Research on the Protective Effects and Mechanisms of Gallic Acid Against Cognitive Impairment Induced by Chronic Sleep Deprivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Grouping and Management of Animals for the CSD Model
- 1.
- CON (no stress, daily oral vehicle administration);
- 2.
- CSD (exposed to the CSD regimen and receiving oral vehicle administration daily);
- 3.
- CSD + GBE (GBE orally given to the CSD mice at 40 mg/kg/day, positive control);
- 4.
- CSD + GA-L (CSD mice orally administered GA, 50 mg/kg/day);
- 5.
- CSD + GA-M (CSD mice orally administered GA, 100 mg/kg/day);
- 6.
- CSD + GA-H (CSD mice orally administered GA, 200 mg/kg/day).
2.3. Induction of the CSD Mouse Model
2.4. Behavioral Tests
2.4.1. Open Field Test (OFT)
2.4.2. Novel Object Recognition Test (NOR)
2.4.3. Step-Through Test (ST)
2.4.4. Morris Water Maze Test (MWM)
2.5. Sample Collection
2.6. Biochemical and Immunoassays
2.7. Western Blotting Analysis
2.8. Data Analysis
3. Results
3.1. Effects of GA on Body Weight in Mice
3.2. Effects of GA Intervention on Locomotor and Exploratory Behaviors in CSD Mice Assessed by the OFT
3.3. Effects of GA on Object Recognition in CSD Mice
3.4. Effects of GA Intervention on Learning and Memory Performance in CSD Mice Assessed by the ST
3.5. Effects of GA on Spatial Learning and Memory in CSD Mice Assessed by the MWM Test
3.6. Effects of GA on Oxidative Stress Markers in Serum and Hippocampus of CSD Mice
3.7. Effects of GA on the Nrf2/HO-1 Signaling Pathway in the Hippocampus of CSD Mice
3.8. Effects of GA on Pro-Inflammatory Cytokine Levels in Serum and Hippocampus of CSD Mice
3.9. Effects of GA on the NF-κB (p65) Signaling Pathway in the Hippocampus of CSD Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GA | Gallic Acid |
CSD | Chronic Sleep Deprivation |
OFT | Open Field Test |
NOR | Novel Object Recognition |
ST | Step-Through |
MWM | Morris Water Maze |
T-AOC | Total Antioxidant Capacity |
SOD | Superoxide Dismutase |
MDA | Malondialdehyde |
Nrf2 | Nuclear Factor Erythroid 2–Related Factor 2 |
HO-1 | Heme Oxygenase-1 |
NQO1 | NAD(P)H Quinone Dehydrogenase 1 |
NF-κB | Nuclear Factor Kappa-B |
iNOS | Inducible Nitric Oxide Synthase |
COX2 | Cyclooxygenase-2 |
IL-1β | Interleukin-1 Beta |
IL-6 | Interleukin-6 |
TNF-α | Tumor Necrosis Factor Alpha |
References
- Song, W.-X.; Wu, W.-W.; Zhao, Y.-Y.; Xu, H.-L.; Chen, G.-C.; Jin, S.-Y.; Chen, J.; Xian, S.-X.; Liang, J.-H. Evidence from a meta-analysis and systematic review reveals the global prevalence of mild cognitive impairment. Front. Aging Neurosci. 2023, 15, 1227112. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Tan, C.-C.; Zou, J.-J.; Cao, X.-P.; Tan, L. Sleep problems and risk of all-cause cognitive decline or dementia: An updated systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 236–244. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Wennberg, A.M.V.; Wu, M.N.; Rosenberg, P.B.; Spira, A.P. Sleep Disturbance, Cognitive Decline, and Dementia: A Review. Semin. Neurol. 2017, 37, 395–406. [Google Scholar] [CrossRef]
- Irwin, M.R.; Vitiello, M.V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 2019, 18, 296–306. [Google Scholar] [CrossRef]
- Behrens, A.; Anderberg, P.; Berglund, J.S. Sleep disturbance predicts worse cognitive performance in subsequent years: A longitudinal population-based cohort study. Arch. Gerontol. Geriatr. 2023, 106, 104899. [Google Scholar] [CrossRef]
