Associations Between 24-h Movement Behaviors and Macronutrient Intake Among Students Aged 6–17 Years: Insights from the China Health and Nutrition Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Macronutrient Intake
2.3. Assessment of 24-h Movement Behaviors
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
3.1. Social-Demographic Characteristics
3.2. Adherence to 24-h Movement Guidelines Components and Macronutrient Intake
3.3. Associations Between Adherence to 24-h Movement Guidelines Components and Macronutrient DRIs Compliance
3.4. Dose–Response Associations Between 24-h Movement Behaviors and Macronutrient DRIs
3.5. Dose–Response Associations Between 24-h Movement Behaviors and Macronutrient Intake, E% from Macronutrients
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lalji, R.; Koh, L.; Francis, A.; Khalid, R.; Guha, C.; Johnson, D.W.; Wong, G. Patient navigator programmes for children and adolescents with chronic diseases. Cochrane Database Syst. Rev. 2024, 10, Cd014688. [Google Scholar]
- Reif, L.K.; van Olmen, J.; McNairy, M.L.; Ahmed, S.; Putta, N.; Bermejo, R.; Nugent, R.; Paintsil, E.; Daelmans, B.; Varghese, C.; et al. Models of lifelong care for children and adolescents with chronic conditions in low-income and middle-income countries: A scoping review. BMJ Glob. Health 2022, 7, e007863. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Nursiswati, N.; Candradewini, C.; Sari, D.S.; Kurniasih, S.A.; Ibrahim, K. Factors Associated with Healthy Behavior for Preventing Non-Communicable Diseases. J. Multidiscip. Healthc. 2025, 18, 1597–1613. [Google Scholar] [CrossRef]
- Hossian, M.; Mielke, G.I.; Nisar, M.; Tremblay, M.S.; Khan, A. Global research on 24-hour movement behaviours guidelines in children and adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2025, 22, 108. [Google Scholar] [CrossRef]
- Chung, H.J.; Kim, H.; Ma, J.; Chua, T.; Low, S.T.; Li, D.; Guo, H.; Chia, M.Y.H. Associations between 24-hour movement guidelines and health-related quality of life among urban preschool children in Singapore, Japan, and China. Health Qual. Life Outcomes 2025, 23, 75. [Google Scholar] [CrossRef]
- Hua, M.; Hua, Y.; Peng, Y.; Zhu, J. Associations between adherence to 24-hour movement guidelines with depression, anxiety, and loneliness among Chinese adolescents. J. Affect. Disord. 2025, 385, 119369. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Y.; Gu, Y.; Chen, H.; Lv, R.; Wu, S.; Song, P.; Zhao, D.; Hu, L.; Yuan, C. Adherence to 24-Hour Movement Guidelines in Relation to the Risk of Overweight and Obesity Among Children and Adolescents. J. Adolesc. Health 2023, 73, 887–895. [Google Scholar] [CrossRef]
- Liang, K.; Chen, S.; Chi, X. Differential Associations Between Meeting 24-Hour Movement Guidelines with Mental Wellbeing and Mental Illness Among Chinese Adolescents. J. Adolesc. Health 2023, 72, 658–666. [Google Scholar] [CrossRef]
- Huang, J.; Memon, A.R.; Bao, R.; Fan, H.; Wang, L.; Liu, Y.; Chen, S.; Li, C. 24-H movement behaviours research in Chinese population: A scoping review. J. Exerc. Sci. Fit. 2024, 22, 397–405. [Google Scholar] [CrossRef]
- Chen, S.T.; Liu, Y.; Tremblay, M.S.; Hong, J.T.; Tang, Y.; Cao, Z.B.; Zhuang, J.; Zhu, Z.; Wu, X.; Wang, L.; et al. Meeting 24-h movement guidelines: Prevalence, correlates, and the relationships with overweight and obesity among Chinese children and adolescents. J. Sport Health Sci. 2021, 10, 349–359. [Google Scholar] [CrossRef]
- Kusol, K.; Kaewpawong, P. Relationship Between Family Factors, Food Consumption Behaviors, and Nutritional Status Among Muslim School-Age Students in Rural Southern Thailand. J. Multidiscip. Healthc. 2025, 18, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Yamasaki, S.; Okada, N.; Ando, S.; Nishida, A.; Kasai, K.; Koike, S. Macronutrient intake is associated with intelligence and neural development in adolescents. Front Nutr. 2024, 11, 1349738. [Google Scholar] [CrossRef]
