Temporal Eating Patterns and Ultra-Processed Food Consumption Assessed from Mobile Food Records of Australian Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Characteristics
2.2. Dietary Analysis
2.3. Temporal Pattern Statistical Analysis
3. Results
3.1. Demographics
3.2. Age-Differentiated Comparison of 24 h Temporal Pattern of UPF Intake
3.3. Temporal Patterns of Weekends and Weekdays
3.4. Most Frequent UPFs Consumed
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| UPF | Ultra-processed food |
| EI | Energy intake |
| TEI | Total energy intake |
| mFR | Mobile food record |
| DG | Dietary guideline |
References
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Temporal eating patterns: A latent class analysis approach. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 3. [Google Scholar] [CrossRef]
- Bailey, R.; Leidy, H.; Mattes, R.; Heymsfield, S.; Boushey, C.; Ahluwalia, N.; Cowan, A.; Pannucci, T.; Moshfegh, A.; Goldman, J.; et al. Frequency of Eating in the US Population: A Narrative Review of the 2020 Dietary Guidelines Advisory Committee Report. Curr. Dev. Nutr. 2022, 6, nzac132. [Google Scholar] [CrossRef]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-Processed Foods and Health Outcomes. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef]
- Manoogian, E.N.C.; Wei-Shatzel, J.; Panda, S. Assessing temporal eating pattern in free living humans through the myCircadianClock app. Int. J. Obes. 2022, 46, 696–706. [Google Scholar] [CrossRef]
- Lin, L.; Guo, J.; Gelfand, S.B.; Bhadra, A.; Delp, E.J.; Richards, E.A.; Hennessy, E.; Eicher-Miller, H.A. Temporal Dietary Pattern Cluster Membership Varies on Weekdays and Weekends but Both Link to Health. J. Nutr. 2024, 154, 722–733. [Google Scholar] [CrossRef]
- Rebuli, M.A.; Williams, G.; James-Martin, G.; Hendrie, G.A. Food group intake at self-reported eating occasions across the day: Secondary analysis of the Australian National Nutrition Survey 2011–2012. Public Health Nutr. 2020, 23, 3067–3080. [Google Scholar] [CrossRef]
- Cahill, L.E. About time: Eating timing is a complex risk factor for obesity. Am. J. Clin. Nutr. 2020, 113, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Understanding meal patterns: Definitions, methodology and impact on nutrient intake and diet quality. Nutr. Res. Rev. 2015, 28, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ruddick-Collins, L.C.; Johnston, J.D.; Morgan, P.J.; Johnstone, A.M. The Big Breakfast Study: Chrono-nutrition influence on energy expenditure and bodyweight. Nutr. Bull. 2018, 43, 174–183. [Google Scholar] [CrossRef] [PubMed]
- An, R. Weekend-weekday differences in diet among U.S. adults, 2003–2012. Ann. Epidemiol. 2016, 26, 57–65. [Google Scholar] [CrossRef]
- He, J.; Shao, Z.; Wright, J.; Kerr, D.; Boushey, C.; Zhu, F. Multi-task Image-Based Dietary Assessment for Food Recognition and Portion Size Estimation. In Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Shenzhen, China, 6–8 August 2020; pp. 49–54. [Google Scholar]
- Vinod, G.; He, J.; Shao, Z.; Zhu, F. Food Portion Estimation via 3D Object Scaling. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17–18 June 2024; pp. 3741–3749. [Google Scholar]
- Zhu, F.Q.; Bosch, M.; Woo, I.; Kim, S.; Boushey, C.J.; Ebert, D.S.; Delp, E.J. The Use of Mobile Devices in Aiding Dietary Assessment and Evaluation. IEEE J. Sel. Top. Signal Process. 2010, 4, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.J.; Spoden, M.; Delp, E.J.; Zhu, F.; Bosch, M.; Ahmad, Z.; Shvetsov, Y.B.; Delany, J.P.; Kerr, D.A. Reported Energy Intake Accuracy Compared to Doubly Labeled Water and Usability of the Mobile Food Record among Community Dwelling Adults. Nutrients 2017, 9, 312. [Google Scholar] [CrossRef]
- Healy, J.; Boushey, C.; Delp, E.; Zhu, F.; Collins, C.; Rollo, M.; Wright, J.; Hassan, A.; Whitton, C.; Pollard, C.; et al. Mobile Food Record 24 Hour Recall (mFR24) Was “Easy” and an Acceptable Mobile Health Dietary Assessment Method. Curr. Dev. Nutr. 2022, 6, 767. [Google Scholar] [CrossRef]
