Dietary Interventions for Adults with Type 1 Diabetes: Clinical Outcomes, Guideline Alignment, and Research Gaps—A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Reporting Guidelines
2.2. Data Sources and Search Strategies
2.3. Dietary Exposure Definitions and Carbohydrate Standardization
2.4. Inclusion and Exclusion Criteria
2.5. Selection and Data Extraction
2.6. Data Synthesis
3. Results
3.1. Study Characteristics
3.1.1. Dietary Interventions in Observational Studies
| Author/(Year)/Country/[Ref] | Population | T1D Duration | Dietary Pattern | Dietary Assessment Method | Outcomes Measured | Main Results |
|---|---|---|---|---|---|---|
| Cross-Sectional Studies (n = 13) | ||||||
| Gingras et al. (2015), Canada [78] | Ns/e = 118; F = 52%; 23.1 * yrs | T1D (y) 23 * NR | MedDiet vs. Canadian recommendation | MedDiet Score (0–44) | HbA1c, lipids, BMI, WC, %fat, BP, eGDR | Higher MedDiet score: HbA1c and lipids ↔, ↓ BMI, ↓ WC, ↓ %fat, ↓ SBP, ↓DBP, ↑ eGDR |
| Jaacks et al. (2016) China [79] | Ne = 99; F= 45%; 43.6 (28.4–55.0) yrs | T1D (y) 7.8 (4.8–17.8) | RRR-derived dietary patterns: Pattern 1—low wheat & high-fat cakes, high beans & pickled vegetables; Pattern 2—low high-fat cakes/nuts/fish/tea-coffee, high rice & eggs | Three R24W (2 weekdays + 1 weekend) with FR; RRR on 20 food groups | HbA1c, LDL-c | Pattern 1: Highest vs. Lowest tertile → HbA1c + 1% (≈11 mmol/mol) and LDL-C + 0.36 mmol/L (p < 0.05, adjusted for age & income). Pattern 2: ns association with HbA1c or LDL-c |
| Ahola et al. (2018) Finland [80] | Ns = 1429; Ne = 1040 F = 54.5%; 47 * yrs | T1D (y) NR | Self-reported adh. SpD (36.6% N)—lactose-free 17.1%, protein restriction 10%, vegetarian 7%, gluten-free 5.6%, multiple other SpD | Validated diet questionnaire (SpD adh.) + FFQ for dietary patterns + 3-day food records | HbA1c, BMI, BP, serum lipids, eGFR | SpD adherents were mostly women, older, with longer T1D duration & more complications; mean HbA1c ~64–67 mmol/mol (8.0–8.3%) with no improvement; fiber intake < rec, vit D, folate & Fe often inadequate, esp. in lactose- & gluten-free diets. |
| Ahola et al. (2019) Finland [81] | Ns = 1000 Ne = 992; F = 58%; 47 yrs * (range not specified | T1D (y) NR | HD: macronutrients (%EI) & fiber (g/MJ) | Two validated 3-day FR (3–6 days total) | HbA1c, lipids | higher fiber (g/MJ) → lower mean SMBG (β = −0.428; 95% CI −0.624 to −0.231; p < 0.001); higher CHO, alcohol, MUFA → ↑ CV; substitution models: protein ↔ ↓ CV vs. CHO/fat/alcohol; fat ↔ ↓ CV vs. CHO; fiber adjustment attenuated mean SMBG associations. |
| Ahola et al. (2019) Finland [82] | Ns/e = 1874; F = 54.0%; 48.1 ± 13.4 yrs | T1D (y) 24 (18–34) | HD and renal assessments approx. 5 days apart (median) | Validated diet questionnaire on food habits, SpD, salt reduction, counseling; 19-item FFQ; two 3-day FR | NR | EI ↓ at all CKD stages vs. normal; protein (g/kg) ↓ progressively; Na, K, Ca, P ↓ with worsening function; fiber (g/MJ) ↑ in eGFR 60–89, 30–59, and transplants but ↓ in dialysis; rye → wheat bread shift at eGFR < 30/dialysis; liquid milk and coffee ↓ in advanced CKD; salt reduction, SpD, and counseling ↑ with progression; transplant recipients partly “liberated” (↑ fiber, K, Ca, P; ↓ strict adherence). |
| Granado-Casas et al. (2019) Spain [83] | Ns/e = 259 F = 54.4% age 43.7 * yrs | T1D (y) 21.5 * | Comparison of dietary habits and adh. to the MedDiet and HEI between T1D and CON | Validated 101-item interviewer-administered FFQ (Spanish version; calculated aMED (0–9) and aHEI scores | NR | T1D had ↑ MedDiet & healthier pattern: MedDiet 3.7 ± 1.6 vs. 3.2 ± 1.8 (p = 0.009); low MedDiet (0–2): 23.2% vs. 35.4% (p = 0.019); HEI 40.7 ± 6.5 vs. 37.6 ± 6.2 (p < 0.001); consumed ↑ dairy, proc meat, fatty fish, F/V, nuts, legumes, potatoes, bread; ↓ seafood, sweets; T1D status, ↑ age, ↑ PA, rural → ↑ aMedDiet/aHEI; male sex → ↓ HEI. |
| Richardson et al. (2022) USA [84] | Ns/e = 563 37 (19–56) yrs | T1D (y) NR | exposure: MSDPS, habitual intake over the past 12 mo | Validated 126-item Harvard FFQ | CAC > 0 and PAT (cm3) | MSDPS ↔ CAC (OR ≈ 1.00, ns); ↑ MSDPS → ↓ PAT (−0.003 cm3/+1 MSDPS; 95% CI −0.006 to −0.0004; p = 0.025), attenuated after adj lipids & PA; inverse assoc sig in non-DM, not T1D; fruit, wine & meat comps ↓ PAT (−0.02 to −0.03 cm3/ + 1 pt; p ≤ 0.0001). |
| Zięba et al. (2022) Poland [85] | Ns/e = 48; F = 31% - HbA1c < 6.5%: 20—HbA1c ≥ 6.5%: 28 25.6 (22.2–28.3) | T1D (y) 15 * y | HD; Two groups: HbA1c ≤ 6.5% and >6.5% value. Assessed nutrient intake using self-reported 3-day 24-h dietary surveys. | Self-reported 3-day R24W. Two groups HbA1c ≤ 6.5% and >6.5% | Nutrient intake (N, K, Ca, Mg, Fe, Zn, Cu, I, Mn, vitamins A, D, E, B1, B2, B3, B6, folate, B12, C) | T1D adults using insulin pumps had insufficient intake of most nutrients/vitamins, excessive SFA and cholesterol; PUFA, sodium, niacin, and calcium intake differed by HbA1c; need for dietary education and possible vitamin D/I supplementation. |
| Azulay et al. (2023) Brazil (Northeast [70] | Ns/e = 152; F = 48%; Age mix age 25.1 ± 10.6 yrs range > 10 yrs | T1D (y) 13.8 ± 8.1 y | MNT: sugar restriction (19.3%), CC (15.9%), personalized advice (64.8%); adh. ≥80% in 39.5%; regular PA ≥ 3 × /wk 30.3% | Structured questionnaire on dietary type and adh.; self-report (≥80% adh. = good); HbA1c by HPLC; ancestry via 46 AIM-indel markers | HbA1c (%); GC categories (good: <7% adults; <7.5% children/adolescents; poor: >9%); hierarchical logistic regression of factors associated with good control | Dietary adh. ↑odds of good HbA1c control (adj. OR = 2.56, 95% CI 1.18–5.59, p = 0.016); age > 40 year (adj. OR = 4.55, p = 0.031) and male sex (adj. OR = 2.00, p = 0.047) also ↑ likelihood; difficulty avoiding sugar ↓ control (OR = 0.51, p = 0.049); ancestry ns; PA ↔ HbA1c. |
| Uliana et al. (2023) Brazil [71] | Ns/e = 173; F = 84.4%; NR (18—59) yrs 1 week per arm; 5–35 d washout | T1D (y) < 10 y of diagnosis 5.04 *, T1D (y) > 10 y 19.64 * y | CC practice characteristics (timing, method, education source) | Online self-administered questionnaire (Google Forms® (Google LLC, Mountain View, CA, USA); self-reported clinical and anthropometric data | HbA1c (adequate < 7%, increased ≥ 7%), associations with CC practice, education, and diagnosis duration | Practicing CC and diabetes duration < 10 yrs were predictors of adequate HbA1c; using apps and food scales, performing CC at lunch/dinner, and learning from a nutritionist were associated with better HbA1c. |
| Nguyen et al. (2024) Canada [73] | Ns/e = 285 #; F = 62.9%; 48.2 * yrs N/A | NR T1D duration 25.9 ± 16.2 y | LCD score, quartiles (Q1 = 21–30 to Q4 = 0–9); | Validated R24W, single recall | HbA1c, level-2 and level-3 hypoglycemia, LDL-c, non-HDL-c, BMI, WC. | Higher proportion with HbA1c ≤ 7% in Q1 vs. Q4 (53.4% vs. 29.4%; p = 0.011) with adjusted OR up to 3.22 (95% CI 1.51–6.85); greater proportion never experiencing level-3 hypoglycemia in Q1 vs. Q3 (60.0% vs. 31.0%; p = 0.004); no differences across quartiles for level-2 hypoG frequency or lipid profile. |
| Shojaeian et al. (2024) Iran [86] | Ns/e = 229; F = 61.7%; single measurement | >1 year (inclusion criterion); 69% > 10 yrs of diabetes | Dietary patterns (factor analysis): western, unhealthy, traditional, semi-healthy | Validated 168-item FFQ (12 months); 23 food groups; definitions for HbA1c > 7%, FBG > 130 mg/dL, LDLc > 100 mg/dL, low eGDR (tercile 1) | HbA1c, FBG, blood lipids (TG, TC, LDL-c, HDL-c), blood pressure, BMI, WC, WHR, body fat %, eGDR (insulin resistance) | Western (T3 vs. T1): ↑ odds FBG, HbA1c > 7%, low eGDR. Unhealthy: ↑ odds LDL-c > 100, abdominal obesity. Semi-healthy: ↓ odds FBG and TC. BP and BMI/BFP ns. |
| Abuqwider et al. (2025) Italy [87] | Ns/e = 198; F = 49.5%; 38.8 (19–79) yrs | T1D (y) ≥ 1 y | Usual self-selected diet; exposure = serum SCFA (acetate, propionate, butyrate) | 7-day weighed FR, reviewed by dietitian (with Metadieta v4.5) | HbA1c (%), CGM metrics (TIR 70–180 mg/dL, TAR > 180 mg/dL, TBR < 70 mg/dL, GMI), BMI, therapy type | Women: high serum propionate tertile → ↑ TIR (66.2 ± 12.3% vs. 56.9 ± 16.7%, p = 0.014), ↓ TAR (32.2 ± 12.6% vs. 41.2 ± 17.2%, p = 0.011), ↓ GMI (7.1 ± 0.6 vs. 7.5 ± 0.6%, p = 0.027) vs. low tertile (adjusted for age, BMI). No HbA1c differences across SCFA tertiles. Men: no associations between SCFA and glycemic metrics; higher acetate tertiles linked to ↑ fat, PUFA & MUFA intake (p ≈ 0.04). |