- Lim, A.S.P.; Yu, L.; Kowgier, M.; Schneider, J.A.; Buchman, A.S.; Bennett, D.A. Modification of the Relationship of the Apolipoprotein E ε4 Allele to the Risk of Alzheimer Disease and Neurofibrillary Tangle Density by Sleep. JAMA Neurol. 2013, 70, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.Á.; Arcusa, R.; Xandri-Martínez, R.; Cerdá, B.; Zafrilla, P.; Marhuenda, J. Impact of Polyphenol-Rich Nutraceuticals on Cognitive Function and Neuroprotective Biomarkers: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2025, 17, 601. [Google Scholar] [CrossRef]
- Frolinger, T.; Smith, C.; Cobo, C.F.; Sims, S.; Brathwaite, J.; de Boer, S.; Huang, J.; Pasinetti, G.M. Dietary polyphenols promote resilience against sleep deprivation-induced cognitive impairment by activating protein translation. FASEB J. 2018, 32, 5390–5404. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.V.; Al-Taher, F.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Health-Improving Effects of Polyphenols on the Human Intestinal Microbiota: A Review. Int. J. Mol. Sci. 2025, 26, 1335. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Lv, Y.; Chen, B.; Wu, X.; Zou, Y.; Liang, L. Antioxidant effect of gallic acid on retinal ganglion cells in glaucoma model. Sci. Rep. 2024, 14, 14907. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Luo, S.; Hu, D.; Cao, R.; Wang, Q.; Meng, Z.; Feng, Z.; Zhou, W.; Song, W. Gallic acid inhibits neuroinflammation and reduces neonatal hypoxic-ischemic brain damages. Front. Pediatr. 2022, 10, 973256. [Google Scholar] [CrossRef]
- Sang, H.; Jin, H.; Song, P.; Xu, W.; Wang, F. Gallic acid exerts antibiofilm activity by inhibiting methicillin-resistant Staphylococcus aureus adhesion. Sci. Rep. 2024, 14, 17220. [Google Scholar] [CrossRef]
- Alikhanzade, M.; Khosravi, M.; Hosseini, M.; Rajabian, A. Gallic acid enhances memory, learning and reduces neuroinflammation in a rat model of scopolamine-induced cholinergic dysfunction. Inflammopharmacology 2025, 33, 2095–2108. [Google Scholar] [CrossRef]
- Dastan, M.; Rajaei, Z.; Sharifi, M.; Salehi, H. Gallic acid ameliorates LPS-induced memory decline by modulating NF-κB, TNF-α, and Caspase 3 gene expression and attenuating oxidative stress and neuronal loss in the rat hippocampus. Metab. Brain Dis. 2024, 40, 12. [Google Scholar] [CrossRef]
- Mansouri, M.T.; Farbood, Y.; Sameri, M.J.; Sarkaki, A.; Naghizadeh, B.; Rafeirad, M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem. 2013, 138, 1028–1033. [Google Scholar] [CrossRef]
- Kandiah, N.; Chan, Y.F.; Chen, C.; Dasig, D.; Dominguez, J.; Han, S.H.; Jia, J.; Kim, S.; Limpawattana, P.; Ng, L.L.; et al. Strategies for the use of Ginkgo biloba extract, EGb 761, in the treatment and management of mild cognitive impairment in Asia: Expert consensus. CNS Neurosci. Ther. 2020, 27, 149–162. [Google Scholar] [CrossRef]
- Rickard, N.S.; Kowadlo, N.; Gibbs, M.E. Effect of the Ginkgo biloba extract, EGb 761, on memory formation in day-old chicks. Pharmacol. Biochem. Behav. 2001, 69, 351–358. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, D.Y.; Liu, Y.P.; Sun, J.; Fan, B.; Wang, F.Z.; Lu, C. The protective effects and mechanisms of Polygonatum sibiricum polysaccharides in chronic stress-induced neural damage. J. Ethnopharmacol. 2025, 352, 120219. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhao, L.; Yue, C.; Qian, M.; Xie, M. Changes in gonadal function at different stages of chronic restraint stress-induced depression animals. Physiol. Behav. 