- Tu, Z.; Yang, J.; Fan, C. The role of different nutrients in the prevention and treatment of cardiovascular diseases. Front. Immunol. 2024, 15, 1393378. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Yu, Y.; Yu, X.; Guo, D.; Su, L.; Li, H.; Luo, P.; Chen, P.-Y.; Wu, S.-L.; Huang, Y.; et al. Adherence to the Chinese dietary guidelines and metabolic syndrome among children aged 6–14 years. Food Funct. 2022, 13, 9772–9781. [Google Scholar] [CrossRef] [PubMed]
- Vizzuso, S.; Amatruda, M.; Del Torto, A.; D’Auria, E.; Ippolito, G.; Zuccotti, G.V.; Verduci, E. Is Macronutrients Intake a Challenge for Cardiometabolic Risk in Obese Adolescents? Nutrients 2020, 12, 1785. [Google Scholar] [CrossRef]
- Jani, S.; Bradley, A. Weight Loss Diets, Fads, and Trends. Curr. Obes. Rep. 2024, 13, 71–76. [Google Scholar] [CrossRef]
- Freuer, D.; Meisinger, C.; Linseisen, J. Causal relationship between dietary macronutrient composition and anthropometric measures: A bidirectional two-sample Mendelian randomization analysis. Clin. Nutr. 2021, 40, 4120–4131. [Google Scholar] [CrossRef]
- Seale, L.A.; Yamanaka, A.B.; Hammond, K.; Lim, E.; Wilkens, L.R.; McFall, P.; Verduci, E. Dietary Micronutrient Intake and the Prevalence of Metabolic Conditions among Children from the United States-Affiliated Pacific Region in the Children’s Healthy Living Program. Curr. Dev. Nutr. 2025, 9, 104531. [Google Scholar] [CrossRef]
- Zhao, J.; Zuo, L.; Sun, J.; Su, C.; Wang, H. Trends and Urban-Rural Disparities of Energy Intake and Macronutrient Composition among Chinese Children: Findings from the China Health and Nutrition Survey (1991 to 2015). Nutrients 2021, 13, 1933. [Google Scholar] [CrossRef]
- Ortega, A.; Bejarano, C.M.; Cushing, C.C.; Staggs, V.S.; Papa, A.E.; Steel, C.; Shook, R.P.; Sullivan, D.K.; Couch, S.C.; Conway, T.L.; et al. Differences in adolescent activity and dietary behaviors across home, school, and other locations warrant location-specific intervention approaches. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Julian, V.; Haschke, F.; Fearnbach, N.; Gomahr, J.; Pixner, T.; Furthner, D.; Weghuber, D.; Thivel, D. Effects of Movement Behaviors on Overall Health and Appetite Control: Current Evidence and Perspectives in Children and Adolescents. Curr. Obes. Rep. 2022, 11, 10–22. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; Fabios, E.; Martín-Calvo, N. Meeting the 24-h movement recommendations and its relationship with Mediterranean dietary patterns in early childhood: The SENDO project. Eur. J. Pediatr. 2024, 183, 2365–2373. [Google Scholar] [CrossRef] [PubMed]
- Sampasa-Kanyinga, H.; Hamilton, H.A.; Chaput, J.P. Movement behaviours, breakfast consumption, and fruit and vegetable intake among adolescents. J. Act. Sedentary Sleep Behav. 2022, 1, 4. [Google Scholar] [CrossRef]
- Dearth-Wesley, T.; Howard, A.G.; Wang, H.; Zhang, B.; Popkin, B.M. Trends in domain-specific physical activity and sedentary behaviors among Chinese school children, 2004–2011. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 141. [Google Scholar] [CrossRef]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, Y.Q.; Wang, Y.C.; Zhou, X.F.; Liu, S.J.; Cai, M.Q.; He, G.-S.; Li, S.-G.; Zang, J.-J.; Chen, B. The development of a Chinese Healthy Eating Index for School-age Children and its Application in children from China Health and Nutrition Survey. Int. J. Food Sci. Nutr. 2021, 72, 280–291. [Google Scholar] [CrossRef]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef]
- Yao, M.; Lichtenstein, A.H.; Roberts, S.B.; Ma, G.; Gao, S.; Tucker, K.L.; McCrory, M.A. Relative influence of diet and physical activity on cardiovascular risk factors in urban Chinese adults. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 920–932. [Google Scholar] [CrossRef]
- Song, X.; Wang, H.; Su, C.; Wang, Z.; Du, W.; Hu, H.; Huang, F.; Zhang, J.; Jia, X.; Jiang, H.; et al. Trajectories of energy intake distribution and subsequent risk of hyperglycemia among Chinese adults: Findings from the China Health and Nutrition Survey (1997–2018). Eur. J. Nutr. 2022, 61, 1417–1427. [Google Scholar] [CrossRef]
- Dietary Reference Intakes for China. Available online: www.cnsoc.org/drpostand/ (accessed on 30 August 2025).
