Outcome | TDQS G1 (≤106.7) | TDQS G2 (106.8–118.7) | Nagelkerke R2 | VIF | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||||||||
| Abnormal BW | Model 1 | 1.530 | 1.067 | - | 2.192 | 0.021 | 1.333 | 0.946 | - | 1.878 | 0.100 | 0.061 | 1.080 |
| Model 2 | 1.486 | 1.032 | - | 2.139 | 0.033 | 1.297 | 0.917 | - | 1.835 | 0.141 | 0.064 | 1.084 | |
| Abdominal obesity | Model 1 | 2.282 | 1.553 | - | 3.355 | 0.000 | 1.545 | 1.081 | - | 2.208 | 0.017 | 0.116 | 1.079 |
| Model 2 | 2.258 | 1.528 | - | 3.336 | 0.000 | 1.513 | 1.054 | - | 2.172 | 0.025 | 0.118 | 1.084 | |
| HbA1C | Model 1 | 0.706 | 0.513 | - | 0.971 | 0.032 | 0.917 | 0.672 | - | 1.253 | 0.588 | 0.019 | 1.079 |
| Model 2 | 0.661 | 0.474 | - | 0.921 | 0.014 | 0.906 | 0.656 | - | 1.252 | 0.550 | 0.080 | 1.084 | |
| triglyceride | Model 1 | 0.619 | 0.438 | - | 0.876 | 0.007 | 0.794 | 0.561 | - | 1.124 | 0.193 | 0.050 | 1.082 |
| Model 2 | 0.631 | 0.443 | - | 0.899 | 0.011 | 0.831 | 0.583 | - | 1.183 | 0.304 | 0.053 | 1.086 | |
| Exposure | Metabolic Outcome | Model 1 | Model 2 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Beta | 95% CI | p-Value | R2 | VIF | Beta | 95% CI | p-Value | R2 | VIF | ||||||
| TDQS | WC (cm) | −0.159 | −0.158 | - | −0.069 | 0.000 | 0.111 | 1.105 | −0.155 | −0.157 | - | −0.066 | 0.000 | 0.115 | 1.109 |
| BMI (kg/m2) | −0.153 | −0.064 | - | −0.027 | 0.000 | 0.111 | 1.106 | −0.151 | −0.064 | - | −0.026 | 0.000 | 0.117 | 1.109 | |
| FBG (mg/dL) | −0.104 | −0.493 | - | −0.106 | 0.002 | 0.024 | 1.107 | −0.106 | −0.505 | - | −0.113 | 0.002 | 0.036 | 1.111 | |
| HbA1c (%) | −0.131 | −0.018 | - | −0.006 | 0.000 | 0.040 | 1.105 | −0.136 | −0.018 | - | −0.006 | 0.000 | 0.079 | 1.109 | |
| TC (mg/dL) | −0.079 | −0.332 | - | −0.027 | 0.021 | 0.031 | 1.109 | −0.076 | −0.327 | - | −0.017 | 0.029 | 0.030 | 1.112 | |
| TG (mg/dL) | −0.152 | −1.351 | - | −0.540 | 0.000 | 0.062 | 1.109 | −0.148 | −1.339 | - | −0.514 | 0.000 | 0.065 | 1.113 | |
| DBA score | WC (cm) | −0.107 | −0.199 | - | −0.049 | 0.001 | 0.098 | 1.157 | −0.102 | −0.194 | - | −0.043 | 0.002 | 0.102 | 1.160 |
| BMI (kg/m2) | −0.099 | −0.079 | - | −0.017 | 0.003 | 0.098 | 1.160 | −0.097 | −0.078 | - | −0.015 | 0.004 | 0.104 | 1.163 | |
| FBG (mg/dL) | −0.091 | −0.746 | - | −0.106 | 0.009 | 0.021 | 1.162 | −0.086 | −0.722 | - | −0.078 | 0.015 | 0.033 | 1.162 | |
| HbA1c (%) | −0.135 | −0.029 | - | −0.010 | 0.000 | 0.040 | 1.159 | −0.128 | −0.028 | - | −0.009 | 0.000 | 0.077 | 1.162 | |
