Integrated Behavioral Profiles of Physical Activity and Dietary Intake in Young Adults and Their Associations with Lower Limb Injury Occurrence
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics
2.3. Sample Size
2.4. Participants
2.5. Data Collection
2.6. Anthropometric and Body Composition Measurements
2.7. Questionnaire Measurements
2.7.1. Physical Activity Questionnaire
2.7.2. Dietary Intake Questionnaire
2.7.3. Recording of Musculoskeletal Injuries
2.8. Handling and Imputation of Missing Data
2.9. Statistics
3. Results
3.1. Basic Descriptive Characteristics of the Low- and High-Distress Groups
3.2. Identifiying Latent Profiles of the Dietary and Physical Activity Behaviors
3.3. Injuries Prevalence Across the Profiles in Best Fitted Model
3.4. Sex Effect in Injury Occurence in Relation to Profile of Dietary and Physical Activity Behaviors
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carney, C.; Mutrie, N.; McNeish, S. The impact of transition from university on physically active students. Int. J. Health Promot. Educ. 2000, 38, 113–118. [Google Scholar] [CrossRef]
- McKay, D.; Broderick, C.; Steinbeck, K. The adolescent athlete: A developmental approach to injury risk. Pediatr. Exerc. Sci. 2016, 28, 488–500. [Google Scholar] [CrossRef]
- Hootman, J.M.; Macera, C.A.; Ainsworth, B.E.; Addy, C.L.; Martin, M.; Blair, S.N. Epidemiology of musculoskeletal injuries among sedentary and physically active adults. Med. Sci. Sports Exerc. 2002, 34, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Parry, G.N.; Williams, S.; McKay, C.D.; Johnson, D.J.; Bergeron, M.F.; Cumming, S.P. Associations between growth, maturation and injury in youth athletes engaged in elite pathways: A scoping review. Br. J. Sports Med. 2024, 58, 1001–1010. [Google Scholar] [CrossRef]
- Haraldsdottir, K.; Watson, A.M. Psychosocial impacts of sports-related injuries in adolescent athletes. Curr. Sports Med. Rep. 2021, 20, 104–108. [Google Scholar] [CrossRef]
- Koehler, K.; Drenowatz, C. Integrated role of nutrition and physical activity for lifelong health. Nutrients 2019, 11, 1437. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.; Drenowatz, C. Understanding the interaction between physical activity and diet for the promotion of health and fitness. Front. Nutr. 2022, 8, 835535. [Google Scholar] [CrossRef]
- Hershey, M.S.; Martínez-González, M.Á.; Álvarez-Álvarez, I.; Martínez Hernández, J.A.; Ruiz-Canela, M. The Mediterranean diet and physical activity: Better together than apart for the prevention of premature mortality. Br. J. Nutr. 2022, 128, 1413–1424. [Google Scholar] [CrossRef]
- Baranowski, T. Why combine diet and physical activity in the same international research society? Int. J. Behav. Nutr. Phys. Act. 2004, 1, 2. [Google Scholar] [CrossRef]
- D’Souza, N.J.; Downing, K.; Zheng, M.; Abbott, G.; Lioret, S.; Campbell, K.J.; Hesketh, K.D. Cross-sectional and prospective associations between behavioural patterns and adiposity in school-aged children. Public Health Nutr. 2023, 26, 1840–1849. [Google Scholar] [CrossRef]
- Moyer, V.A.; U.S. Preventive Services Task Force. Behavioral counseling interventions to promote a healthful diet and physical activity for cardiovascular disease prevention in adults: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2012, 157, 367–371. [Google Scholar] [CrossRef]
- Zare, M.J.; Masoumi, S.J.; Zare, M. The association between energy-adjusted dietary inflammatory index and physical activity with sleep quality: A cross-sectional study. BMC Nutr. 2024, 10, 26. [Google Scholar] [CrossRef]
- Hertzog, C.; Kramer, A.F.; Wilson, R.S.; Lindenberger, U. Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest 2008, 9, 1–65. [Google Scholar] [CrossRef]
- Emery, C.A.; Black, A.M.; Kolstad, A.; Martinez, G.; Nettel-Aguirre, A.; Engebretsen, L.; Johnston, K.; Kissick, J.; Maddocks, D.; Tator, C.; et al. What strategies can be used to effectively reduce the risk of concussion in sport? A systematic review. Br. J. Sports Med. 2017, 51, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Alcock, R.; Hislop, M.; Vidgen, H.A.; Desbrow, B. Youth and adolescent athlete musculoskeletal health: Dietary and nutritional strategies to optimise injury prevention and support recovery. J. Funct. Morphol. Kinesiol. 2024, 9, 221. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, N.F.N.; Meeuwisse, W.H.; Mendonça, L.D.; Nettel-Aguirre, A.; Ocarino, J.M.; Fonseca, S.T. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition—Narrative review and new concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef]