- Butte, N.F.; Watson, K.B.; Ridley, K.; Zakeri, I.F.; McMurray, R.G.; Pfeiffer, K.A.; Crouter, S.E.; Herrmann, S.D.; Bassett, D.R.; Long, A.; et al. A Youth Compendium of Physical Activities: Activity Codes and Metabolic Intensities. Med. Sci. Sports Exerc. 2018, 50, 246–256. [Google Scholar] [CrossRef]
- Ridley, K.; Ainsworth, B.E.; Olds, T.S. Development of a compendium of energy expenditures for youth. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 45. [Google Scholar] [CrossRef]
- Chaput, J.P.; Willumsen, J.; Bull, F.; Chou, R.; Ekelund, U.; Firth, J.; Jago, R.; Ortega, F.B.; Katzmarzyk, P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 141. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Carson, V.; Chaput, J.P.; Connor Gorber, S.; Dinh, T.; Duggan, M.; Faulkner, G.; Gray, C.E.; Gruber, R.; Janson, K.; et al. Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Appl. Physiol. Nutr. Metab. 2016, 41 (Suppl. 3), S311–S327. [Google Scholar] [CrossRef] [PubMed]
- Vilhar, E.; Golja, P.; Starc, G.; Seljak, B.K.; Kotnik, K.Z. Adequacy of energy and macronutrients intake in differently active slovenian adolescents. BMC Nutr. 2023, 9, 58. [Google Scholar] [PubMed]
- Dunton, G.F.; O’Connor, S.G.; Belcher, B.R.; Maher, J.P.; Schembre, S.M. Objectively-Measured Physical Activity and Sedentary Time are Differentially Related to Dietary Fat and Carbohydrate Intake in Children. Front. Public Health 2018, 6, 198. [Google Scholar] [CrossRef]
- Fung, H.; Yeo, B.T.T.; Chen, C.; Lo, J.C.; Chee, M.W.L.; Ong, J.L. Adherence to 24-Hour Movement Recommendations and Health Indicators in Early Adolescence: Cross-Sectional and Longitudinal Associations in the Adolescent Brain Cognitive Development Study. J. Adolesc. Health 2023, 72, 460–470. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Bala, A.; Layzell, K.; Fatima, Q.; Pushparajah, C.; Maguire, R.K.; Chen, Y.-C.; Finlayson, G.; Allgrove, J.E. Moderate-to-vigorous and light-intensity aerobic exercise yield similar effects on food reward, appetitive responses, and energy intake in physically inactive adults. Eur. J. Clin. Nutr. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Xiang, X.; Jiang, H. Associations of physical activity, screen time, sleep duration with optimal eating habits among adolescents. Complement. Ther. Clin. Pract. 2025, 58, 101933. [Google Scholar] [CrossRef] [PubMed]
- Moradell, A.; Santaliestra-Pasías, A.M.; Aparicio-Ugarriza, R.; Huybrechts, I.; Bertalanné Szommer, A.; Forsner, M.; González-Gross, M.; Kafatos, A.; Androutsos, O.; Michels, N.; et al. Are Physical Activity and Sedentary Screen Time Levels Associated With Food Consumption in European Adolescents? The HELENA Study. J. Am. Nutr. Assoc. 2023, 42, 55–66. [Google Scholar] [CrossRef]
- Votsi, I.C.; Koutelidakis, A. How Screen Time Affects Greek Schoolchildren’s Eating Habits and Functional Food Consumption?—A Cross-Sectional Study. Nutrients 2025, 17, 1311. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, E.A.; McNaughton, S.A.; Crawford, D.; Cleland, V.; Della Gatta, J.; Hatt, J.; Dollman, J.; Timperio, A. Associations between sedentary behaviours and dietary intakes among adolescents. Public Health Nutr. 2018, 21, 1115–1122. [Google Scholar] [CrossRef]