| Prospective /retrospective studies (n = 2) | ||||||
| Gradinjan Centner et al. (2019) [30] | Ns/e = 151 T1D; F = 60.3%; 38 (18–60) yrs | T1D duration: ≥12 mo (inclusion criterion) | Habitual intake (macronutrients: PROT, CHO, fats; fiber; sugar; minerals: Zn, Se, Mg) | 7-visit food diary (in-clinic and remote) | HbA1c; CGM metrics (MG, GMI, TIR, TAR, TBR), hypo events/duration. | Baseline HbA1c inversely correlated with fiber (ρ = −0.259; p = 0.015); at 3 mo, higher PROT intake → lower HbA1c (ρ = −0.296; p = 0.012) and ↑TIR (ρ = 0.249; p = 0.032); HbA1c improved vs. 3-mo GMI (Δ = 0.378; p = 0.022); scanning frequency correlated positively with PROT (ρ = 0.489; p < 0.001) and selenium (ρ = 0.277; p = 0.019), and negatively with CHO (ρ = −0.336; p = 0.004); ns associations between dietary variables and HypoG. |
| Lehmann et al. (2020) USA [74] | Ns/e = 36; F = 28%; 36.9 (23.4—50.4) yrs | T1D (y) | MDC: 166.4 g distributed over 5.7 meals/per day | TIR (70–180 mg/dL), TAR (>180 mg/dL), TBR (<70 mg/dL), MG (mg/dL), CV (%) | Lower CHO intake → ↑ TIR (77.4 ± 15.4% vs. 75.2 ± 16.7% vs. 70.4 ± 17.8%, p < 0.001) and ↓TAR (20.1 ± 14.7% vs. 22.0 ± 16.9% vs. 27.2 ± 18.4%, p < 0.001); TBR ↔ (p = 0.50); +10% CHO → −1.1% TIR, +1.2% TAR (p < 0.001). | |
| Longitudinal studies (n = 2) | ||||||
| Basu et al. (2021) USA [75] | Ns/e = 1257; T1DNs/e = 568; CON Ns/e = 689); (T1D) 37 ± 9 yrs.; (CON) 39 ± 9 yrs | T1D (y) 23.5 ± 8.9 l | Dietary patterns identified by PCA (“fruits, veggies, meats, cereal”, “baked desserts”, “convenience foods and alcohol” | dietary assessment: validated Harvard FFQ (1988); | HbA1c at baseline and 6-year follow-up | “Baked desserts” pattern ↑ HbA1c at baseline and year 6; SFA, animal fats, and low/no-calorie beverages ↑ HbA1c; dark-green vegetables (baseline), tomatoes, and whole grains (year 6) ↓ HbA1c (p < 0.05). |
| Richardson et al. (2023) USA [76] | Ns/e = 1255; T1DNs/e = 563; F = 57%; 37 (19–56) yrs | T1D (y) NR | High-CHO vegan (75C/15P/10F); no kcal or CHO limit; no animal products/fats; low-GI focus | Hypocaloric (−500–1000 kcal/d, BMI > 25); 60–70C/15–20P; MUFA; <7% SFA; ≤200 mg chol. | HbA1c; LDL; CAC; PAT | +1 MSDPS → −0.09 cm3 PAT; +1 DASH → −0.26 cm3 PAT; no pooled link with CAC progression; DASH ↓ CAC progression only in non-DM. |
| Case–control study (n = 1) | ||||||
| Granado-Casas et al. (2018) Spain [77] | Ns/e = 243 (103 with DR, 140 without DR); approx. 44 yrs *; F= approx. 55% | T1D (y) 26 * y in DR vs. 18 y in no-DR | HD; focus on total fat, MUFAs, oleic acid, vitamin E, complex CHO | Validated FFQ (101 items, past year) | NR | Higher complex CHO ↑ DR risk; higher total fat, MUFA, oleic acid, vit. E ↓ DR risk. |
3.1.2. Randomized Controlled Trials
| Author/ (Year)/ Country/[Ref] | Study Design | Population T1D Duration | Intervention Diet | Control Diet | Intervention Duration | Metabolic Outcomes | Main Results |
|---|---|---|---|---|---|---|---|
| Krebs et al. (2016) New Zealand [89] | Parallel | Ns/e = 10; INT =5, 5 CON; F = NR; 44.6 * yrs; T1D (y) 21.8 * | LCD (50–75 g/d CHO) + CC | Standard diet + CC | 12 wks | HbA1c, CGM (MG, MAGE), TDI insulin, BP, BMI, lipids, creatinine. | ↓ HbA1c (63→55 mmol/mol, p < 0.05), ↓ TDI (64.4 → 44.2 U/d, p < 0.05); weight trend −5 kg; no changes in variability (MAGE), BP, lipids. |
| Hommel et al. (2017) Denmark [25] | Parallel | Ns 168 (84 ABC, 84 MC); Ne= 130 (66 ABC, 64 MC); 46.9 * yrs (ABC); 47.1 * yrs (MC); T1D (y) >20 | Advanced CC + ABC | Advanced CC + MC | 12 mo | HbA1c (primary), >10 mmol/L), MG, CGM (% time < 3.9, in range, CV; weight, BP | Both groups ↓ HbA1c; ABC greater: −5 mmol/mol (−0.5%) vs. −2 mmol/mol (−0.2%), p = 0.033; ABC users ↑ TIR (50% vs. 30%). |
| Ranjan et al. (2017) Denmark [64] | Crossover | Ns/e = 10 y; F = 40%; 48.0 * yrs T1D (y) 23 ± 7 y | LCD (≤50 g/d CHO, isocaloric) | HCD (≥250 g/d CHO, isocaloric) | 1 wk LCD and 1 wk HCD | HbA1c; TDI; CGM: MG, % time 3.9–10, % ≤3.9, % >10 mmol/L, CV, MAGE, CONGA, HBGI, LBGI. | LCD: ↑ TIR (83% vs. 72%, p = 0.004), ↓ hypoglycemia (3.3% vs. 8.0%, p = 0.03), ↓ GV (SD 1.9 vs. 2.6 mmol/L; CV 27.7% vs. 35.4%, p = 0.02); MG ↔; fasting ketones, glucagon, FFAs. |
| Fortin et al. (2018) Canada [90] | Randomized trial | Ns/e = 28 T1D (14 MedDiet, 14 LF); 50.9 * 0.2 yrs T1D (y) 26.8 ± 15.2 y | MedDiet quality focus: olive oil, fish, legumes, nuts, and vegetables) | LFD (reduced fat, lean PROT, limited fried foods) | 6 mo | HbA1c, HypoG, BMI, weight, fat mass, eGFR, BP, lipids, hs-CRP, WC (primary). | HbA1c unchanged; trend to ↑ well-being in MedDiet (+ 5.3 vs. −5.4, p = 0.08), Both groups ↓ WC (−3.3 cm low-fat vs. −1.5 cm MedDiet, NS); ↓ BMI and weight in both groups. |
| Overland et al. (2018) Australia [91] | Parallel | Ns/e = 10 (5 IF, 5 CER); 49.6 * yrs (IF); 44.1 yrs (CER); T1D (y); (IF = 24.5 (4.6–34.6) CER= 29.5 (18.0–40.8) | IF: 600 kcal/d, 2 d/wk (Optifast); | CER: −30% of maintenance needs (individualized) | 12 wks | HbA1c, CGM (LBGI, HypoG events), weight, BMI, trunk fat (DEXA), BP, lipids, TDI | No HbA1c/lipid changes; Both groups lost weight: IF −7.0% vs. CER −3.9% at 12 wks; visceral fat ↓ 12.2% vs. 10.1%; sustained weight ↓ only in IF. |
| Schmidt et al. (2019) Denmark [92] | Crossover | Ns =14; Ne = 10; 44 ± 12 yrs T1D (y) 19 (13–32) | LCD < 100 g/d CHO (isocaloric) | HCD > 250 g/d CHO (isocaloric) | 12 wks | HbA1c; DXA; BP; lipids; IM | HbA1c ↔, TIR ns (68.6% vs. 65.3%, p = 0.316); LCD ↓ % < 3.9 (1.9% vs. 3.6%, p < 0.001), ↓ CV (32.7% vs. 37.5%, p = 0.013); weight −1.9 kg vs. +2.7 kg. |
| Kaur et al. (2020) India [31] | Parallel | Ns/e = 30 (15 T1D and 15 CD); 25.7 * vs. 27.7 * yrs T1D (y) ND | GFD with full gluten elimination, dietitian counselling, and adh. monitoring (tTG-IgA). | Regular gluten-containing ADA meal plan. | 12 mo | HbA1c, ID, BMI, frequency of HypoG, bone and biochemical markers | ↓ Hypoglycemic episodes/month (3.5 → 2.1; p = 0.03); HbA1c ↓ by 0.73% in GFD vs. ↑ by 0.99% in control (p = 0.02); ↑ BMI (p = 0.002); ns differences in CGM time in HypoG or bone markers; no severe HypoG. |
| Al-Sari et al. (2021) Denmark [93] | Cross-over | Ns = 14; Ne = 10; 43.6 * yrs; T1D (y) 24.5 ± 13.4 y | LCD (<100 g CHO/d) | HCD (>250 g CHO/d) | 12 wks | Lipidomics (sphingomyelins, phosphatidylcholines), BMI, HDL | ↑ sphingomyelins and phosphatidylcholines; PPC 35:4 inversely associated with BMI and positively with HDL (p < 0.001). |
| Dimosthenopoulos et al. (2021) Greece [94] | Crossover | Ns/e = 15; F = 67%; 36.1 * yrs T1D (y) 12.4 * | HPD: 20% CHO, 40% PROT, 40% fat; MedDiet: 40% CHO, 25% PROT, 35% fat. | REF: 50% carbohydrates, 20% PROT, 30% fat. | 3 wks | GC % time in euglycemic range (TIR 70–140 mg/dL). | HPD—a positive impact on glycaemic control in T1D compared to REF and MedDiet. The HPD reduces time spent in HypoG and lowers GV. |
| Isaksson et al. (2021) Sweden [95] | Parallel | Ns/e= 159 F= 57.9%; 48.6 (12.0) yrs; T1D (y) 22.3 (11.6) | FBA (food-based, low-GI foods, fish, legumes, nuts, veg, whole grains) or CC | RC (4 standard nurse visits) | 12 mo | HbA1c, weight, BP, lipids, hs-CRP, TDI, ACR, mild hypoglycemia, SMBG profiles, diet quality, QoL | HbA1c at 12 mo: no sig. diff. FBA vs. RC (- −0.4 mmol/mol), CC vs. RC (−0.8), FBA vs. CC (+0.4); short-term (3 mo) HbA1c ↓ in CC (−2.9 mmol/mol, p = 0.0057) & FBA PP (−3.0, p = 0.0171); TG ↓ asix 6 mo CC vs. RC (−0.18 mmol/L, p = 0.041); mild hypoglycemia ↑ in FBA vs. RC (+0.39/mo) & FBA vs. CC (+0.35/mo, p < 0.001); diet quality ↑ in FBA. |
| Igudesman et al. (2023) USA [72] | Parallel | Ns/e = 38 (LCD n = 16, Look AHEAD n = 12; MedDiet n = 10); 26.1 (23.6–27.2) yrs; T1D (y) ≥ 1y | HLCD (15–20% CHO) or hypocaloric low-fat Look AHEAD (<30% FAT); MedDiet (not calorie-restricted) | Three-arm comparison (no separate control) | 3 mo | HbA1c, CGM: %TBR <70/<54 mg/dL, %TIR 70–180, %TAR 181–250/>250, CV; body fat % (DXA), Weight | ↓ HbA1c −0.91% (p = 0.005); 58%; Look AHEAD: ↓ HbA1c drop (−0.65%, p = 0.027); MedDiet ↑ %TAR (30% vs. 17–18%) Overall: −2.7 kg (p < 0.0001). |
