Photobiomodulation Acutely Augments Resting Metabolism in Women with Obesity
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Statistical Analysis
3. Results
- -
- A group × time interaction (F3,60 = 3.054, p = 0.03) and a main effect of time (F1,60 = 10.88, p = 0.001), with REE increased in women with obesity post-PBM compared to pre-PBM (+9.3%, 1624 ± 314 vs. 1486 ± 327 kcal/day, p < 0.001, Figure 2), with RER unchanged. Individual variability in the SHAM condition was trivial for both normal-weight participants (Cohen’s d = 0.117) and participants with obesity (Cohen’s d = 0.021), whereas the effect size in response to PBM was small in normal-weight participants (Cohen’s d = 0.265) and moderate in women with obesity (Cohen’s d = 0.640).
- -
- A group x time interaction (F3,60 = 20.59, p < 0.001) and a main effect of time (F1,60 = 37.59, p < 0.001), with VO2 increased in women with obesity post-PBM compared to pre-PBM (+7%, p < 0.001).
- -
- A main effect of time (F1,60 = 17.04, p = 0.0001), with HR decreased following the SHAM condition in both normal-weight women and women with obesity.
- -
- A main group effect for systolic pressure (F3,60 = 13.19, p < 0.0001), with significantly increased values in women with obesity with respect to normal-weight counter peer (p < 0.001).
- -
- A main effect of time (F1,60 = 21.1, p < 0.0001), with POMS scores improved in both groups after both conditions.
- -
- A group x time interaction (F3,60 = 9.000, p < 0.0001), a main effect of group (F3,60 = 2.791, p = 0.04) with increased values in women with obesity compared to normal-weight women (p < 0.0001), and a main effect of time (F1,60 = 32.00, p < 0.0001) with RPE decreased in both normal-weight women and women with obesity, after PBM condition.
- -
- A main group effect for skin AF (F3,60 = 10.48, p < 0.001) with significantly increased values in women with obesity with respect to normal-weight peers (p < 0.001).
- -
- A group x time interaction (F3,60 = 8.835, p < 0.0001), a main effect of group (F3,60 = 4.095, p = 0.01) with better scores in lean subjects with respect to women with obesity (p < 0.05), and a main effect of time (F1,60 = 45.34, p < 0.001), with flexibility improved in both normal-weight women and women with obesity after the PBM condition.
- -
- A group × time interaction (F3,52 = 75.17, p < 0.0001), a main effect of group (F3,52 = 29.18, p < 0.0001), with higher front temperature values in lean compared to women with obesity (p < 0.05), and a main effect of time (F3,52 = 288.9, p < 0.0001) with an increase in front temperature post-PBM in both groups (p < 0.0001).
- -
- A group × time interaction (F3,52 = 160.1, p < 0.0001), a main effect of group (F3,52 = 70.21, p < 0.0001) with higher back temperature values in lean compared to women with obesity (p < 0.02), and a main effect of time (F1,52 = 542.5, p < 0.0001), with an increase in back temperature post-PBM in both groups (p < 0.0001).
- -
- Furthermore, a greater delta (post-pre) was registered in both groups (p < 0.0001) in back- versus front temperature (4.637 vs. 3.262 °C for normal-weight; 5.106 vs. 2.737 °C for women with obesity). The magnitude of this delta was significantly higher in women with obesity with respect to normal-weight women (2.368 vs. 1.375 °C, p < 0.0001).
- -
- Considering the interindividual variability in the delta (Δ post–pre) REE, PBM was found to have a significantly greater impact on women with obesity compared with the SHAM condition (p < 0.01, Figure 3).
- -
- No significant correlations were found between changes in resting energy expenditure (ΔREE) and changes in skin temperature (ΔT) at the anterior and posterior exposure sites, across groups and conditions (Supplementary Table S1).
4. Discussion
4.1. Potential Phyiological Mechanisms
4.2. Broader Physiological Implications
4.3. Clinical Significance and Translational Potential
4.4. Limititations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATP | Adenosine triphosphate |
| BMI | Body Mass Index |
| BP | Blood Pressure |
| HR | Heart Rate |
| PBM | Photobiomodulation |
| POMS | Profiles of Mood States |
| REE | Resting Energy Expenditure |
| RER | Respiratory Exchange Ratio |
| ROI | Region Of Interest |
| RPE | Rate of Perceived Exertion |
References
- Brauer, M.; Roth, G.A.; Aravkin, A.Y.; Zheng, P.; Abate, K.H.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasi, M.A.; Abbasian, M.; et al. Global Burden and Strength of Evidence for 88 Risk Factors in 204 Countries and 811 Subnational Locations, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2162–2203. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 26 September 2025).