2019, 210, 112656. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Shi, Z.; Dong, L.; Lv, J.; Xu, P.; Li, Y.; Qu, L.; Liu, X. Exploring the effect of ginsenoside Rh1 in a sleep deprivation-induced mouse memory impairment model. Phytother. Res. 2017, 31, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Gao, R.; Lv, J.; Chen, Y.; Li, S.; Zhang, L.; Zhang, N.; Wang, Y.; Fan, B.; Liu, X.; et al. Neuroprotective effects of soy isoflavones on chronic ethanol-induced dementia in male ICR mice. Food Funct. 2020, 11, 10011–10021. [Google Scholar] [CrossRef]
- Arora, S.; Dharavath, R.; Bansal, Y.; Bishnoi, M.; Kondepudi, K.K.; Chopra, K. Neurobehavioral alterations in a mouse model of chronic partial sleep deprivation. Metab. Brain Dis. 2021, 36, 1315–1330. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Y.; Wang, D.; Zhang, L.; Lv, J.; Jiang, N.; Fan, B.; Liu, X.; Wang, F. Neuroprotective Effects of Soy Isoflavones on Scopolamine-Induced Amnesia in Mice. Nutrients 2018, 10, 853. [Google Scholar] [CrossRef]
- Colavito, V.; Fabene, P.F.; Grassi Zucconi, G.; Pifferi, F.; Lamberty, Y.; Bentivoglio, M.; Bertini, G. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front. Syst. Neurosci. 2013, 7, 106. [Google Scholar] [CrossRef]
- Irwin, M.R.; Opp, M.R. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology 2017, 42, 129–155. [Google Scholar] [CrossRef]
- Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress 2017, 6, 78–93. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. U-Shaped Dose-Responses in Biology, Toxicology, and Public Health. Annu. Rev. Public Health 2001, 22, 15–33. [Google Scholar] [CrossRef]
- Alzoubi, K.H.; Al-Jamal, F.F.; Mahasneh, A.F. Cerebrolysin prevents sleep deprivation induced memory impairment and oxidative stress. Physiol. Behav. 2020, 217, 112823. [Google Scholar] [CrossRef]
- Denninger, J.K.; Smith, B.M.; Kirby, E.D. Novel object recognition and object location behavioral testing in mice on a budget. J. Vis. Exp. 2018, 141, e58593. [Google Scholar] [CrossRef] [PubMed]
- Akkerman, S.; Blokland, A.; Reneerkens, O.; Goethem, N.P.v.; Bollen, E.; Gijselaers, H.J.M.; Lieben, C.K.J.; Steinbusch, H.W.M.; Prickaerts, J. Object recognition testing: Methodological considerations on exploration and discrimination measures. Behav. Brain Res. 2012, 232, 335–347. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, S.M.; Han, I.O. Chronic rapid eye movement sleep deprivation aggravates the pathogenesis of Alzheimer’s disease by decreasing brain O-GlcNAc cycling in mice. J. Neuroinflamm. 2024, 21, 180. [Google Scholar] [CrossRef]
- Kim, S.-M.; Zhang, S.; Park, J.; Sung, H.J.; Tran, T.-D.T.; Chung, C.; Han, I.-O. REM Sleep Deprivation Impairs Learning and Memory by Decreasing Brain O-GlcNAc Cycling in Mouse. Neurotherapeutics 2021, 18, 2504–2517. [Google Scholar] [CrossRef]
- Sawangjit, A.; Harkotte, M.; Oyanedel, C.N.; Niethard, N.; Born, J.; Inostroza, M. Two distinct ways to form long-term object recognition memory during sleep and wakefulness. Proc. Natl. Acad. Sci. USA 2022, 119, e2203165119. [Google Scholar] [CrossRef] [PubMed]
- Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Olayiwola, G. Caffeine/sleep-deprivation interaction in mice produces complex memory effects. Ann. Neurosci. 2015, 22, 139–149. [Google Scholar] [CrossRef]
- Othman, M.Z.; Hassan, Z.; Has, A.T.C. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp. Anim. 2021, 71, 264–280. [Google Scholar] [CrossRef] [PubMed]