| Isaksson et al. (2024) Sweden [96] | Crossover | Ns= 54; Ne = 50; F = 50%; 48 (22–73) yrs; T1D (y) 22.3 (11.6) | MCH: CHO 30% EI, PROT 20% E, fat 50% EI | Traditional diet: CHO 50% E | 4 wks | MG (mmol/L) | MCH diet ↓ MG −0.6 mmol/L vs. traditional; TIR ↑ 4.7%, TAR ↓ 5.9%; no ↑ risk of hypoG or ketoacidosis. |
| Kahleova et al. (2024) USA [88] | Parallel | VG: Ns = 29; Ne = 18; Age 51.4 (19—79); CON: Ns = 29 vegan group (VG) Ns = 29 17 47.5 (21—72) yrs T1D (y) NR | LF vegan | CON: Diet portion-controlled | 12 wks | TD1: HbA1; Total cholesterol, LDL, creatinine nitrogen, CG | LF vegan vs. CON: HbA1c −0.8 vs. −0.6 pp (treatment effect −0.2; 95% CI −0.7 to +0.2; p = 0.34); TDI −12.1 vs. −1.4 U/day (effect −10.7; 95% CI −21.3 to −0.2; p = 0.046); TC −32.3 vs. −10.9 mg/dL (effect −21.4 mg/dL; 95% CI −35.6 to −7.2; p = 0.004); baseline lipids normal. |
| Kristensen et al. (2024) Denmark [97] | Crossover | Ns/e = 12; F = 33%; 50 (22–70) yrs; T1D (y) 25 (11–52) y. | HF: CHO 19%, fat 62%, PROT 19% (100 g CHO/day) 2) HPD: CHO 19%, fat 57%, protein 24% (100 g CHO/day) | HCD: CHO 48%, fat 33%, PROT 19% (250 g CHO/day) | 1 wk per diet, 3 diet periods with 5–35 days washout | HbA1c, ID, body weight, lipids, BP; CGM-based glucose metrics (MG, CV, TIR, TAR, TBR) | HF and HPD ↓ GV vs. HCD (CV: 30.5 ± 6.2%, 30.0 ± 5.5% vs. 34.5 ± 4.1%; p < 0.01); HPD ↓ time >10 mmol/L (22.3 ± 11.8%) vs. HF (29.4 ± 12.1%) and HCD (29.5 ± 13.4%); ↑ TIR with HPD vs. HCD (75.8 ± 11.5% vs. 67.5 ± 13.1%, p = 0.04); ↓ hypoG events and ↓ total insulin dose with both HF and HPD. |
3.1.3. Psychosocial and Quality-of-Life Outcomes Associated with Dietary Interventions in Adults with Type 1 Diabetes
| Author, Year, Country | Population | Psychosocial Factors and Measures | Dietary Adherence Measure | Main Results |
|---|---|---|---|---|
| Ahola et al. (2016) Finland [98] | Ns = 798 Ne = 615; F = 66%; mean age approx. 48 * yrs; T1D (y) approx. 31 y | FoH two self-report items: (1) “Afraid of hypoG” and (2) “Eating ‘just in case’ due to FoH” (FoH = yes to both) | HD via DQ + 19-item FFQ and two 3-day FR (3–6 days total). | FoH → ↑ HbA1c (OR = 1.53, 95%CI 1.09–2.15), ↑ CHO intake (OR = 1.008/g, 95%CI 1.003–1.013), ↓ “high-fat” factor; in women: ↑ SMBG & ↑ EI/CHO intake; no diff. in PA or insulin dosing. |
| Ahola et al. (2018) Finland [54] | Ns/e = 976; F = 59%; 48 (36–60) yrs. T1D (y) NR | DepS/BDI | Validated DQ + 7-pt FFQ → 7 patterns (Fish&veg, Sweet, Modern, Legumes&veg, Traditional, HF cheese&eggs, Healthy snack); two 3-day FR (6 d); E/macronutrients; SMBG. | 12% had DepS (BDI ≥ 16); higher DepS → ↓ E, PROT, fat & CHO; “Fish&veg” & “Traditional” → ↓ BDI; “Sweet” → ↑ BDI; PROT→CHO/fat substitution → ↑ BDI; DepS → ↑ SMBG; HbA1c NS. |
| Martyn-Nemeth (2019) USA [99] | Ns/e = 30; F = 63%; 30 (20–57) yrs; T1D (y) 16 ± 11 y | FoH; life/work stress; coping strategies; anxiety related to sleep and exercise | No dietary adh. instrument; diet discussed narratively: HypoG management & food use | FoH & chronic stress → ↑ glucose, hypoG avoidance, compensatory eating; work stress ↓ diet attention; some used coping (meal planning, temp basal, social support) but healthy eating was complex. |
| Granado-Casas et al., 2020, Spain [100] | Ns/e = 258; F = NR; NR ≥ 18 yrs; T1D (y) ≥ 1. | ADDQoL-19 (diabetes-specific QoL) and DTSQ-status (treatment satisfaction) | aMED i aHEI (based on FFQ). | MedDiet adherence ↑ → diabetes-specific QoL ↑; global TS ↔, ale “convenience/flexibility”. |
| Ahola et al. 2020 Finland [101] | Ns/e = 100; F = 49% 40 (25 −71) yrs T1D (y) NR | PS (Cohen’s 14-item PSS) | Diet score (0–22): fish, veg.; LF milk; veg. oils) | Higher PS → ↓ overall diet score & ↓ adh. to fish, fresh veg. LF milk prod. & veg. oil fats; PS → ↑ mean BG only in lean (BMI < 25 kg/m2), not in OW/OB. |
| Liu et al., 2021, Netherlands [102] | Ns/e = 296; F= 57.8% 47.3 * yrs; T1D (y) 23.6 | FFMQ-SF (mindfulness); PHQ-9 (depression); GAD-7; DD-PAID-20 (diabetes distress) | DHD15-index (0–120); “Psychosocial”→ FFMQ-SF (mindfulnes); PHQ-9 (depression); GAD-7; PAID-20 (diabetes distress). | Higher total mindfulness → ↑ diet quality (β = 0.14, p = 0.02); “observing” facet also ↑ (β = 0.15, p = 0.01). |
| Turton et al. 2023 # Australia [103] | Ns = 20; Ne = 16; F = 50%; 43 (18–70) yrs T1D (y) ≥ 6 mo | HbA1; TDI; TIR; DQoL; FoH; BMI; creatine kinase | LCD 25–75 g/d) vs. HD (>150 g/day) on HbA1c. | TDC: 214 → 63 g/day (p < 0.001); HbA1c: 7.7% → 7.1% (p = 0.003); TDI: 65 → 49 U/day (p < 0.001); TIR: 59% → 74% (p < 0.001); DQoL: ↑ (p = 0.015); hypoG freq.: NS; body weight & BMI: ↓ (p < 0.025); CK: +32 ± 119 U/L (p = 0.008). |
| Núñez-Baila et al., 2024 Spain [104] | Ns/e = 362; F = 67.4%; 22.8 (18–29) yrs; T1D(y) 11.9 (1–28) y | OSQ; sociodemographic factors; HbA1c; HRQoL | MedDiet Adh. Screener (MEDAS, 0–14; ≥8 = adherent). | Higher MedDiet adh. → ↑ Self-care (β = 0.126, p < 0.05) & ↑ Well-being (β = 0.134, p < 0.01); higher HbA1c → ↓ Self-care (β = −0.307, p < 0.001). |
| Karipidou et al. 2025 Greece [105] | Ns/e = 192; F = 61%; 42 (34–51) yrs; T1D (y) ≥ 23 (13, 31) | Sleep quality (Athens Insomnia Scale, GC) | MedDiet Score (MLI); PURE Diet Score (PLI). | Better glycaemic control (HbA1c < 7%) → ↑ MLI & PLI (p = 0.011; p = 0.008); each PLI pt ↑ odds HbA1c < 7% (OR = 1.16, 95%CI 1.01–1.35); ↔ MLI; healthy lifestyle (diet + sleep + activity + non—smoking) → better control. |
3.2. Evolution and Current Dietary Recommendations for Adults with Type 1 Diabetes
| Guidelines | Energy | Carbohydrate | Fat | Protein | Fiber | REF |
|---|---|---|---|---|---|---|
| ADA (2025) | Management and weight reduction are important, depending on the patient’s needs | 45–65% EI; usual ~45% EI (↓ CHO) | <30% EI | 15–20% EI | ≥14 g/1000 kcal | [2] |
| EASD (2023) | Individualized | Wide acceptable range; avoid ketogenic VLCD | SFA < 10%, TFA < 1% | 10–20% EI (15–20% ≥65 y) | ≥35 g/d | [5,7] |
| ICMR—India | Like the general population | 50–55% EI; sucrose <10% E (preferably <5%) | ≤30% EI | 15–20% EI | ≥14 g/1000 kcal | [7] |
| IDF | At the level of demand | Balanced; emphasis on low-GI | Healthy sources; avoid SFA/trans | Complete; no fixed % | Encourage high fiber; no fixed amount | [1] |
| Diabetes Canada | Individual requirement | 45–60% EI; free sugars <10% E (preferably <5%) | 0–35% EI; SFA <9% EI; avoid trans fats | 15–20% EI (~1–1.5 g/kg) | ≥25–38 g/day | [10] |
| DDG 2025. | Fully individualized | Flexible; no fixed % | Focus on fat quality (↓ SFA, ↑ MUFA/PUFA) | ≥0.8 g/kg/d; ≥1 g/kg/d in older | ≥30 g/d | [106] |
| Japan Diabetes Society | 25–35 kcal/kg × activity factor | 50–65% EI (DRI); practice: CC | 20–30% EI; SFA ≤7% EI | 13–20% EI; adjust to goals | ≥21 g (M); ≥18 g (F) | [107] |
| Australian Diabetes Society | Adapted to the patient | ~50% EI; portion-based counting | <30% EI; consider glycemia | Protein focus (>40 g with meal if needed) | Depending on lifestyle | [108] |
| British Dietetic Association (BDA) | Individual requirement (age, sex, activity, goals) | Include CHO at each meal; wholegrains, fruit, veg; avoid sugary drinks | Healthy fats; limit SFA; avoid processed foods | No fixed %; balanced diet (lean meats, pulses, dairy alternatives) | Encourage high-fiber foods; no fixed amount | [9] |
| Korean Diabetes Association | Individualized | ≤55–65% EI (reduce from 65–70%) | <30% EI; limit SFA | 15–20% EI | ≥20–30 g/d | [109] |
| Chinese Diabetes Society | 25–30 kcal/kg IBW/d | 45–60% EI; VLCD not advised | 20–35% EI; SFA < 12%, TFA < 2% | 15–20% EI | 25–36 g/d (12–14 g/1000 kcal; 10–20 g soluble) | [61] |
3.3. Evidence Mapping
4. Discussion
4.1. Metabolic and Dietary Effects
4.2. Comparison and Adaptation of Guidelines
4.3. Psychosocial and Behavioral
4.4. Limitations and Research Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADA | American Diabetes Association |
| BMI | Body Mass Index |
| CC | Carbohydrate Counting |