| TC (mg/dL) | −0.087 | −0.578 | - | −0.068 | 0.013 | 0.032 | 1.154 | −0.087 | −0.581 | - | −0.064 | 0.014 | 0.032 | 1.160 | |
| TG (mg/dL) | −0.141 | −2.103 | - | −0.753 | 0.000 | 0.059 | 1.161 | −0.137 | −2.068 | - | −0.700 | 0.000 | 0.061 | 1.164 | |
| DPA score | WC (cm) | −0.140 | −0.228 | - | −0.089 | 0.000 | 0.107 | 1.020 | −0.138 | −0.227 | - | −0.087 | 0.000 | 0.112 | 1.024 |
| BMI (kg/m2) | −0.139 | −0.094 | - | −0.037 | 0.000 | 0.108 | 1.020 | −0.136 | −0.094 | - | −0.036 | 0.000 | 0.114 | 1.024 | |
| FBG (mg/dL) | −0.073 | −0.627 | - | −0.038 | 0.027 | 0.019 | 1.019 | −0.081 | −0.671 | - | −0.074 | 0.014 | 0.033 | 1.023 | |
| HbA1c (%) | −0.075 | −0.020 | - | −0.002 | 0.019 | 0.030 | 1.020 | −0.087 | −0.021 | - | −0.004 | 0.006 | 0.070 | 1.024 | |
| TC (mg/dL) | −0.041 | −0.379 | - | 0.083 | 0.210 | 0.027 | 1.024 | −0.036 | −0.364 | - | 0.105 | 0.279 | 0.026 | 1.027 | |
| TG (mg/dL) | −0.100 | −1.599 | - | −0.364 | 0.002 | 0.051 | 1.022 | −0.098 | −1.593 | - | −0.336 | 0.003 | 0.055 | 1.026 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, P.-H.; Tsai, M.-C.; Chan, C.-Y.; Wang, C.-Y.; Chen, J.-F.; Tu, S.-T.; Ou, H.-Y.; Lee, C.-C. Associations of Total Dietary Quality Score, Dietary Behavior Adherence, and Dietary Portion Adherence with Metabolic Factors Among People with Type 2 Diabetes Mellitus. Nutrients 2025, 17, 3366. https://doi.org/10.3390/nu17213366
Hsu P-H, Tsai M-C, Chan C-Y, Wang C-Y, Chen J-F, Tu S-T, Ou H-Y, Lee C-C. Associations of Total Dietary Quality Score, Dietary Behavior Adherence, and Dietary Portion Adherence with Metabolic Factors Among People with Type 2 Diabetes Mellitus. Nutrients. 2025; 17(21):3366. https://doi.org/10.3390/nu17213366
Chicago/Turabian StyleHsu, Pi-Hui, Ming-Chieh Tsai, Chiao-Ya Chan, Chih-Yuan Wang, Jung-Fu Chen, Shih-Te Tu, Horng-Yih Ou, and Chun-Chuan Lee. 2025. "Associations of Total Dietary Quality Score, Dietary Behavior Adherence, and Dietary Portion Adherence with Metabolic Factors Among People with Type 2 Diabetes Mellitus" Nutrients 17, no. 21: 3366. https://doi.org/10.3390/nu17213366
APA StyleHsu, P.-H., Tsai, M.-C., Chan, C.-Y., Wang, C.-Y., Chen, J.-F., Tu, S.-T., Ou, H.-Y., & Lee, C.-C. (2025). Associations of Total Dietary Quality Score, Dietary Behavior Adherence, and Dietary Portion Adherence with Metabolic Factors Among People with Type 2 Diabetes Mellitus. Nutrients, 17(21), 3366. https://doi.org/10.3390/nu17213366