- Konakanchi, S.; Raavi, V.; Ml, H.K.; Shankar Ms, V. Impact of chronic sleep deprivation and sleep recovery on hippocampal oligodendrocytes, anxiety-like behavior, spatial learning and memory of rats. Brain Res. Bull. 2023, 193, 59–71. [Google Scholar] [CrossRef]
- Yang, R.-H.; Hu, S.-J.; Wang, Y.; Zhang, W.-B.; Luo, W.-J.; Chen, J.-Y. Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus. Brain Res. 2008, 1230, 224–232. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, G.H.L.; Sheng, L.-T.; Feng, L.; Yuan, J.-M.; Chee, M.; Pan, A.; Koh, W.-P. Prospective associations between change in sleep duration and cognitive impairment: Findings from the Singapore Chinese Health Study. J. Affect. Disord. 2021, 281, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ballesio, A.; Aquino, M.R.J.V.; Kyle, S.D.; Ferlazzo, F.; Lombardo, C. Executive Functions in Insomnia Disorder: A Systematic Review and Exploratory Meta-Analysis. Front. Psychol. 2019, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Villafuerte, G.; Miguel-Puga, A.; Murillo Rodríguez, E.; Machado, S.; Manjarrez, E.; Arias-Carrión, O. Sleep Deprivation and Oxidative Stress in Animal Models: A Systematic Review. Oxidative Med. Cell. Longev. 2015, 2015, 234952. [Google Scholar] [CrossRef]
- Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 2004, 58, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wei, Z.; Jiang, N.; Chen, Y.; Wang, Y.; Li, S.; Wang, Q.; Fan, B.; Liu, X.; Wang, F. Soy isoflavones protects against cognitive deficits induced by chronic sleep deprivation via alleviating oxidative stress and suppressing neuroinflammation. Phytother. Res. 2022, 36, 2072–2080. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Y.; Liang, Z.; Lu, Y.; Wang, J.; Xing, F.; Mao, Y.; Wei, X.; Wang, Z.; Yang, J.; et al. A Narrative Review of the Reciprocal Relationship Between Sleep Deprivation and Chronic Pain: The Role of Oxidative Stress. J. Pain Res. 2024, 17, 1785–1792. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Ji, L.; Cirelli, C. Sleep Deprivation and Cellular Responses to Oxidative Stress. Sleep 2004, 27, 27–35. [Google Scholar] [CrossRef]
- Li, L.; Wu, L.; Jiang, T.; Liang, T.; Yang, L.; Li, Y.; Gao, H.; Zhang, J.; Xie, X.; Wu, Q. Lactiplantibacillus plantarum 124 Modulates Sleep Deprivation-Associated Markers of Intestinal Barrier Dysfunction in Mice in Conjunction with the Regulation of Gut Microbiota. Nutrients 2023, 15, 4002. [Google Scholar] [CrossRef]
- Navarro, E.; Esteras, N. Multitarget Effects of Nrf2 Signalling in the Brain: Common and Specific Functions in Different Cell Types. Antioxidants 2024, 13, 1502. [Google Scholar] [CrossRef]
- Davinelli, S.; Medoro, A.; Savino, R.; Scapagnini, G. Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cell. Mol. Neurobiol. 2024, 44, 52. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, S.; Singh, H.; Kaur, T.; Kaur, G. Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol. Cell. Biochem. 2018, 449, 63–72. [Google Scholar] [CrossRef]
- Zhu, B.; Dong, Y.; Xu, Z.; Gompf, H.S.; Ward, S.A.; Xue, Z.; Miao, C.; Zhang, Y.; Chamberlin, N.L.; Xie, Z. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol. Dis. 2012, 48, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, A.M.; Lokesh, P.; Hediyal, T.A.; Kalyan, M.; Vichitra, C.; Essa, M.M.; Qoronfleh, M.W.; Pandi-Perumal, S.R.; Chidambaram, S.B. Impact of Sleep Deprivation on Major Neuroinflammatory Signal Transduction Pathways. Sleep Vigil. 2022, 6, 101–114. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Cao, D.; Zhao, Y.; Wang, Y.; Wei, D.; Yan, M.; Su, S.; Pan, H.; Wang, Q. Effects of sleep deprivation on anxiety-depressive-like behavior and neuroinflammation. Brain Res. 2024, 1836, 148916. [Google Scholar] [CrossRef]