| CGM | Continuous Glucose Monitoring |
| CHO | Carbohydrate |
| DAFNE | Dose Adjustment For Normal Eating |
| DASH | Dietary Approaches to Stop Hypertension |
| DD | Diabetes Distress |
| DDG | Deutsche Diabetes Gesellschaft (German Diabetes Association); |
| DM | Diabetes Mellitus |
| DNSG | Diabetes and Nutrition Study Group |
| EASD | European Association for the Study of Diabetes |
| EI | Energy Intake |
| FFQ | Food Frequency Questionnaire |
| FinnDiane | Finnish Diabetic Nephropathy Study cohort |
| GC | Glycemic Control |
| GV | glycemic variability |
| HbA1c | Glycated Hemoglobin |
| HypoG | Hypoglycemia |
| ICH-GCP E6(R2) | International Council for Harmonization—Good Clinical Practice, Guideline E6 (R2) |
| ID | Insulin Dose |
| IDF | International Diabetes Federation |
| IDMPS | International Diabetes Management Practices Study |
| IF | Intermittent fasting |
| LC | Low carbohydrate |
| LCD | Low-carbohydrate diet |
| LADA | Latent Autoimmune Diabetes |
| MedDiet | Mediterranean Diet |
| MG | Mean Glucose |
| MNT | Medical Nutrition Therapy |
| NDSS | National Diabetes Services Scheme |
| PA | Physical Activity |
| PRO | Patient-Reported Outcomes |
| QoL | Quality of Life |
| RCTs | Randomized Controlled Trials |
| SD | Standard Deviation |
| SMBG | Self-Monitoring of Blood Glucose |
| T1D | Type 1 diabetes |
| T1D adults | Adults with type 1 diabetes |
| TDI | Total daily insulin dose |
| TIDieR | Template for Intervention Description and Replication |
| TIR | Time in Range |
| VLCD | Very Low-carbohydrate diet |
References
- International Diabetes Federation. IDF Diabetes Atlas, 11th Edition. Available online: https://diabetesatlas.org (accessed on 15 July 2025).
- American Diabetes Association (Professional Practice Committee). Standards of Medical Care in Diabetes—2025: Supplement 1. Diabetes Care 2025, 48, S1–S230. [Google Scholar] [CrossRef]
- Ogle, G.D.; Wang, F.; Haynes, A.; Gregory, G.A.; King, T.W.; Deng, K.; Dabelea, D.; James, S.; Jenkins, A.J.; Li, X.; et al. Global Type 1 Diabetes Prevalence, Incidence, and Mortality Estimates 2025: Results from the International Diabetes Federation Atlas, 11th Edition, and the T1D Index Version 3.0. Diabetes Res. Clin. Pract. 2025, 225, 112277. [Google Scholar] [CrossRef]
- Scott, S.N.; Anderson, L.; Morton, J.P.; Wagenmakers, A.J.M.; Riddell, M.C. Carbohydrate Restriction in Type 1 Diabetes: A Realistic Therapy for Improved Glycaemic Control and Athletic Performance? Nutrients 2019, 11, 1022. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.I.G.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021, 44, 2589–2625. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Facilitating Positive Health Behaviors and Well-Being to Improve Health Outcomes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S68–S96. [Google Scholar] [CrossRef]
- Kaushik, A.; Rekhi, T.K.; Puri, S.; Tandon, N. Nutritional Guidelines for Patients with Type 1 Diabetes Mellitus and Its Adherence- A Narrative Review. Indian J. Endocrinol. Metab. 2024, 28, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Timothy Garvey, W.; Karen Lau, K.H.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef]
- BDA. Diabetes—Type 1. Available online: https://www.bda.uk.com/resource/diabetes-type-1.html (accessed on 28 June 2025).
- Sievenpiper, J.L.; Chan, C.B.; Dworatzek, P.D.; Freeze, C.; Williams, S.L. Nutrition Therapy 2018 Clinical Practice Guidelines. Can. J. Diabetes 2018, 42, S64–S79. [Google Scholar] [CrossRef] [PubMed]
- Salvia, M.G.; Quatromoni, P.A. Behavioral Approaches to Nutrition and Eating Patterns for Managing Type 2 Diabetes: A Review. Am. J. Med. Open 2023, 9, 100034. [Google Scholar] [CrossRef]
- Matsinkou Soh, R.; Ngaha Damndja, W.; Njintang Yanou, N. Functional Foods of Sub-Saharan Africa and Their Implications in the Management of Type 2 Diabetes: A Review. Food Sci. Nutr. 2024, 12, 24–34. [Google Scholar] [CrossRef]
- Zeng, J.; Beck, M.; Barouti, A.; Lampousi, A. Effects of Different Dietary Patterns on Glucose Management in Type 1 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EClinicalMedicine 2025, 83, 103222. [Google Scholar] [CrossRef]
- Sousa, S.S.d.S.; Nery, E.S.; Giuffrida, F.M.A. Low-Carbohydrate Diet in Type 1 Diabetes: A Systematic Review. Clin. Nutr. ESPEN 2025, 67, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Soczewka, M.; Kędzia, A.; Skowrońska, B.; Niechciał, E. Dietary Treatment of Type 1 Diabetes—Once upon a Time versus Today. Pediatr. Endocrinol. Diabetes Metab. 2023, 29, 184–189. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Lee, D.; Ahmed, A.; Cheung, A.; Khan, T.A.; Blanco, S.; Mirrahimi, A.; Jenkins, D.J.A.; Livesey, G.; Wolever, T.M.; et al. Effect of Low Glycaemic Index or Load Dietary Patterns on Glycaemic Control and Cardiometabolic Risk Factors in Diabetes: Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ 2021, 374, n1651. [Google Scholar] [CrossRef] [PubMed]
- Perin, L.; Camboim, I.G.; Lehnen, A.M. Low Glycaemic Index and Glycaemic Load Diets in Adults with Excess Weight: Systematic Review and Meta—Analysis of Randomised Clinical Trials. J. Hum. Nutr. Diet. 2022, 35, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Bolla, A.M.; Caretto, A.; Laurenzi, A.; Scavini, M.; Piemonti, L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients 2019, 11, 962. [Google Scholar] [CrossRef]
- Gardemann, C.; Knowles, S.; Marquardt, T. Managing Type 1 Diabetes Mellitus with a Ketogenic Diet. Endocrinol. Diabetes Metab. Case Reports 2023, 2023, 1–7. [Google Scholar] [CrossRef]
- Ghaemi, F.; Firouzabadi, F.D.; Moosaie, F.; Shadnoush, M.; Poopak, A.; Kermanchi, J.; Abhari, S.M.F.; Forouzanfar, R.; Mansournia, M.A.; Khosravi, A.; et al. Effects of a Mediterranean Diet on the Development of Diabetic Complications: A Longitudinal Study from the Nationwide Diabetes Report of the National Program for Prevention and Control of Diabetes (NPPCD 2016-2020). Maturitas 2021, 153, 61–67. [Google Scholar] [CrossRef]
- Kahleova, H.; Carlsen, B.; Lopez, R.B.; Barnard, N.D. Plant-Based Diets for Type 1 Diabetes. J. Diabetes Metab. 2020, 11, 1–5. [Google Scholar] [CrossRef]
- Pancheva, R.; Zhelyazkova, D.; Ahmed, F.; Gillon-Keren, M.; Usheva, N.; Bocheva, Y.; Boyadzhieva, M.; Valchev, G.; Yotov, Y.; Iotova, V. Dietary Intake and Adherence to the Recommendations for Healthy Eating in Patients with Type 1 Diabetes: A Narrative Review. Front. Nutr. 2021, 8, 782670. [Google Scholar] [CrossRef]
- Navrátilová, V.; Zadáková, E.; Šoupal, J.; Škrha, J.; Do, Q.D.; Radovnická, L.; Hásková, A.; Prázný, M.; Horová, E. The Effect of Nutrition Education on Glycemic Outcomes in People with Type 1 Diabetes Initiating the Use of Glucose Sensors. Endocrinol. Diabetes Metab. 2025, 8, e70047. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Peralta, F.; Menéndez, E.; Conde, S.; Conget, I.; Novials, A. Clinical Characteristics and Management of Type 1 Diabetes in Spain. The SED1 Study. Endocrinol. Diabetes Nutr. 2021, 68, 642–653. [Google Scholar] [CrossRef]
- Hommel, E.; Schmidt, S.; Vistisen, D.; Neergaard, K.; Gribhild, M.; Almdal, T.; Nørgaard, K. Effects of Advanced Carbohydrate Counting Guided by an Automated Bolus Calculator in Type 1 Diabetes Mellitus (StenoABC): A 12-Month, Randomized Clinical Trial. Diabet. Med. 2017, 34, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Tandon, A.; Bhowmik, E.; Ali, Z.; Tripathi, S.; BK, A.; Chen, Y.; Dabadghao, P.; Sudhanshu, S.; Bhatia, V. Basic Carbohydrate Counting and Glycemia in Young People with Type 1 Diabetes in India: A Randomized Controlled Trial. Nutrition 2024, 119, 112318. [Google Scholar] [CrossRef]
- Fu, S.; Li, L.; Deng, S.; Zan, L.; Liu, Z. Effectiveness of Advanced Carbohydrate Counting in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nat. Publ. Gr. 2016, 6, 37067. [Google Scholar] [CrossRef] [PubMed]
- Vaz, E.C.; Porfírio, G.J.M.; de Carvalho Nunes, H.R.; Nunes-Nogueira, V. dos S. Effectiveness and Safety of Carbohydrate Counting in the Management of Adult Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis Original. Arch. Endocrinol. Metab. 2018, 62, 337–345. [Google Scholar] [CrossRef]