- Whitton, C.; Healy, J.D.; Dhaliwal, S.S.; Shoneye, C.; Harray, A.J.; Mullan, B.A.; McVeigh, J.A.; Boushey, C.J.; Kerr, D.A. Demographic and psychosocial correlates of measurement error and reactivity bias in a 4-d image-based mobile food record among adults with overweight and obesity. Br. J. Nutr. 2022, 129, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.J.; Spoden, M.; Zhu, F.M.; Delp, E.J.; Kerr, D.A. New mobile methods for dietary assessment: Review of image-assisted and image-based dietary assessment methods. Proc. Nutr. Soc 2017, 76, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Kerr, D.; Harray, A.; Pollard, C.; Dhaliwal, S.; Delp, E.; Howat, P.; Pickering, M.; Ahmad, Z.; Meng, X.; Pratt, I.; et al. The connecting health and technology study: A 6-month randomized controlled trial to improve nutrition behaviours using a mobile food record and text messaging support in young adults. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 52. [Google Scholar] [CrossRef]
- Lane, M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-Processed Food Exposure and Adverse Health Outcomes: An Umbrella Review of Epidemiological Meta-Analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Harray, A.J.; Boushey, C.J.; Pollard, C.M.; Dhaliwal, S.S.; Mukhtar, S.A.; Delp, E.J.; Kerr, D.A. Healthy and Sustainable Diet Index: Development, Application and Evaluation Using Image-Based Food Records. Nutrients 2022, 14, 3838. [Google Scholar] [CrossRef]
- Zhang, Y.; Giovannucci, E.L. Ultra-processed foods and health: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2023, 63, 10836–10848. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 226. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Rock, E. Exclusive reductionism, chronic diseases and nutritional confusion: The degree of processing as a lever for improving public health. Crit. Rev. Food Sci. Nutr. 2022, 62, 2784–2799. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2017, 21, 5–17. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.L.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019. [Google Scholar]
- Kim, H.; Hu, E.A.; Rebholz, C.M. Ultra-processed food intake and mortality in the USA: Results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). Public Health Nutr. 2019, 22, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Leeming, E.R.; Francis, L.; Spector, T.; Berry, S.; Gibson, R. The association between ultra-processed food consumption and obesity in the ZOE PREDICT 1 cohort in the United Kingdom. Proc. Nutr. Soc. 2022, 81, E5. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; da Costa Louzada, M.L.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 2020, 10, 39. [Google Scholar] [CrossRef]
- Marchese, L.; Livingstone, K.M.; Woods, J.L.; Wingrove, K.; Machado, P. Ultra-processed food consumption, socio-demographics, and diet quality in Australian adults. Public Health Nutr. 2022, 25, 94–104. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Australian Bureau of Statistics. 4364.0.55.012-Australian Health Survey: Consumption of Food Groups from the Australian Dietary Guidelines, 2011–2012; Australian Bureau of Statistics: Canberra, Australia, 2016. [Google Scholar]
- Kerr, D.A.; Pollard, C.M.; Howat, P.; Delp, E.J.; Pickering, M.; Kerr, K.R.; Dhaliwal, S.S.; Pratt, I.S.; Wright, J.; Boushey, C.J. Connecting Health and Technology (CHAT): Protocol of a randomized controlled trial to improve nutrition behaviours using mobile devices and tailored text messaging in young adults. BMC Public Health 2012, 12, 477. [Google Scholar] [CrossRef]
- Halse, R.E.; Shoneye, C.L.; Pollard, C.; Jancey, J.; Scott, J.; Pratt, I.S.; Dhaliwal, S.S.; Norman, R.; Straker, L.M.; Boushey, C.; et al. Improving Nutrition and Activity Behaviors Using Digital Technology and Tailored Feedback: Protocol for the LiveLighter Tailored Diet and Activity (ToDAy) Randomized Controlled Trial. JMIR Res. Protoc. 2019, 8, e12782. [Google Scholar] [CrossRef]
- Society for Adolescent Health and Medicine. Young Adult Health and Well-Being: A Position Statement of the Society for Adolescent Health and Medicine. J. Adolesc. Health 2017, 60, 758–759. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Nutrient Reference Values-Macronutrient Balance. Available online: https://www.eatforhealth.gov.au/nutrient-reference-values/chronic-disease/macronutrient-balance (accessed on 25 August 2025).