- Mehrtash, F.; Dushay, J.; Manson, J.E. Integrating Diet and Physical Activity When Prescribing GLP-1s—Lifestyle Factors Remain Crucial. JAMA Intern. Med. 2025, 185, 1151. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms of Low Level Light Therapy. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 19–24 February 2006; Volume 6140. [Google Scholar]
- Gonzalez-Lima, F. Rojas Low-Level Light Therapy of the Eye and Brain. Eye Brain 2011, 2011, 49–67. [Google Scholar] [CrossRef]
- Karu, T. Primary and Secondary Mechanisms of Action of Visible to Near-IR Radiation on Cells. J. Photochem. Photobiol. B Biol. 1999, 49, 1–17. [Google Scholar] [CrossRef]
- Karu, T.; Pyatibrat, L.V.; Afanasyeva, N.I. Cellular Effects of Low Power Laser Therapy Can Be Mediated by Nitric Oxide. Lasers Surg. Med. 2005, 36, 307–314. [Google Scholar] [CrossRef]
- Karu, T. Mitochondrial Mechanisms of Photobiomodulation in Context of New Data about Multiple Roles of ATP. Photomed. Laser Surg. 2010, 28, 159–160. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic Dose Response in Low Level Light Therapy—An Update. Dose-Response 2011, 9, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Dutra, Y.M.; Malta, E.S.; Elias, A.S.; Broatch, J.R.; Zagatto, A.M. Deconstructing the Ergogenic Effects of Photobiomodulation: A Systematic Review and Meta-Analysis of Its Efficacy in Improving Mode-Specific Exercise Performance in Humans. Sports Med. 2022, 52, 2733–2757. [Google Scholar] [CrossRef]
- Powner, M.B.; Jeffery, G. Light Stimulation of Mitochondria Reduces Blood Glucose Levels. J. Biophotonics 2024, 17, e202300521. [Google Scholar] [CrossRef] [PubMed]
- Scontri, C.M.C.B.; de Castro Magalhães, F.; Damiani, A.P.M.; Hamblin, M.R.; Zamunér, A.R.; Ferraresi, C. Dose and Time–Response Effect of Photobiomodulation Therapy on Glycemic Control in Type 2 Diabetic Patients Combined or Not with Hypoglycemic Medicine: A Randomized, Crossover, Double-blind, Sham-controlled Trial. J. Biophotonics 2023, 16, e202300083. [Google Scholar] [CrossRef]
- Pruitt, T.; Carter, C.; Wang, X.; Wu, A.; Liu, H. Photobiomodulation at Different Wavelengths Boosts Mitochondrial Redox Metabolism and Hemoglobin Oxygenation: Lasers vs. Light-Emitting Diodes In Vivo. Metabolites 2022, 12, 103. [Google Scholar] [CrossRef]
- Codella, R.; Lanzoni, G.; Zoso, A.; Caumo, A.; Montesano, A.; Terruzzi, I.M.; Ricordi, C.; Luzi, L.; Inverardi, L. Moderate Intensity Training Impact on the Inflammatory Status and Glycemic Profiles in NOD Mice. J. Diabetes Res. 2015, 2015, 737586. [Google Scholar] [CrossRef]
- Alves, A.N.; Fernandes, K.P.S.; Deana, A.M.; Bussadori, S.K.; Mesquita-Ferrari, R.A. Effects of Low-Level Laser Therapy on Skeletal Muscle Repair: A Systematic Review. Am. J. Phys. Med. Rehabil. 2014, 93, 1073–1085. [Google Scholar] [CrossRef]
- Liang, H.L.; Whelan, H.T.; Eells, J.T.; Meng, H.; Buchmann, E.; Lerch-Gaggl, A.; Wong-Riley, M. Photobiomodulation Partially Rescues Visual Cortical Neurons from Cyanide-Induced Apoptosis. Neuroscience 2006, 139, 639–649. [Google Scholar] [CrossRef]