- Li, X.; Wainwright, A.; Fio, C.Z.; Brodie, S.; Alexander, K.; McGill, M.; Duke, S.A.; Fulcher, G.; Twigg, S.; Wong, J.; et al. Do the Types of Dietary Carbohydrate and Protein Affect Postprandial Glycemia in Type 1 Diabetes? Nutrients 2025, 17, 1868. [Google Scholar] [CrossRef]
- Gradinjan Centner, M.; Čačić Kenjerić, D.; Schönberger, E.; Centner, H.; Sladić Rimac, D.; Steiner, K.; Marušić, R.; Bakula, M.; Fabris Vitković, D.; Mihaljević, I.; et al. The Interplay between Dietary Habits and Glycemic Control in Type 1 Diabetes: A Comprehensive Prospective FGM Study. Life 2024, 14, 1153. [Google Scholar] [CrossRef]
- Kaur, P.; Agarwala, A.; Makharia, G.; Bhatnagar, S.; Tandon, N. Effect of Gluten-Free Diet on Metabolic Control and Anthropometric Parameters in Type 1 Diabetes with Subclinical Celiac Disease: A Randomized Controlled Trial. Endocr. Pract. 2020, 26, 660–667. [Google Scholar] [CrossRef]
- Creanza, A.; Lupoli, R.; Lembo, E.; Tecce, N.; Della Pepa, G.; Lombardi, G.; Riccardi, G.; Di Bonito, P.; Capaldo, B. Glycemic Control and Microvascular Complications in Adults with Type 1 Diabetes and Long-Lasting Treated Celiac Disease: A Case-Control Study. Diabetes Res. Clin. Pract. 2018, 143, 282–287. [Google Scholar] [CrossRef]
- Nunes-Silva, J.G.; Nunes, V.S.; Schwartz, R.P.; Mlss Trecco, S.; Evazian, D.; Correa-Giannella, M.L.; Nery, M.; Queiroz, M.S. Impact of Type 1 Diabetes Mellitus and Celiac Disease on Nutrition and Quality of Life. Nutr. Diabetes 2017, 7, 4–9. [Google Scholar] [CrossRef]
- Paterson, M.A.; Smart, C.E.M.; Howley, P.; Price, D.A.; Foskett, D.C.; King, B.R. High-Protein Meals Require 30% Additional Insulin to Prevent Delayed Postprandial Hyperglycaemia. Diabet. Med. 2020, 37, 1185–1191. [Google Scholar] [CrossRef]
- Stamati, A.; Sotiriou, G.; Karagiannis, T.; Christoforidis, A. Efficacy and Safety of Carbohydrate Restriction in Patients with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Obes. Metab. 2023, 25, 2770–2773. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, M.; Liang, J.; He, G.; Chen, N. Ketogenic Diet Benefits to Weight Loss, Glycemic Control, and Lipid Profiles in Overweight Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trails. Int. J. Environ. Res. Public Health 2022, 19, 10429. [Google Scholar] [CrossRef] [PubMed]
- Bruttomesso, D.; Irace, C.; Pozzilli, P.; Anichini, R.; Magiar, A.; Maria Baggiore, C.; Disoteo, O.; Porcu, A.; Bonora, E.; Trombetta, M.; et al. A Sub-Analysis of the SAGE Study in Italy Indicates Good Glycemic Control in Type 1 Diabetes. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 631–639. [Google Scholar] [CrossRef]
- Nasser, S.; Vialichka, V.; Biesiekierska, M.; Balcerczyk, A.; Pirola, L. Effects of Ketogenic Diet and Ketone Bodies on the Cardiovascular System: Concentration Matters. World J. Diabetes 2020, 11, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Lake, I. Nutritional Ketosis Is Well-Tolerated, Even in Type 1 Diabetes: The ZeroFive100 Project; a Proof-of-Concept Study. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 453–462. [Google Scholar] [CrossRef]
- Şahin Bayram, S. A Narrative Review of the Significance of Popular Diets in Diabetes Mellitus Management. Cureus 2024, 16, e61045. [Google Scholar] [CrossRef]
- Alguwaihes, A.M.; Alyusuf, E.Y.; Alrajeh, A.; Alotaibi, M.; Al-Sofiani, M.E. Altered Ramadan Fasting Glycemic Profiles of Adults with Type 1 Diabetes Reveal Strong Evidence of Underestimated Insulin Adjustments: A 3-Year Observational Study in Arab Settings. Front. Endocrinol. 2025, 16, 1399990. [Google Scholar] [CrossRef]
- Al Hayek, A.; Al Dawish, M.A. Improvement of Glycemia Risk Index and Continuous Glucose Monitoring Metrics During Ramadan Fasting in Type 1 Diabetes: A Real-World Observational Study. J. Diabetes Sci. Technol. 2024, 1–12. [Google Scholar] [CrossRef]
- Fernandez-Cardona, A.; Gonzalez-Devia, D.; Mendivil, C.O. Intermittent Fasting as a Trigger of Ketoacidosis in a Patient with Stable, Long-Term Type 1 Diabetes. J. Endocr. Soc. 2020, 4, bvaa126. [Google Scholar] [CrossRef] [PubMed]
- Dyńka, D.; Kowalcze, K.; Ambrozkiewicz, F.; Paziewska, A. Effect of the Ketogenic Diet on the Prophylaxis and Treatment of Diabetes Mellitus: A Review of the Meta-Analyses and Clinical Trials. Nutrients 2023, 15, 500. [Google Scholar] [CrossRef] [PubMed]
- Cadario, F. Insights in Nutrition to Optimize Type 1 Diabetes Therapy. Nutrients 2024, 16, 3639. [Google Scholar] [CrossRef]
- Mbanya, J.C.; Naidoo, P.; Kolawole, B.A.; Tsymbal, E.; McMaster, A.; Karamchand, S.; Kaplan, H.; Rambiritch, V.; Cotton, M.; Malek, R.; et al. Management of Adult Patients with Type 1 Diabetes Mellitus in Africa. Medicine 2020, 99, e20553. [Google Scholar] [CrossRef]
- Mazzotta, F.A.; Lucaccini Paoli, L.; Rizzi, A.; Tartaglione, L.; Leo, M.L.; Popolla, V.; Barberio, A.; Viti, L.; Di Leo, M.; Pontecorvi, A.; et al. Unmet Needs in the Treatment of Type 1 Diabetes: Why Is It so Difficult to Achieve an Improvement in Metabolic Control? Nutr. Diabetes 2024, 14, 58. [Google Scholar] [CrossRef]
- Savard, V.; Gingras, V.; Leroux, C.; Bertrand, A.; Desjardins, K.; Mircescu, H.; Rabasa-Lhoret, R. Treatment of Hypoglycemia in Adult Patients with Type 1 Diabetes: An Observational Study. Can. J. Diabetes 2016, 40, 318–323. [Google Scholar] [CrossRef]
- Martin, R.; Davis, A.; Pigott, A.; Cremona, A. A Scoping Review Exploring the Role of the Dietitian in the Identification and Management of Eating Disorders and Disordered Eating in Adolescents and Adults with Type 1 Diabetes Mellitus. Clin. Nutr. ESPEN 2023, 58, 375–387. [Google Scholar] [CrossRef]
- Coleman, S.E.; Caswell, N. Diabetes and Eating Disorders: An Exploration of ‘Diabulimia’. BMC Psychol. 2020, 8, 101. [Google Scholar] [CrossRef]
- Hanlan, M.E.; Griffith, J.; Patel, N.; Jaser, S.S. Eating Disorders and Disordered Eating in Type 1 Diabetes: Prevalence, Screening, and Treatment Options. Curr. Diab. Rep. 2013, 13, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Aschner, P.; Gagliardino, J.J.; Ilkova, H.; Lavalle, F.; Ramachandran, A.; Mbanya, J.C.; Shestakova, M.; Bourhis, Y.; Chantelot, J.M.; Chan, J.C.N. High Prevalence of Depressive Symptoms in Patients with Type 1 and Type 2 Diabetes in Developing Countries: Results from the International Diabetes Management Practices Study. Diabetes Care 2021, 44, 1100–1107. [Google Scholar] [CrossRef]
- AlOzairi, A.; Irshad, M.; Alkandari, J. Prevalence and Predictors of Diabetes Distress and Depression in People with Type 1 Diabetes. Front. Psychiatry 2024, 15, 1367876. [Google Scholar] [CrossRef]
- Ahola, A.J.; Forsblom, C.; Groop, P.H. Association between Depressive Symptoms and Dietary Intake in Patients with Type 1 Diabetes. Diabetes Res. Clin. Pract. 2018, 139, 91–99. [Google Scholar] [CrossRef]
- Sarteau, A.C.; Ercolino, G.; Muthukkumar, R.; Fruik, A.; Mayer-Davis, E.J.; Kahkoska, A.R. Nutritional Status, Dietary Intake, and Nutrition-Related Interventions Among Older Adults with Type 1 Diabetes: A Systematic Review and Call for More Evidence Toward Clinical Guidelines. Diabetes Care 2024, 47, 1468–1488. [Google Scholar] [CrossRef]
- Brice, H.; Kentsop, D.; Zarowsky, C.; Oettingen, J.E. Von Barriers and Strategies in Care Delivery for Type 1 Diabetes in Sub-Saharan Africa: A Scoping Review. Res. Sq. 2024, 1–22. [Google Scholar] [CrossRef]
- Milani, I.; Cipponeri, E.; Ripa, P.; Magon, A.; Terzoni, S.; Cilluffo, S.; Lusignani, M.; Caruso, R. Health Literacy in People with Type 1 Diabetes: A Scoping Review. Int. J. Environ. Res. Public Health 2025, 22, 869. [Google Scholar] [CrossRef]
- Franz, M.J.; MacLeod, J.; Evert, A.; Brown, C.; Gradwell, E.; Handu, D.; Reppert, A.; Robinson, M. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. J. Acad. Nutr. Diet. 2017, 117, 1659–1679. [Google Scholar] [CrossRef] [PubMed]
- Maqusood, S.; Chakole, V.; Dash, S. Navigating Cardiovascular Risk in Type 1 Diabetes: A Comprehensive Review of Strategies for Prevention and Management. Cureus 2024, 16, e60426. [Google Scholar] [CrossRef]