- Haines, P.S.; Hama, M.Y.; Guilkey, D.K.; Popkin, B.M. Weekend eating in the United States is linked with greater energy, fat, and alcohol intake. Obes. Res. 2003, 11, 945–949. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand. AUSNUT 2011–2013—Food Composition Database; Food Standards Australia New Zealand: Canberra, Australia, 2014. [Google Scholar]
- O’Halloran, S.A.; Lacy, K.E.; Grimes, C.A.; Woods, J.; Campbell, K.J.; Nowson, C.A. A novel processed food classification system applied to Australian food composition databases. J. Hum. Nutr. Diet 2017, 30, 534–541. [Google Scholar] [CrossRef]
- FAO. Guidelines on the Collection of Information on Food Processing Through Food Consumption Surveys; FAO: Rome, Italy, 2015. [Google Scholar]
- Aguilera, J.M. The food matrix: Implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 2019, 59, 3612–3629. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. Chronic diseases are first associated with the degradation and artificialization of food matrices rather than with food composition: Calorie quality matters more than calorie quantity. Eur. J. Nutr. 2022, 61, 2239–2253. [Google Scholar] [CrossRef]
- Banna, J.C.; McCrory, M.A.; Fialkowski, M.K.; Boushey, C. Examining Plausibility of Self-Reported Energy Intake Data: Considerations for Method Selection. Front. Nutr. 2017, 4, 45. [Google Scholar] [CrossRef]
- Microsoft corporation. Microsoft Excel, version 2507; Microsoft 365: Washington, DC, USA, 2025.
- World Health Organization. Body Mass Index. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index?introPage=intro_3.html (accessed on 26 August 2025).
- Leech, R.M.; Livingstone, K.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Meal Frequency but Not Snack Frequency is Associated with Micronutrient Intakes and Overall Diet Quality in Australian Men and Women. J. Nutr. 2016, 146, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. The role of energy intake and energy misreporting in the associations between eating patterns and adiposity. Eur. J. Clin. Nutr. 2018, 72, 142–147. [Google Scholar] [CrossRef]
- Albury, C.; Strain, W.D.; Brocq, S.L.; Logue, J.; Lloyd, C.; Tahrani, A. The importance of language in engagement between health-care professionals and people living with obesity: A joint consensus statement. Lancet Diabetes Endocrinol. 2020, 8, 447–455. [Google Scholar] [CrossRef]
- Marino, M.A.-O.; Puppo, F.; Del Bo, C.A.-O.X.; Vinelli, V.; Riso, P.A.-O.; Porrini, M.A.-O.; Martini, D.A.-O.X. A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms. Nutrients 2021, 13, 2778. [Google Scholar] [CrossRef] [PubMed]
- Brazendale, K.; Beets, M.W.; Weaver, R.G.; Pate, R.R.; Turner-McGrievy, G.M.; Kaczynski, A.T.; Chandler, J.L.; Bohnert, A.; von Hippel, P.T. Understanding differences between summer vs. school obesogenic behaviors of children: The structured days hypothesis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 100. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. How to protect both health and food system sustainability? A holistic ‘global health’-based approach via the 3V rule proposal. Public Health Nutr. 2020, 23, 3028–3044. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.; So, J. Tailoring Temporal Message Frames to Individuals’ Time Orientation Strengthens the Relationship between Risk Perception and Behavioral Intention. J. Health Commun. 2020, 25, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Koios, D.; Machado, P.; Lacy-Nichols, J. Representations of Ultra-Processed Foods: A Global Analysis of How Dietary Guidelines Refer to Levels of Food Processing. Int. J. Health Policy Manag. 2022, 11, 2588. [Google Scholar] [CrossRef]
- Neri, D.; Gabe, K.T.; Costa, C.D.S.; Martinez Steele, E.; Rauber, F.; Marchioni, D.M.; da Costa Louzada, M.L.; Levy, R.B.; Monteiro, C.A. A novel web-based 24-h dietary recall tool in line with the Nova food processing classification: Description and evaluation. Public Health Nutr. 2023, 26, 1997–2004. [Google Scholar] [CrossRef]
- Eicher-Miller, H.A.; Khanna, N.; Boushey, C.J.; Gelfand, S.B.; Delp, E.J. Temporal Dietary Patterns Derived among the Adult Participants of the National Health and Nutrition Examination Survey 1999–2004 Are Associated with Diet Quality. J. Acad. Nutr. Diet. 2016, 116, 283–291. [Google Scholar] [CrossRef]
- Hansel, B.; Giral, P.; Gambotti, L.; Lafourcade, A.; Peres, G.; Filipecki, C.; Kadouch, D.; Hartemann, A.; Oppert, J.-M.; Bruckert, E.; et al. A fully automated web-based program improves lifestyle habits and HbA1c in patients with type 2 diabetes and abdominal obesity: Randomized trial of patient e-coaching nutritional support (The ANODE study). J. Med. Internet Res. 2017, 19, e360. [Google Scholar] [CrossRef]
- Gauld, C.S.; Lewis, I.M.; White, K.M.; Watson, B.C.; Rose, C.T.; Fleiter, J.J. Gender differences in the effectiveness of public education messages aimed at smartphone use among young drivers. Traffic Inj. Prev. 2020, 21, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Kirkpatrick, S.I.; Subar, A.F.; Reedy, J.; Schap, T.E.; Wilson, M.M.; Krebs-Smith, S.M. The National Cancer Institute’s Dietary Assessment Primer: A Resource for Diet Research. J. Acad. Nutr. Diet. 2015, 115, 1986–1995. [Google Scholar] [CrossRef]

| Younger (n = 243) | Older (n = 148) 1 | ||
|---|---|---|---|
| Mean ± SD | Mean ± SD | ||
| Age (years) | 24.3 ± 3.4 | 49.2 ± 9.7 | |
| BMI 2 kg/m2 | 24.3 ± 5.4 | 31.4 ± 3.9 | |
| Proportion of TEI from UPFs (%) | 48.8 ± 15.59 | 36.1 ± 15.10 | |
| Range of proportion of TEI from UPFs (%) | 5–92% | 5–79% | |
| N (%) | N (%) | ||
| Sex | |||
| Male | 82 (33.7%) | 49 (33.3%) | |
| Female | 161 (66.2%) | 98 (66.7%) | |
| BMI 2 category (%) | |||
| Healthy weight | 166 (68.3%) | 0 (0%) | |
| Overweight (≥25 kg/m2) | 47 (19.3%) | 63 (43.1%) | |
| Obese (≥30 kg/m2) | 30 (12.3%) | 83 (56.8%) | |
| Ethnicity | |||
| Caucasian | 187 (76.9%) | 130 (88.4%) | |
| Aboriginal | 4 (1.6%) | 0 (0%) | |
| Asian | 41 (16.9%) | 9 (6.1%) | |
| Black African | 1 (0.4) | 2 (1.4%) | |
| Mixed | 10 (4.1%) | 6 (4.1%) | |
| Education | |||
| Year 10, 11, or 12 | 86 (35.4%) | 26 (17.7%) | |
| Trade or diploma | 59 (24.3%) | 34 (23.8%) | |
| University degree or higher | 98 (40.3%) | 87 (59.2%) | |