- Myszkowska-Ryciak, J.; Harton, A.; Lange, E.; Laskowski, W.; Wawrzyniak, A.; Hamulka, J.; Gajewska, D. Reduced Screen Time is Associated with Healthy Dietary Behaviors but Not Body Weight Status among Polish Adolescents. Report from the Wise Nutrition-Healthy Generation Project. Nutrients 2020, 12, 1323. [Google Scholar] [CrossRef]
- Helgadóttir, B.; Baurén, H.; Kjellenberg, K.; Ekblom, Ö.; Nyberg, G. Breakfast Habits and Associations with Fruit and Vegetable Intake, Physical Activity, Sedentary Time, and Screen Time among Swedish 13–14-Year-Old Girls and Boys. Nutrients 2021, 13, 4467. [Google Scholar] [CrossRef]
- Zeng, N.; Jiang, S.; Ringer, A.; Pacheco, C.; Zheng, C.; Ye, S. Associations Between Combinations of 24-Hour Movement Behaviors and Dietary Outcomes in Children and Adolescents: A Systematic Review. Nutrients 2024, 16, 3678. [Google Scholar] [CrossRef]
- Bo, J.; Yang, M. Dose-response relationship between physical activity and visceral fat mass: A cross-sectional study based on NHANES 2011–2018. BMC Public Health 2025, 25, 3113. [Google Scholar] [CrossRef]
- López-Bueno, R.; Andersen, L.L.; López-Bueno, L.; Suso-Martí, L.; Núñez-Cortés, R.; López-Gil, J.F.; Calatayud, J. Dose-Response Relationship Between Moderate to Vigorous Physical Activity and Risk of Back Disorders: A Large-Scale Accelerometry Study. J. Am. Med. Dir. Assoc. 2025, 26, 105875. [Google Scholar] [CrossRef] [PubMed]
- Xiong, N.; Zhang, W.; Zhang, Y.; Nie, C.; Dan, H. Association between nutrient intake and inflammatory bowel disease risk: Insights from NHANES data and dose-response analysis. Nutrients 2025, 131, 112632. [Google Scholar] [CrossRef]
- López-Bueno, R.; Yang, L.; Stamatakis, E.; Del Pozo Cruz, B. Moderate and vigorous leisure time physical activity in older adults and Alzheimer’s disease-related mortality in the USA: A dose-response, population-based study. Lancet Healthy Longev. 2023, 4, e703–e710. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Zhang, D.; Wang, F.; Wei, W.; Wang, Q.; Bao, Y.; Yu, K. Association of dietary fat intake with skeletal muscle mass and muscle strength in adults aged 20–59: NHANES 2011–2014. Front. Nutr. 2023, 10, 1325821. [Google Scholar] [CrossRef]
- Falbe, J.; Willett, W.C.; Rosner, B.; Gortmaker, S.L.; Sonneville, K.R.; Field, A.E. Longitudinal relations of television, electronic games, and digital versatile discs with changes in diet in adolescents. Am. J. Clin. Nutr. 2014, 100, 1173–1181. [Google Scholar] [CrossRef]
- Tsujiguchi, H.; Sakamoto, Y.; Hara, A.; Suzuki, K.; Miyagi, S.; Nakamura, M.; Takazawa, C.; Pham, K.O.; Nguyen, T.T.T.; Kambayashi, Y.; et al. Longitudinal relationship between screen-based sedentary behavior and nutrient intake in Japanese children: An observational epidemiological cohort study. Environ. Health Prev. Med. 2024, 29, 15. [Google Scholar] [CrossRef] [PubMed]