- Lamers-Johnson, E.; Kelley, K.; Knippen, K.L.; Feddersen, K.; Sánchez, D.M.; Parrott, J.S.; Colin, C.; Papoutsakis, C.; Jimenez, E.Y. A Quasi-Experimental Study Provides Evidence That Registered Dietitian Nutritionist Care Is Aligned with the Academy of Nutrition and Dietetics Evidence-Based Nutrition Practice Guidelines for Type 1 and 2 Diabetes. Front. Nutr. 2022, 9, 969360. [Google Scholar] [CrossRef]
- Wei, C.; Hua, J. Chinese Guidelines for Medical Nutrition Therapy for Patients with Diabetes (2022 Edition). Asia Pac. J. Clin. Nutr. 2024, 33, 118–152. [Google Scholar] [CrossRef]
- Li, Z.; Jin, H.; Chen, W.; Sun, Z.; Jing, L.; Zhao, X.; Zhu, S.; Guo, X. Influencing Factors of Knowledge, Attitude, and Practice Regarding Medical Nutrition Therapy in Patients with Diabetes: A National Cross-Sectional Study in Urban China. J. Diabetes Res. 2017, 2017, 8948452. [Google Scholar] [CrossRef] [PubMed]
- Eiswirth, M.; Clark, E.; Diamond, M. Low Carbohydrate Diet and Improved Glycaemic Control in a Patient with Type One Diabetes. Endocrinol. Diabetes Metab. Case Rep. 2018, 2018, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Schmidt, S.; Damm-Frydenberg, C.; Holst, J.J.; Madsbad, S.; Nørgaard, K. Short-Term Effects of a Low Carbohydrate Diet on Glycaemic Variables and Cardiovascular Risk Markers in Patients with Type 1 Diabetes: A Randomized Open-Label Crossover Trial. Diabetes Obes. Metab. 2017, 19, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Veneti, S.; Grammatikopoulou, M.G.; Kintiraki, E.; Mintziori, G.; Goulis, D.G. Ketone Bodies in Diabetes Mellitus: Friend or Foe? Nutrients 2023, 15, 4383. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Aggarwal, S.; Raghu, R.V.; Garg, S.; Bharti, P. Ketogenic Diet—Where Are We so Far? J. Indian Acad. Clin. Med. 2021, 22, 51–56. [Google Scholar]
- Versha, Y.J.; Sharma, L.; Meher, A.; Tare, H. The Role of Ketogenic Diet in the Management of Diabetes and Overcome It’s Effect: A Review. Int. J. Pharm. Qual. Assur. 2023, 14, 220–225. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- de Sousa Azulay, R.S.; Rodrigues, V.; França de Abreu, J.D.M.; Pereira de Almeida, A.G.F.; Lago, D.; Tavares, M.d.G.; Nascimento, G.; Rocha, V.; Magalhães, M.; Facundo, A.; et al. Healthy Lifestyle and Genomic Ancestry Related to Good Glycemic Control in Type 1 Diabetes Patients from Northeastern Brazil: A Hierarchical Analysis. Front. Endocrinol. 2023, 14, 1233050. [Google Scholar] [CrossRef]
- Uliana, G.C.; Camara, L.N.; Paracampo, C.C.P.; da Costa, J.C.; Gomes, D.L. Characteristics of Carbohydrate Counting Practice Associated with Adequacy of Glycated Hemoglobin in Adults with Type 1 Diabetes Mellitus in Brazil. Front. Endocrinol. 2023, 14, 1215792. [Google Scholar] [CrossRef]
- Igudesman, D.; Crandell, J.; Corbin, K.D.; Zaharieva, D.P.; Addala, A.; Thomas, J.M.; Casu, A.; Kirkman, M.S.; Pokaprakarn, T.; Riddell, M.C.; et al. Weight Management in Young Adults with Type 1 Diabetes: The Advancing Care for Type 1 Diabetes and Obesity Network Sequential Multiple Assignment Randomized Trial Pilot Results. Diabetes Obes. Metab. 2023, 25, 688–699. [Google Scholar] [CrossRef]
- Nguyen, É.; Wong, K.; Lalanne-Mistrih, M.L.; Rabasa-Lhoret, R.; Brazeau, A.S. Association between Low-Carbohydrate-Diet Score, Glycemia and Cardiovascular Risk Factors in Adults with Type 1 Diabetes. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 2143–2154. [Google Scholar] [CrossRef]
- Lehmann, V.; Zueger, T.; Zeder, A.; Scott, S.; Bally, L.; Laimer, M.; Stettler, C. Lower Daily Carbohydrate Intake Is Associated with Improved Glycemic Control in Adults with Type 1 Diabetes Using a Hybrid Closed-Loop System. Diabetes Care 2020, 43, 3102–3105. [Google Scholar] [CrossRef]
- Basu, A.; Chien, L.C.; Alman, A.C.; Snell-Bergeon, J.K. Associations of Dietary Patterns and Nutrients with Coronary Artery Calcification and Pericardial Adiposity in a Longitudinal Study of Adults with and without Type 1 Diabetes. Eur. J. Nutr. 2021, 60, 3911–3925. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.A.; Basu, A.; Chien, L.C.; Alman, A.C.; Snell-Bergeon, J.K. Longitudinal Associations of Healthy Dietary Pattern Scores with Coronary Artery Calcification and Pericardial Adiposity in United States Adults with and without Type 1 Diabetes. J. Nutr. 2023, 153, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
- Granado-Casas, M.; Ram, A.; Mart, M.; Real, J.; Alonso, N.; Valldeperas, X.; Traveset, A.; Rubinat, E.; Alcubierre, N.; Hernández, M.; et al. Type 1 Diabetic Subjects with Diabetic Retinopathy Show an Unfavorable Pattern of Fat Intake. Nutrients 2018, 10, 1184. [Google Scholar] [CrossRef]
- Gingras, V.; Leroux, C.; Desjardins, K.; Savard, V.; Lemieux, S.; Rabasa-Lhoret, R.; Strychar, I. Association between Cardiometabolic Profile and Dietary Characteristics among Adults with Type 1 Diabetes Mellitus. J. Acad. Nutr. Diet. 2015, 115, 1965–1974. [Google Scholar] [CrossRef]
- Jaacks, L.M.; Crandell, J.; Mendez, M.A.; Lamichhane, A.P.; Liu, W.; Ji, L.; Du, S.; Rosamond, W.; Popkin, B.M.; Mayer-Davis, E.J. Dietary Patterns Associated with HbA1c and LDL Cholesterol among Individuals with Type 1 Diabetes in China. J Diabetes Complicat. 2016, 29, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Ahola, A.J.; Forsblom, C.; Groop, P.H. Adherence to Special Diets and Its Association with Meeting the Nutrient Recommendations in Individuals with Type 1 Diabetes. Acta Diabetol. 2018, 55, 843–851. [Google Scholar] [CrossRef]
- Ahola, A.J.; Harjutsalo, V.; Forsblom, C.; Saraheimo, M.; Groop, P.; Diabetic, F.; Study, N. Associations of Dietary Macronutrient and Fibre Intake with Glycaemia in Individuals with Type 1 Diabetes. Diabet. Med. 2019, 36, 1391–1398. [Google Scholar] [CrossRef]
- Ahola, A.J.; Forsblom, C.; Harjutsalo, V.; Groop, P.H. Dietary Intake in Type 1 Diabetes at Different Stages of Diabetic Kidney Disease. Diabetes Res. Clin. Pract. 2019, 155, 107775. [Google Scholar] [CrossRef]
- Granado-Casas, M.; Alcubierre, N.; Martín, M.; Real, J.; Ramírez-Morros, A.M.; Cuadrado, M.; Alonso, N.; Falguera, M.; Hernández, M.; Aguilera, E.; et al. Improved Adherence to Mediterranean Diet in Adults with Type 1 Diabetes Mellitus. Eur. J. Nutr. 2019, 58, 2271–2279. [Google Scholar] [CrossRef]
- Richardson, L.A.; Basu, A.; Chien, L.; Alman, A.C. Associations of the Mediterranean-Style Dietary Pattern Score with Coronary Artery Calcification and Pericardial Adiposity in a Sample of US Adults. Nutrients 2022, 14, 3385. [Google Scholar] [CrossRef]
- Zięba, K.; Płonka, M.; Wróbel, A.; Klupa, T.; Matejko, B. Assessment of Dietary Intake by Self-Report in Adult Patients with Type 1 Diabetes Treated with a Personal Insulin Pump. Postepy Hig. Med. Dosw. 2022, 76, 315–323. [Google Scholar] [CrossRef]
- Shojaeian, Z.; Ebrahimi, Z.; Amiri, F.; Esmaillzadeh, A.; Sadeghi, O.; Jahed, S.A.; Esteghamati, A.; Ebrahimkhani, A. Associations of Major Dietary Patterns with Cardiometabolic Risk Factors among Iranian Patients with Type 1 Diabetes. Prev. Med. Rep. 2024, 38, 102618. [Google Scholar] [CrossRef] [PubMed]
- Abuqwider, J.; Salamone, D.; Scidà, G.; Corrado, A.; Costabile, G.; Luongo, D.; Annuzzi, G.; Rivellese, A.; Bozzetto, L. Sex-Specific Associations of Serum Short-Chain Fatty Acids with Glycaemic Control: An Italian Cross-Sectional Study in Adults with Type 1 Diabetes. BMJ Open 2025, 15, e096994. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Znayenko-Miller, T.; Smith, K.; Khambatta, C.; Barbaro, R.; Sutton, M.; Holtz, D.N.; Sklar, M.; Pineda, D.; Holubkov, R.; et al. Effect of a Dietary Intervention on Insulin Requirements and Glycemic Control in Type 1 Diabetes: A 12-Week Randomized Clinical Trial. Clin. Diabetes 2024, 42, 419–427. [Google Scholar] [CrossRef]
- Krebs, J.D.; Strong, A.P.; Cresswell, P.; Reynolds, A.N.; Hanna, A.; Haeusler, S. A Randomised Trial of the Feasibility of a Low Carbohydrate Diet vs Standard Carbohydrate Counting in Adults with Type 1 Diabetes Taking Body Weight into Account. Asia Pac. J. Clin. Nutr. 2016, 25, 78–84. [Google Scholar] [CrossRef]