| NOVA 1 | Weekend (Mean ± SD kJ/d) | Weekday (Mean kJ/d) | Weekend–Weekday Difference (Mean kJ/d) | 95% CI | p-Value 2 | |
|---|---|---|---|---|---|---|
| Younger (n = 243) | MP | 2014.1 ± 1515.3 | 2211.7 ± 1496.8 | −197.6 | −440.2–44.9 | 0.110 |
| PCI | 348.5 ± 216.0 | 281.1 ± 199.8 | 67.4 | 2.7–132.1 | 0.041 | |
| P | 2283.0 ± 1592.5 | 2284.7 ± 1454.8 | −1.7 | −265.5–262.1 | 0.990 | |
| UPF | 3579.5 ± 2072.9 | 3537.1 ± 1995.7 | 42.4 | −301.1–385.8 | 0.808 | |
| Older (n = 148) | MP | 2341.9 ± 1313.1 | 2949.1 ± 1286.5 | −607.2 | −852.3–−362.0 | <0.001 |
| PCI | 365.0 ± 382.1 | 433.4 ± 452.2 | −68.4 | −184.2–47.3 | 0.241 | |
| P | 2275.6 ± 1523.8 | 2224.4 ± 1298.9 | 51.2 | −265.2–367.6 | 0.749 | |
| UPF | 3242.1 ± 1777.0 | 2684.4 ± 1677.5 | 557.7 | 199.7–915.7 | 0.003 |
| Younger (n = 243) | Older (n = 148) | ||||||
|---|---|---|---|---|---|---|---|
| Summary of food items | Percent | Freq per person | Examples | Summary of food items | Percent | Freq per person | Examples |
| Bread and bread-based foods * | 17% | 2 | White and wholemeal bread rolls, loaves, and fruit bread | Bread and bread-based foods | 27% | 4 | White bread rolls and loaves, wholemeal loaves |
| Beverages (2% had alcohol) | 17% | 2 | Cola-based soft drink, coffee | Sweet baked goods (biscuits and cakes) | 11% | 1 | Plain biscuits, shortbread, cakes, and muffins |
| Ready meals (e.g., pizza) | 12% | 2 | Pizza, hamburgers/wraps | Ready meals (e.g., pizza) | 8% | 1 | Pizza |
| Sweet biscuits/cakes | 11% | 1 | Muesli bars, plain sweet biscuits | Lollies, chocolate | 7% | 1 | Chocolate, fruit chews |
| Breakfast cereal | 8% | 1 | Mixed grain flaked or extruded cereal | Breakfast cereal | 6% | 1 | Whole-wheat biscuits (e.g., weetbix) |
| Savoury snacks (e.g., hot chips) | 7% | 1 | Chips, wedges, hash browns | Savoury snacks (e.g., hot chips) | 5% | 1 | Hot chips |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Healy, J.D.; Dhaliwal, S.S.; Pollard, C.M.; Harray, A.J.; Blekkenhorst, L.; Zhu, F.; Kerr, D.A. Temporal Eating Patterns and Ultra-Processed Food Consumption Assessed from Mobile Food Records of Australian Adults. Nutrients 2025, 17, 3302. https://doi.org/10.3390/nu17203302
Healy JD, Dhaliwal SS, Pollard CM, Harray AJ, Blekkenhorst L, Zhu F, Kerr DA. Temporal Eating Patterns and Ultra-Processed Food Consumption Assessed from Mobile Food Records of Australian Adults. Nutrients. 2025; 17(20):3302. https://doi.org/10.3390/nu17203302
Chicago/Turabian StyleHealy, Janelle D., Satvinder S. Dhaliwal, Christina M. Pollard, Amelia J. Harray, Lauren Blekkenhorst, Fengqing Zhu, and Deborah A. Kerr. 2025. "Temporal Eating Patterns and Ultra-Processed Food Consumption Assessed from Mobile Food Records of Australian Adults" Nutrients 17, no. 20: 3302. https://doi.org/10.3390/nu17203302
APA StyleHealy, J. D., Dhaliwal, S. S., Pollard, C. M., Harray, A. J., Blekkenhorst, L., Zhu, F., & Kerr, D. A. (2025). Temporal Eating Patterns and Ultra-Processed Food Consumption Assessed from Mobile Food Records of Australian Adults. Nutrients, 17(20), 3302. https://doi.org/10.3390/nu17203302