- Mi, S.J.; Kelly, N.R.; Brychta, R.J.; Grammer, A.C.; Jaramillo, M.; Chen, K.Y.; Fletcher, L.A.; Bernstein, S.B.; Courville, A.B.; Shank, L.M.; et al. Associations of sleep patterns with metabolic syndrome indices, body composition, and energy intake in children and adolescents. Pediatr. Obes. 2019, 14, e12507. [Google Scholar] [CrossRef] [PubMed]
- Martinez, S.M.; Tschann, J.M.; Butte, N.F.; Gregorich, S.E.; Penilla, C.; Flores, E.; Greenspan, L.C.; Pasch, L.A.; Deardorff, J. Short Sleep Duration Is Associated with Eating More Carbohydrates and Less Dietary Fat in Mexican American Children. Sleep 2017, 40, zsw057. [Google Scholar] [CrossRef]
- Petrov, M.E.; Vander Wyst, K.B.; Whisner, C.M.; Jeong, M.; Denniston, M.; Moramarco, M.W.; Gallagher, M.R.; Reifsnider, E.P. Relationship of Sleep Duration and Regularity with Dietary Intake Among Preschool-Aged Children with Obesity from Low-Income Families. J. Dev. Behav. Pediatr. 2017, 38, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Haszard, J.J.; Jackson, R.; Morrison, S.; Meredith-Jones, K.A.; Galland, B.C.; Beebe, D.W.; Elder, D.E.; Taylor, R.W. Losing sleep influences dietary intake in children: A longitudinal compositional analysis of a randomised crossover trial. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 61. [Google Scholar] [CrossRef]
- Tasali, E.; Wroblewski, K.; Kahn, E.; Kilkus, J.; Schoeller, D.A. Effect of Sleep Extension on Objectively Assessed Energy Intake Among Adults with Overweight in Real-life Settings: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 365–374. [Google Scholar] [CrossRef]
- Simon, S.L.; Higgins, J.; Melanson, E.; Wright, K.P., Jr.; Nadeau, K.J. A Model of Adolescent Sleep Health and Risk for Type 2 Diabetes. Curr. Diabetes Rep. 2021, 21, 4. [Google Scholar] [CrossRef]
Characteristics n = 3624 | Mean ± SD/n (%) |
---|---|
Age (years) | 10.9 ± 3.1 |
BMI (kg/m2) | 17.6 ± 3.2 |
Sex | |
Boys | 1809 (49.9) |
Girls | 1815 (50.1) |
Region | |
North | 1403 (38.7) |
South | 2221 (61.3) |
Place of residence | |
Urban | 1079 (29.8) |
Rural | 2545 (70.2) |
Family net income category | |
Low | 1811 (50.0) |
High | 1813 (50.0) |
PA Guideline | ST Guideline | SLP Guideline | |||||||
---|---|---|---|---|---|---|---|---|---|
Meeting (n = 2551) | Not Meeting Guideline (n = 1073) | p | Meeting (n = 2479) | Not Meeting (n = 1145) | p | Meeting (n = 2702) | Not Meeting (n = 922) | p | |
Energy (kcal/day) | 1723.0 ± 571.1 | 1567.8 ± 540.6 | <0.001 | 1686.4 ± 579.4 | 1656.8 ± 537.4 | 0.133 | 1669.4 ± 563.6 | 1699.5 ± 574.7 | 0.163 |
Carbohydrate (g/day) | 242.5 ± 91.7 | 227.3 ± 92.1 | <0.001 | 241.0 ± 94.5 | 231.4 ± 86.1 | 0.003 | 237.7 ± 92.5 | 238.9 ± 90.9 | 0.737 |
Fat (g/day) | 59.1 ± 31.2 | 50.8 ± 29.3 | <0.001 | 56.1 ± 31.5 | 57.7 ± 29.3 | 0.172 | 56.2 ± 29.9 | 58.0 ± 33.4 | 0.153 |
Protein (g/day) | 54.8 ± 21.1 | 50.0 ± 19.2 | <0.001 | 53.8 ± 21.1 | 52.6 ± 19.7 | 0.105 | 52.8 ± 20.3 | 55.2 ± 21.7 | 0.003 |
Carbohydrate (E%) | 56.6 ± 11.7 | 58.2 ± 12.0 | <0.001 | 57.5 ± 12.0 | 56.1 ± 11.3 | 0.001 | 57.2 ± 11.7 | 56.7 ± 12.2 | 0.325 |
Fat (E%) | 30.4 ± 11.2 | 28.7 ± 11.7 | <0.001 | 29.5 ± 11.6 | 30.9 ± 10.8 | 0.001 | 29.9 ± 11.2 | 30.0 ± 11.8 | 0.778 |