- Liang, H.L.; Whelan, H.T.; Eells, J.T.; Wong-Riley, M.T.T. Near-Infrared Light via Light-Emitting Diode Treatment Is Therapeutic against Rotenone- and 1-Methyl-4-Phenylpyridinium Ion-Induced Neurotoxicity. Neuroscience 2008, 153, 963–974. [Google Scholar] [CrossRef]
- Tian, F.; Hase, S.N.; Gonzalez-Lima, F.; Liu, H. Transcranial Laser Stimulation Improves Human Cerebral Oxygenation. Lasers Surg. Med. 2016, 48, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Nairuz, T.; Sangwoo-Cho; Lee, J.H. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024, 13, 966. [Google Scholar] [CrossRef] [PubMed]
- Woo, K. Photobiomodulation as a Multimodal Therapy to Enhance Wound Healing and Skin Regeneration. Med. Lasers 2024, 13, 173–184. [Google Scholar] [CrossRef]
- De Nardi, M.; Filipas, L.; Di Gennaro, S.; Allemano, S.; Gallo, G.; Meloni, A.; Della Guardia, L.; Luzi, L.; La Torre, A.; Codella, R. Effects of Cryo-Facial Mask on Running Performance in Amateur Middle-Distance Runners. Cryobiology 2024, 117, 105158. [Google Scholar] [CrossRef]
- De Nardi, M.; Filipas, L.; Facheris, C.; Righetti, S.; Tengattini, M.; Faelli, E.; Bisio, A.; Gallo, G.; La Torre, A.; Ruggeri, P.; et al. Partial-Body Cryostimulation Procured Performance and Perceptual Improvements in Amateur Middle-Distance Runners. PLoS ONE 2023, 18, e0288700. [Google Scholar] [CrossRef]
- Navratil, L.; Kymplova, J. Contraindications in Noninvasive Laser Therapy: Truth and Fiction. J. Clin. Laser Med. Surg. 2002, 20, 341–343. [Google Scholar] [CrossRef]
- Mannocci, A.; Masala, D.; Mei, D.; Tribuzio, A.M.; Villari, P.; LA Torre, G. International Physical Activity Questionnaire for Adolescents (IPAQ A): Reliability of an Italian Version. Minerva Pediatr. 2018, 73, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.A.; Luben, R.; Khaw, K.T.; Bingham, S.A. The CAFE Computer Program for Nutritional Analysis of the EPIC-Norfolk Food Frequency Questionnaire and Identification of Extreme Nutrient Values. J. Hum. Nutr. Diet. 2005, 18, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Ward, H.A.; Norat, T.; Luan, J.; May, A.M.; Weiderpass, E.; Sharp, S.J.; Overvad, K.; Østergaard, J.N.; Tjønneland, A.; et al. Physical Activity and All-Cause Mortality across Levels of Overall and Abdominal Adiposity in European Men and Women: The European Prospective Investigation into Cancer and Nutrition Study (EPIC). Am. J. Clin. Nutr. 2015, 101, 613–621. [Google Scholar] [CrossRef]
- De Nardi, M.; Facheris, C.; Ruggeri, P.; La Torre, A.; Codella, R. High-Impact Routines to Ameliorate Trunk and Lower Limbs Flexibility in Women. Int. J. Sports Med. 2020, 41, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Kuzala, E.A.; Vargo, M.C. The Relationship between Elbow Position and Grip Strength. Am. J. Occup. Ther. 1992, 46, 509–512. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Rennells, C.; Donahoe, L. Effect of Elbow Position on Grip and Key Pinch Strength. J. Hand Surg. 1985, 10, 694–697. [Google Scholar] [CrossRef]
- Ishino, Y. Investigation of Corneal Autofluorescence in Diabetic Patients. Jpn. J. Ophthalmol. 2001, 45, 116. [Google Scholar] [CrossRef]