- Fortin, A.; Rabasa-Lhoret, R.; Lemieux, S.; Labonté, M.E.; Gingras, V. Comparison of a Mediterranean to a Low-Fat Diet Intervention in Adults with Type 1 Diabetes and Metabolic Syndrome: A 6–Month Randomized Trial. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1275–1284. [Google Scholar] [CrossRef]
- Overland, J.; Toth, K.; Gibson, A.A.; Sainsbury, A.; Franklin, J.; Gauld, A.; Wong, J. The Safety and Efficacy of Weight Loss via Intermittent Fasting or Standard Daily Energy Restriction in Adults with Type 1 Diabetes and Overweight or Obesity: A Pilot Study. Obes. Med. 2018, 12, 13–17. [Google Scholar] [CrossRef]
- Schmidt, S.; Christensen, M.B.; Serifovski, N.; Damm-Frydenberg, C.; Jensen, J.E.B.; Fløyel, T.; Størling, J.; Ranjan, A.; Nørgaard, K. Low versus High Carbohydrate Diet in Type 1 Diabetes: A 12-Week Randomized Open-Label Crossover Study. Diabetes Obes. Metab. 2019, 21, 1680–1688. [Google Scholar] [CrossRef]
- Al-Sari, N.; Schmidt, S.; Suvitaival, T.; Kim, M.; Trošt, K.; Ranjan, A.G.; Christensen, M.B.; Overgaard, A.J.; Pociot, F.; Nørgaard, K.; et al. Changes in the Lipidome in Type 1 Diabetes Following Low Carbohydrate Diet: Post-Hoc Analysis of a Randomized Crossover Trial. Endocrinol. Diabetes Metab. 2021, 4, e00213. [Google Scholar] [CrossRef] [PubMed]
- Dimosthenopoulos, C.; Liatis, S.; Kourpas, E.; Athanasopoulou, E.; Driva, S.; Makrilakis, K.; Kokkinos, A. The Beneficial Short-Term Effects of a High-Protein/Low-Carbohydrate Diet on Glycaemic Control Assessed by Continuous Glucose Monitoring in Patients with Type 1 Diabetes. Diabetes Obes Metab. 2021, 23, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Sterner Isaksson, S.; Bensow Bacos, M.; Eliasson, B.; Thors Adolfsson, E.; Rawshani, A.; Lindblad, U.; Jendle, J.; Berglund, A.; Lind, M.; Axelsen, M. Effects of Nutrition Education Using a Food-Based Approach, Carbohydrate Counting or Routine Care in Type 1 Diabetes: 12 Months Prospective Randomized Trial. BMJ Open Diabetes Res. Care 2021, 9, e001971. [Google Scholar] [CrossRef] [PubMed]
- Sterner Isaksson, S.; Ólafsdóttir, A.F.; Ivarsson, S.; Imberg, H.; Toft, E.; Hallström, S.; Rosenqvist, U.; Ekström, M.; Lind, M. The Effect of Carbohydrate Intake on Glycaemic Control in Individuals with Type 1 Diabetes: A Randomised, Open-Label, Crossover Trial. Lancet Reg. Health Eur. 2024, 37, 100799. [Google Scholar] [CrossRef]
- Kristensen, K.B.; Ranjan, A.G.; McCarthy, O.M.; Bracken, R.M.; Nørgaard, K.; Schmidt, S. Sensor-Based Glucose Metrics during Different Diet Compositions in Type 1 Diabetes—A Randomized One-Week Crossover Trial. Nutrients 2024, 16, 199. [Google Scholar] [CrossRef]
- Ahola, A.J.; Saraheimo, M.; Freese, R.; Mäkimattila, S.; Forsblom, C.; Groop, P.H. Fear of Hypoglycaemia and Self-Management in Type 1 Diabetes. J. Clin. Transl. Endocrinol. 2016, 4, 13–18. [Google Scholar] [CrossRef]
- Martyn-Nemeth, P.; Duffecy, J.; Fritschi, C.; Quinn, L. Challenges Imposed By Hypoglycemia in Adults with Type 1 Diabetes. Clin. Nurs. Res. 2019, 28, 947–967. [Google Scholar] [CrossRef]
- Granado-Casas, M.; Martin, M.; Alcubierre, N.; Hern, M.; Alonso, N.; Castelblanco, E.; Mauricio, D. The Mediterranean Diet Is Associated with an Improved Quality of Life in Adults with Type 1 Diabetes. Nutrients 2020, 12, 131. [Google Scholar] [CrossRef]
- Ahola, A.J.; Forsblom, C.; Harjutsalo, V.; Groop, P.H. Perceived Stress and Adherence to the Dietary Recommendations and Blood Glucose Levels in Type 1 Diabetes. J. Diabetes Res. 2020, 2020, 3548520. [Google Scholar] [CrossRef]
- Liu, S.; Nyklíček, I.; Pouwer, F.; Speight, J.; Bot, M.; Nefs, G.; Soedamah-Muthu, S.S. Mindfulness in Relation to Diet Quality in Adults with Type 1 and Type 2 Diabetes: Results from Diabetes MILES-The Netherlands. Mindfulness 2021, 12, 2943–2954. [Google Scholar] [CrossRef]
- Turton, J.L.; Brinkworth, G.D.; Id, H.M.P.; Lim, D.; Lee, K.; Rush, A.; Johnson, R.; Rooney, K.B. Effects of a Low-Carbohydrate Diet in Adults with Type 1 Diabetes Management: A Single Arm Non-Randomised Clinical Trial. PLoS Med. 2023, 18, e0288440. [Google Scholar] [CrossRef]
- Núñez-Baila, M.Á.; Gómez-Aragón, A.; Marques-Silva, A.M.; González-López, J.R. Exploring Determinants of Health-Related Quality of Life in Emerging Adults with Type 1 Diabetes Mellitus: A Cross-Sectional Analysis. Nutrients 2024, 16, 2059. [Google Scholar] [CrossRef]
- Karipidou, M.; Liatis, S.; Kyrkili, A.; Skoufi, A.; Lambadiari, V.; Tigas, S.; Liberopoulos, E.; Kontogianni, M.D. Exploring the Effect of Adhering to a Healthy Lifestyle Pattern on Glycemic Control in Adults with Type 1 Diabetes Mellitus. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103868. [Google Scholar] [CrossRef]
- Rubin, D.; Bosy-Westphal, A.; Kabisch, S.; Kronsbein, P.; Simon, M.-C.; Tombek, A.; Weber, K.S.; Skurk, T. Nutritional Recommendations for People with Type 1 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2025, 133, 177–190. [Google Scholar] [CrossRef]
- Araki, E.; Goto, A.; Kondo, T.; Noda, M.; Noto, H.; Origasa, H.; Osawa, H.; Taguchi, A.; Tanizawa, Y.; Tobe, K.; et al. Japanese Clinical Practice Guideline for Diabetes 2019. Diabetol. Int. 2020, 11, 165–223. [Google Scholar] [CrossRef]
- Craig, M.E.; Twigg, S.M.; Donaghue, K.C.; Cheung, N.W.; Cameron, F.J.; Conn, J.; Jenkins, A.J.; Silink, M.; for the Australian Type 1 Diabetes Guidelines Expert Advisory Group. National Evidence-Based Clinical Care Guidelines for Type 1 Diabetes in Children, Adolescents and Adults; Australian Government Department of Health and Ageing: Canberra, Australia, 2011; ISBN 978-0-9872203-0-1. [Google Scholar]
- Moon, J.S.; Kang, S.; Choi, J.H.; Lee, K.A.; Moon, J.H.; Chon, S.; Kim, D.J.; Kim, H.J.; Seo, J.A.; Kim, M.K.; et al. 2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association. Diabetes Metab. J. 2024, 48, 546–708. [Google Scholar] [CrossRef] [PubMed]
- Alfadli, S.F.; Alotaibi, Y.S.; Aqdi, M.J.; Almozan, L.A.; Alzubaidi, Z.B.; Altemani, H.A.; Almutairi, S.D.; Alabdullah, H.A.; Almehmadi, A.A.; Alanzi, A.L.; et al. Effectiveness of Continuous Glucose Monitoring Systems on Glycemic Control in Adults with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Metab. Open 2025, 27, 100382. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.; Jani, R.; Thorning, S.; Obucina, M.; Davoren, P.; Knight-Agarwal, C. Low Carbohydrate Diets, Glycaemic Control, Enablers, and Barriers in the Management of Type 1 Diabetes: A Mixed Methods Systematic Review. Diabetol. Metab. Syndr. 2024, 16, 261. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Alman, A.C.; Snell-Bergeon, J.K. Associations of Dietary Antioxidants with Glycated Hemoglobin and Insulin Sensitivity in Adults with and without Type 1 Diabetes. Nutrients 2021, 13, 1035. [Google Scholar] [CrossRef]
- Smythe, K.; Saw, M.; Mak, M.; Wong, V.W. Carbohydrate Knowledge, Lifestyle and Insulin: An Observational Study of Their Association with Glycaemic Control in Adults with Type 1 Diabetes. J. Hum. Nutr. Diet. 2018, 31, 597–602. [Google Scholar] [CrossRef]
- Igudesman, D.; Crandell, J.L.; Corbin, K.D.; Hooper, J.; Thomas, J.M.; Bulik, C.M.; Pence, B.W.; Pratley, R.E.; Kosorok, M.R.; Maahs, D.M.; et al. Associations of Dietary Intake with the Intestinal Microbiota and Short-Chain Fatty Acids Among Young Adults with Type 1 Diabetes and Overweight or Obesity. J. Nutr. 2023, 153, 1178–1188. [Google Scholar] [CrossRef]
- Bell, K.J.; Fio, C.Z.; Twigg, S.; Duke, S.A.; Fulcher, G.; Alexander, K.; McGill, M.; Wong, J.; Brand-Miller, J.; Steil, G.M. Amount and Type of Dietary Fat, Postprandial Glycemia, and Insulin Requirements in Type 1 Diabetes: A Randomized within-Subject Trial. Diabetes Care 2020, 43, 59–66. [Google Scholar] [CrossRef]
- Taleb, N.; Gingras, V.; Cheng, R.; Parent, V.; Messier, V.; Bovan, D.; Shohoudi, A.; Brazeau, A.S.; Rabasa-Lhoret, R. Non-Severe Hypoglycemia in Type 1 Diabetes: A Randomized Crossover Trial Comparing Two Quantities of Oral Carbohydrates at Different Insulin-Induced Hypoglycemia Ranges. Front. Endocrinol. 2023, 14, 1186680. [Google Scholar] [CrossRef]