- Chen, P.; Ban, W.; Wang, W.; You, Y.; Yang, Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Amp. Sleep 2023, 5, 276–294. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Kim, Y.; Karpova, S.A.; McCarley, R.W.; Strecker, R.E.; Gerashchenko, D. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci. Lett. 2014, 580, 27–31. [Google Scholar] [CrossRef]
- Zhu, L.; Gu, P.; Shen, H. Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis. Int. Immunopharmacol. 2019, 67, 129–137. [Google Scholar] [CrossRef]
- Arinno, A.; Sukmak, P.; Kulworasreth, P.; Sricharunrat, T.; Vaddhanaphuti, C.S.; Pongkorpsakol, P. Gallic acid serves as an effective therapeutic agent of inflammatory bowel disease: Pharmacological impacts on tight junction-dependent intestinal permeability in vivo and its related intracellular signaling. Curr. Res. Pharmacol. Drug Discov. 2025, 8, 100223. [Google Scholar] [CrossRef]
Group | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|
CON | 60.05 ± 0.02 | 53.05 ± 0.16 | 45 ± 0.13 | 35.65 ± 0.38 | 22.2 ± 0.54 |
CSD | 60.05 ± 0.02 | 56.2 ± 1.7 | 45 ± 0.85 | 48.8 ± 0.45 ## | 44.05 ± 0.6 #### |
CSD + GBE | 60.05 ± 0.02 | 57.05 ± 1.32 | 36.85 ± 1.32 | 34.6 ± 0.36 ** | 24.25 ± 0.29 **** |
CSD + GA-L (50 mg/kg) | 60.1 ± 0 | 55.8 ± 1.88 | 51.2 ± 0.54 | 38.5 ± 0.89 * | 37.4 ± 0.67 |
CSD + GA-M (100 mg/kg) | 60.05 ± 0.02 | 53.95 ± 2.71 | 48.45 ± 0.69 | 40.1 ± 0.18 | 17.45 ± 0.38 **** |
CSD + GA-H (200 mg/kg) | 60.05 ± 0.02 | 56.7 ± 1.48 | 45.55 ± 0.47 | 33.75 ± 1.68 *** | 20.2 ± 2.41 **** |
Group | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|
CON | 26.85 ± 0.34 | 16.3 ± 0.27 | 16.7 ± 0.4 | 21.15 ± 0.2 |
CSD | 18.15 ± 0.29 | 25.7 ± 1.25 | 34.65 ± 1.81 ## | 30.1 ± 1.65 |
CSD + GBE | 37.45 ± 3.24 ** | 18.65 ± 0.87 | 18.55 ± 0.07 ** | 23.7 ± 0.45 |
CSD + GA-L (50 mg/kg) | 27.45 ± 1.99 | 21 ± 0.45 | 20.25 ± 0.07 * | 21 ± 0.27 |
CSD + GA-M (100 mg/kg) | 50.3 ± 3.67 **** | 19.8 ± 0.4 | 27.7 ± 0.76 | 27.05 ± 0.74 |
CSD + GA-H (200 mg/kg) | 23 ± 1.03 | 20.15 ± 1.32 | 15.3 ± 0.27 ** | 20.6 ± 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Cui, J.; Sun, J.; Wang, F.; Fan, B.; Lu, C. Research on the Protective Effects and Mechanisms of Gallic Acid Against Cognitive Impairment Induced by Chronic Sleep Deprivation. Nutrients 2025, 17, 3204. https://doi.org/10.3390/nu17203204
Zhang X, Cui J, Sun J, Wang F, Fan B, Lu C. Research on the Protective Effects and Mechanisms of Gallic Acid Against Cognitive Impairment Induced by Chronic Sleep Deprivation. Nutrients. 2025; 17(20):3204. https://doi.org/10.3390/nu17203204
Chicago/Turabian StyleZhang, Xiangfei, Jingwen Cui, Jing Sun, Fengzhong Wang, Bei Fan, and Cong Lu. 2025. "Research on the Protective Effects and Mechanisms of Gallic Acid Against Cognitive Impairment Induced by Chronic Sleep Deprivation" Nutrients 17, no. 20: 3204. https://doi.org/10.3390/nu17203204
APA StyleZhang, X., Cui, J., Sun, J., Wang, F., Fan, B., & Lu, C. (2025). Research on the Protective Effects and Mechanisms of Gallic Acid Against Cognitive Impairment Induced by Chronic Sleep Deprivation. Nutrients, 17(20), 3204. https://doi.org/10.3390/nu17203204