- Costello, J.T.; Culligan, K.; Selfe, J.; Donnelly, A.E. Muscle, Skin and Core Temperature after −110 °C Cold Air and 8 °C Water Treatment. PLoS ONE 2012, 7, e48190. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. Infrared Thermal Imaging in Medicine. Physiol Meas 2012, 33, R33. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. The Technique of Infrared Imaging in Medicine. In Infrared Imaging: A Casebook in Clinical Medicine; IOP Publishing Ltd.: West Philadelphia, PA, USA, 2015; pp. 7–14. [Google Scholar] [CrossRef]
- De Nardi, M.; Allemano, S.; Bisio, A.; Faelli, E.; La Torre, A.; Ruggeri, P.; Codella, R. Thermal Responses Induced by Nitrogen and Forced Convection Based Partial-Body Cryostimulation. J. Therm. Biol. 2023, 115, 103620. [Google Scholar] [CrossRef] [PubMed]
- De Nardi, M.; Silvani, S.; Facheris, C.; Pagnoncelli, M.; Bisio, A.; Faelli, E.; La Torre, A.; Ruggeri, P.; Codella, R. Effectiveness and Safety of a Thermal Insulating Coverage on the Top of the Cryo-Cabin during a Partial-Body Cryostimulation. J. Therm. Biol. 2021, 97, 102901. [Google Scholar] [CrossRef]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Lane, A.M.; Terry, P.C. The Nature of Mood: Development of a Conceptual Model with a Focus on Depression. J. Appl. Sport. Psychol. 2000, 12, 16–33. [Google Scholar] [CrossRef]
- McNair, D.M.; Lorr, M.; Droppleman, L.F. Manual for the Profile of Mood States; Educational and Industrial Testing Services: San Diego, CA, USA, 1971. [Google Scholar]
- Quartiroli, A.; Terry, P.C.; Fogarty, G.J. Development and Initial Validation of the Italian Mood Scale (ITAMS) for Use in Sport and Exercise Contexts. Front Psychol 2017, 8, 1483. [Google Scholar] [CrossRef]
- Tavakol, M.; Dennick, R. Making Sense of Cronbach’s Alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Spreadsheet for Deriving a Confidence Interval, Mechanistic Inference and Clinical Inference from a P Value. Sportscience 2007, 11, 16–20. [Google Scholar]
- O’Donnell, C.M.; Barrett, D.W.; O’Connor, P.; Gonzalez-Lima, F. Prefrontal Photobiomodulation Produces Beneficial Mitochondrial and Oxygenation Effects in Older Adults with Bipolar Disorder. Front. Neurosci. 2023, 17, 1268955. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Ledesma, S.; Carroll, J.; González-Muñoz, A.; Pruimboom, L.; Burton, P. Changes in Circadian Variations in Blood Pressure, Pain Pressure Threshold and the Elasticity of Tissue after a Whole-Body Photobiomodulation Treatment in Patients with Fibromyalgia: A Tripled-Blinded Randomized Clinical Trial. Biomedicines 2022, 10, 2678. [Google Scholar] [CrossRef]
- Ferraresi, C.; Huang, Y.; Hamblin, M.R. Photobiomodulation in Human Muscle Tissue: An Advantage in Sports Performance? J. Biophotonics 2016, 9, 1273–1299. [Google Scholar] [CrossRef]



| Normal-Weight | With Obesity | p Value | |
|---|---|---|---|
| (n = 16) | (n = 16) | ||
| Age (years) | 43.4 ± 4.8 | 43.4 ± 4.8 | n.s. |
| Height (cm) | 165 ± 4 | 163 ± 6 | n.s. |
| Weight (kg) | 62.6 ± 6.3 | 96.2 ± 18 | <0.001 |
| BMI (kg/m2) | 22.7 ± 2 | 36 ± 4 | <0.001 |