- Murillo, S.; Brugnara, L.; Del Campo, E.; Yagüe, I.; Dueñas, B.; Novials, A. Carbohydrate Management in Athletes with Type 1 Diabetes in a 10km Run Competition. Int. J. Sports Med. 2015, 36, 853–857. [Google Scholar] [CrossRef]
- Aldibbiat, A.; Alqashami, A.; Hussain, S. Use of Automated Insulin Delivery Systems in People with Type 1 Diabetes Fasting during Ramadan: An Observational Study. J. Diabetes Investig. 2022, 13, 647–651. [Google Scholar] [CrossRef]
- Turton, J.L.; Raab, R.; Rooney, K.B. Low-Carbohydrate Diets for Type 1 Diabetes Mellitus: A Systematic Review. PLoS ONE 2018, 13, e0194987. [Google Scholar] [CrossRef]
- Thackrey, E.; Chen, J.; Martino, C.R.; Preda, V. The Effects of Diet on Weight and Metabolic Outcomes in Patients with Double Diabetes: A Systematic Review. Nutrition 2022, 94, 111536. [Google Scholar] [CrossRef] [PubMed]
- Helm, M.M.; Basu, A.; Richardson, L.A.; Chien, L.; Izuora, K.; Alman, A.C.; Snell-bergeon, J.K. Longitudinal Three-Year Associations of Dietary Fruit and Vegetable Intake with Serum Hs-C-Reactive Protein in Adults with and without Type 1 Diabetes. Nutrients 2024, 6, 2058. [Google Scholar] [CrossRef]
- Zafar, M.I.; Mills, K.E.; Zheng, J.; Regmi, A.; Hu, S.Q.; Gou, L.; Chen, L.L. Low-Glycemic Index Diets as an Intervention for Diabetes: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2019, 110, 891–902. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, J.; Franz, M.J.; Handu, D.; Gradwell, E.; Brown, C.; Evert, A.; Reppert, A.; Robinson, M. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Nutrition Intervention Evidence Reviews and Recommendations. J. Acad. Nutr. Diet. 2017, 117, 1637–1658. [Google Scholar] [CrossRef] [PubMed]
- de Torres-Sánchez, A.; Ampudia-Blasco, F.J.; Murillo, S.; Bellido, V.; Amor, A.J.; Mezquita-Raya, P. Proposed Practical Guidelines to Improve Glycaemic Management by Reducing Glycaemic Variability in People with Type 1 Diabetes Mellitus. Diabetes Ther. 2025, 16, 569–589. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Sharew, N.T. Adherence to Dietary Recommendation and Associated Factors among Diabetic Patients in Ethiopian Teaching Hospitals. Pan Afr. Med. J. 2019, 33, 260. [Google Scholar] [CrossRef] [PubMed]
- Dimitriades, M.E.; Pillay, K. Dietary Management Practices for Type 1 Diabetes Mellitus by Dietitians in KwaZulu-Natal. Health SA Gesondheid 2021, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bădescu, S.; Tătaru, C.; Kobylinska, L.; Georgescu, E.; Zahiu, D.; Zăgrean, A.; Zăgrean, L. The Association between Diabetes Mellitus and Depression Pathophysiological Mechanisms. J. Med. Life 2016, 9, 120–125. [Google Scholar]
- Rodriguez-Munoz, A.; Picon-Cesar, M.; Tinahones, F.J.; Martinez-Montoro, I. Type 1 Diabetes-Related Distress: Current Implications in Care. Eur. J. Intern. Med. 2024, 125, 19–27. [Google Scholar] [CrossRef]
- Wisting, L.; Skrivarhaug, T.; Dahl-Jørgensen, K.; Rø, Ø. Prevalence of Disturbed Eating Behavior and Associated Symptoms of Anxiety and Depression among Adult Males and Females with Type 1 Diabetes. J. Eat. Disord. 2018, 6, 28. [Google Scholar] [CrossRef]
- Castellano-Guerrero, A.M.; Guerrero, R.; Ruiz-Aranda, D.; Perea, S.; Pumar, A.; Relimpio, F.; Mangas, M.A.; Losada, F.; Martínez-Brocca, M.A. Gender Differences in Quality of Life in Adults with Long-Standing Type 1 Diabetes Mellitus. Diabetol. Metab. Syndr. 2020, 12, 64. [Google Scholar] [CrossRef]
- Ip, E.J.; Doroudgar, S.; Salehi, A.; Salehi, F.; Najmi, M. Diabulimia: A Risky Trend Among Adults with Type 1 Diabetes Mellitus. Endocr. Pract. 2023, 29, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Young-Hyman, D.; De Groot, M.; Hill-Briggs, F.; Gonzalez, J.S.; Hood, K.; Peyrot, M. Psychosocial Care for People with Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2126–2140. [Google Scholar] [CrossRef]
- Peter, M.E.; Rioles, N.; Liu, J.; Chapman, K.; Wolf, W.A.; Nguyen, H.; Basina, M.; Akturk, H.K.; Ebekozien, O.; Perez-Nieves, M.; et al. Prevalence of Fear of Hypoglycemia in Adults with Type 1 Diabetes Using a Newly Developed Screener and Clinician’s Perspective on Its Implementation. BMJ Open Diabetes Res. Care 2023, 11, e003394. [Google Scholar] [CrossRef]
- Igudesman, D.; Nally, L.M.; Grimshaw, A.A.; Gunderson, C.; Considine, E.G.; Jacobsen, L.M.; Tosur, M.; Gottlieb, P.A.; Hirsch, I.; Laffel, L.; et al. Dietary Patterns for Weight and Glycemic Management in Persons with Type 1 Diabetes: A Meta-Analysis of Clinical Trials. J. Clin. Endocrinol. Metab. 2025, 110, 3289–3300. [Google Scholar] [CrossRef]
- Sawani, S.; Siddiqui, A.R.; Azam, S.I.; Humayun, K.; Ahmed, A.; Habib, A.; Naz, S.; Tufail, M.; Iqbal, R. Lifestyle Changes and Glycemic Control in Type 1 Diabetes Mellitus: A Trial Protocol with Factorial Design Approach. Trials 2020, 21, 346. [Google Scholar] [CrossRef] [PubMed]
- Katte, J.C.; Agoons, B.B.; Dimala, C.A.; Bigna, J.J.; Sobngwi, E. Incidence and Prevalence of Type 1 Diabetes in Africa: A Systematic Review Analysis Protocol and Meta- analysis Protocol. BMJ Open 2022, 12, e061605. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. Int. J. Surg. 2011, 9, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.; Boutron, I.; Hopewell, S.; Moher, D.; Schulz, K.F.; Collins, G.S.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. SPIRIT 2025 Statement: Updated Guideline for Protocols of Randomized Trials. Nat. Med. 2025, 31, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better Reporting of Interventions: Template for Intervention Description and Replication (TIDieR) Checklist and Guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Integrated Addendum to ICH E6(R1): Guideline for Good Clinical Practice E6(R2); Canary Limited: Geneva, Switzerland, 2016. [Google Scholar]


| Element | Definition | Extent of Consideration |
|---|---|---|
| Population (P) | Adult patients (≥18 years) with type 1 diabetes | No restrictions regarding sex, diabetes duration, insulin regimen, or presence of comorbidities. Both younger (20–40 years) and older (≥40 years) adult groups were considered. |
| Concept (C) | Dietary interventions and their impact on the health of patients with T1D | Evaluation of dietary patterns (MedDiet, DASH, LCH, ketogenic diet, low glycaemic index, vegetarian, vegan, plant-based). Inclusion of dietary modification strategies (e.g., CC, reduction in simple sugars, fiber increase, fasting protocols). Outcomes of interest include metabolic GV, lipid profile, BMI, clinical (hypoG, insulin dose, complications), and psychosocial/behavioral outcomes (QoL, adherence, DD, FoH, eating disorders). |
| Context (C) | Geographical, cultural, and healthcare system settings related to T1D management | International perspective: recommendations of diabetes societies (ADA, EASD, IDF, Diabetes Canada, Diabetes UK, NDSS Australia, Asian and African Societies). Consideration of healthcare access (dietitian availability, use of technology such as CGM, apps, bolus calculators), socio-economic barriers, regional food availability, and cultural dietary patterns. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sperkowska, B.M.; Chrustek, A.; Gryn-Rynko, A.; Proszowska, A. Dietary Interventions for Adults with Type 1 Diabetes: Clinical Outcomes, Guideline Alignment, and Research Gaps—A Scoping Review. Nutrients 2025, 17, 3349. https://doi.org/10.3390/nu17213349
Sperkowska BM, Chrustek A, Gryn-Rynko A, Proszowska A. Dietary Interventions for Adults with Type 1 Diabetes: Clinical Outcomes, Guideline Alignment, and Research Gaps—A Scoping Review. Nutrients. 2025; 17(21):3349. https://doi.org/10.3390/nu17213349
Chicago/Turabian StyleSperkowska, Beata Małgorzata, Agnieszka Chrustek, Anna Gryn-Rynko, and Anna Proszowska. 2025. "Dietary Interventions for Adults with Type 1 Diabetes: Clinical Outcomes, Guideline Alignment, and Research Gaps—A Scoping Review" Nutrients 17, no. 21: 3349. https://doi.org/10.3390/nu17213349
APA StyleSperkowska, B. M., Chrustek, A., Gryn-Rynko, A., & Proszowska, A. (2025). Dietary Interventions for Adults with Type 1 Diabetes: Clinical Outcomes, Guideline Alignment, and Research Gaps—A Scoping Review. Nutrients, 17(21), 3349. https://doi.org/10.3390/nu17213349