Protein (E%) | 12.8 ± 2.9 | 12.9 ± 3.0 | <0.001 | 12.8 ± 3.0 | 12.8 ± 2.9 | 0.824 | 12.7 ± 2.9 | 13.1 ± 3.1 | 0.005 |
Carbohydrate Intake Below DRIs | Carbohydrate Intake Meeting DRIs | Carbohydrate Intake Above DRIs | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
PA | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting the guideline | 1.15 (0.98–1.35) | 0.072 | 1.01 (0.86–1.19) | 0.820 | 0.83 (0.69–0.99) | 0.039 |
ST | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting the guideline | 0.86 (0.74–1.00) | 0.055 | 0.94 (0.81–1.09) | 0.436 | 1.32 (1.11–1.56) | 0.002 |
SLP | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting the guideline | 1.03 (0.87–1.21) | 0.693 | 0.90 (0.77–1.06) | 0.237 | 1.09 (0.91–1.31) | 0.324 |
Fat Intake Below DRIs | Fat Intake Meeting DRIs | Fat Intake Above DRIs | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
PA | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting guideline | 0.83 (0.69–1.01) | 0.066 | 0.94 (0.80–1.10) | 0.442 | 1.20 (1.02–1.40) | 0.020 |
ST | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting the guideline | 1.40 (1.15–1.70) | 0.001 | 1.04 (0.89–1.12) | 0.594 | 0.78 (0.68–0.91) | 0.001 |
SLP | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting the guideline | 1.01 (0.83–1.24) | 0.872 | 0.95 (0.81–1.12) | 0.602 | 1.03 (0.88–1.21) | 0.656 |
Protein Intake Below DRIs | Protein Intake Meeting DRIs | Protein Intake Above DRIs | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
PA | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting the guideline | 1.00 (0.81–1.23) | 0.986 | 1.05 (0.86–1.28) | 0.577 | 0.73 (0.47–1.15) | 0.186 |
ST | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting the guideline | 1.01 (0.82–1.23) | 0.919 | 1.01 (0.83–1.21) | 0.920 | 0.91 (0.59–1.40) | 0.671 |
SLP | ||||||
Not meeting the guideline | Reference | Reference | Reference | |||
Meeting the guideline | 1.17 (0.93–1.46) | 0.170 | 0.95 (0.78–1.17) | 0.681 | 0.66 (0.43–1.02) | 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhu, L.; Chen, Z.; Quan, J.; Zhang, Z. Associations Between 24-h Movement Behaviors and Macronutrient Intake Among Students Aged 6–17 Years: Insights from the China Health and Nutrition Survey. Nutrients 2025, 17, 3262. https://doi.org/10.3390/nu17203262
Chen Z, Zhu L, Chen Z, Quan J, Zhang Z. Associations Between 24-h Movement Behaviors and Macronutrient Intake Among Students Aged 6–17 Years: Insights from the China Health and Nutrition Survey. Nutrients. 2025; 17(20):3262. https://doi.org/10.3390/nu17203262
Chicago/Turabian StyleChen, Zekai, Lin Zhu, Ziqi Chen, Jialin Quan, and Zhuofan Zhang. 2025. "Associations Between 24-h Movement Behaviors and Macronutrient Intake Among Students Aged 6–17 Years: Insights from the China Health and Nutrition Survey" Nutrients 17, no. 20: 3262. https://doi.org/10.3390/nu17203262
APA StyleChen, Z., Zhu, L., Chen, Z., Quan, J., & Zhang, Z. (2025). Associations Between 24-h Movement Behaviors and Macronutrient Intake Among Students Aged 6–17 Years: Insights from the China Health and Nutrition Survey. Nutrients, 17(20), 3262. https://doi.org/10.3390/nu17203262