| Total body fat (%) | 27.7 ± 4 | 42.4 ± 4.2 | <0.001 |
| Total muscle mass (kg) | 42.9 ± 3 | 52.3 ± 8.6 | <0.001 |
| Total body water (%) | 53.4 ± 2.9 | 42.9 ± 3.1 | <0.001 |
| Bone mass (kg) | 2.29 ± 0.15 | 2.84 ± 0.56 | <0.001 |
| Physical activity level | sedentary | sedentary | n.s. |
| Dietary intake (kcal/day) | 1254 ± 191 | 1526 ± 1096 | n.s. |
| Normal-Weight | With Obesity | |||||||
|---|---|---|---|---|---|---|---|---|
| SHAM | PBM | SHAM | PBM | |||||
| Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
| VO2 (mL/min) | 220 ± 50.6 | 227 ± 63.7 | 219 ± 38 | 231 ± 44.9 | 221 ± 39.3 | 219 ± 50.5 | 217 ± 47.3 a | 232 ± 48.7 a |
| VCO2 (mL/min) | 176 ± 46.4 | 172 ± 47 | 171 ± 33 | 171 ± 35 | 171 ± 40.2 | 163 ± 43 | 172 ± 42.7 | 177 ± 45 |
| RER (VCO2/VO2) | 0.78 ± 0.08 | 0.73 ± 0.06 | 0.77 ± 0.07 | 0.73 ± 0.06 | 0.77 ± 0.07 | 0.73 ± 0.06 | 0.79 ± 0.1 | 0.76 ± 0.08 |
| REE (kcal/day) | 1527 ± 324 | 1569 ± 391 | 1497 ± 264 a | 1573 ± 301 a | 1526 ± 273 | 1516 ± 312 | 1486 ± 327 b | 1624 ± 314 b |
| HR (bpm) | 81 ± 18 a | 70 ± 22 a | 76 ± 17 | 73 ± 14 | 89 ± 22 b | 80 ± 27 b | 87 ± 21 | 81 ± 22 |
| Systolic pressure (mmHg) | 105 ± 8 | 104 ± 9 | 102 ± 11 | 104 ± 12 | 132 ± 25 | 131 ± 22 | 129 ± 20 | 122 ± 17 |
| POMS (a.u.) | 95 ± 6 | 95 ± 7 | 97 ± 8 a | 93 ± 4 a | 98 ± 9 b | 94 ± 6 b | 99 ± 6 c | 94 ± 4 c |
| RPE (a.u.) | 8 ± 2 | 8 ± 2 | 10 ± 2 a | 8 ± 2 a | 11 ± 3 | 11 ± 2 | 11 ± 3 b | 8 ± 2 b |
| Skin AF (a.u.) | 1.8 ± 0.3 | 1.8 ± 0.3 | 1.8 ± 0.3 | 1.8 ± 0.3 | 2.4 ± 0.5 | 2.4 ± 0.5 | 2.2 ± 0.4 | 2.2 ± 0.4 |
| Skin front temp. (°C) | 32.3 ± 1 | 32.5 ± 1.1 | 32.4 ± 0.7 a | 35.6 ± 0.8 a | 31.6 ± 0.8 | 31.9 ± 0.7 | 31.6 ± 0.8 b | 34.4 ± 0.9 b |
| Skin back temp. (°C) | 32.3 ± 1 | 32.8 ± 1.1 | 32.4 ± 0.7 a | 37± 1.1 a | 31 ± 0.7 | 31 ± 0.6 | 31 ± 0.8 b | 36.1 ± 0.8 b |
| Flexibility (cm) | 8.37 ± 9 | 8.62 ± 8.78 | 7.5 ± 9.1 a | 9.93 ± 9.23 a | 0.5 ± 8.59 | 0.87 ± 8.49 | 0.06 ± 8.25 b | 2.18 ± 9.15 b |
| Strength (kg) | 26.6 ± 5.6 | 26.3 ± 6 | 23.9 ± 5.7 | 25.2 ± 5.9 | 27 ± 5.5 | 27 ± 5.8 | 25.7 ± 6.6 | 26.2 ± 6.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Nardi, M.; Allemano, S.; Buratti, M.; Conti, E.; Filipas, L.; Gotti, D.; Luzi, L.; Codella, R. Photobiomodulation Acutely Augments Resting Metabolism in Women with Obesity. Nutrients 2025, 17, 3357. https://doi.org/10.3390/nu17213357
De Nardi M, Allemano S, Buratti M, Conti E, Filipas L, Gotti D, Luzi L, Codella R. Photobiomodulation Acutely Augments Resting Metabolism in Women with Obesity. Nutrients. 2025; 17(21):3357. https://doi.org/10.3390/nu17213357
Chicago/Turabian StyleDe Nardi, Massimo, Silvia Allemano, Marta Buratti, Eva Conti, Luca Filipas, Daniel Gotti, Livio Luzi, and Roberto Codella. 2025. "Photobiomodulation Acutely Augments Resting Metabolism in Women with Obesity" Nutrients 17, no. 21: 3357. https://doi.org/10.3390/nu17213357
APA StyleDe Nardi, M., Allemano, S., Buratti, M., Conti, E., Filipas, L., Gotti, D., Luzi, L., & Codella, R. (2025). Photobiomodulation Acutely Augments Resting Metabolism in Women with Obesity. Nutrients, 17(21), 3357. https://doi.org/10.3390/nu17213357