- Ottevaere, C.; Huybrechts, I.; Béghin, L.; Benser, J.; De Bourdeaudhuij, I.; Cuenca-Garcia, M.; Dallongeville, J.; Zaccaria, M.; Gottrand, F.; Kersting, M.; et al. Clustering patterns of physical activity, sedentary and dietary behavior among European adolescents: The HELENA study. BMC Public Health 2011, 11, 328. [Google Scholar] [CrossRef]
- Pearson, N.; Atkin, A.J.; Biddle, S.J.; Gorely, T.; Edwardson, C. Patterns of adolescent physical activity and dietary behaviours. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 45. [Google Scholar] [CrossRef]
- Verhagen, E.A.L.M.; van Stralen, M.M.; van Mechelen, W. Behaviour, the key factor for sports injury prevention. Sports Med. 2010, 40, 899–906. [Google Scholar] [CrossRef]
- Colebatch, E.A.; Fuller, J.T.; Mantzioris, E.; Hill, A.M. Diet, risk of disordered eating and running-related injury in adult distance runners: A systematic review and meta-analysis of prospective cohort studies. J. Sci. Med. Sport 2025, 28, 542–552. [Google Scholar] [CrossRef]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 4. [Google Scholar] [CrossRef]
- Miranda, V.P.N.; Coimbra, D.R.; Bastos, R.R.; Miranda Júnior, M.V.; Amorim, P.R.d.S. Use of latent class analysis as a method of assessing the physical activity level, sedentary behavior and nutritional habit in the adolescents’ lifestyle: A scoping review. PLoS ONE 2021, 16, e0256069. [Google Scholar] [CrossRef]
- Patel, A.S.; Moake, T.R. Health behavior profiles: A person-centered approach to employee health. Soc. Sci. J. 2023, online ahead of print, 1–14. [Google Scholar] [CrossRef]
- Vaughan, C.A.; Ghosh-Dastidar, M.; Dubowitz, T. Attitudes and barriers to healthy diet and physical activity: A latent profile analysis. Health Educ. Behav. 2017, 45, 381–393. [Google Scholar] [CrossRef]
- Domaradzki, J. Congruence between physical activity patterns and dietary patterns inferred from analysis of sex differences in lifestyle behaviors of late adolescents from Poland: Cophylogenetic approach. Nutrients 2023, 15, 608. [Google Scholar] [CrossRef]
- Domaradzki, J.; Słowińska-Lisowska, M.R. Exploring the co-structure of physical activity and dietary patterns in relation to emotional well-being: A tanglegram-based multivariate approach. Nutrients 2025, 17, 2307. [Google Scholar] [CrossRef]
- Dalmaijer, E.S.; Nord, C.L.; Astle, D.E. Statistical power for cluster analysis. BMC Bioinform. 2022, 23, 205. [Google Scholar] [CrossRef]
- Mundfrom, D.J.; Shaw, D.G.; Ke, T.L. Minimum sample size recommendations for conducting factor analyses. Int. J. Test. 2005, 5, 159–168. [Google Scholar] [CrossRef]
- Arrindell, W.A.; van der Ende, J. An empirical test of the utility of the observer-to-variables ratio in factor and components analysis. Appl. Psychol. Meas. 1985, 9, 165–178. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D.; Consort Group. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- IPAQ Research Committee. Guidelines for the Data Processing and Analysis of the International Physical Activity Questionnaire. 2005. Available online: https://sites.google.com/view/ipaq/score (accessed on 5 September 2025).
- Questionnaire of Eating Behaviour. 2025. Available online: https://docs.google.com/forms/d/e/1FAIpQLSdEKO_zdm_kGlom2Bq5Hxqun1lNJtyhcT2HHXBRj1dYah3P6w/viewform (accessed on 3 September 2025).
- Wądołowska, L.; Krusińska, B. Procedura Opracowania Danych Żywieniowych z Kwestionariusza QEB. 2022. Available online: http://www.uwm.edu.pl/edu/lidiawadolowska (accessed on 3 September 2022).
- Kozlenia, D.; Domaradzki, J. Prediction and injury risk based on movement patterns and flexibility in a 6-month prospective study among physically active adults. PeerJ 2021, 9, e11399. [Google Scholar] [CrossRef]
- Heymans, M.W.; Eekhout, I. Applied Missing Data Analysis with SPSS and R(Studio). 2019. Available online: https://bookdown.org/mwheymans/bookmi/ (accessed on 15 November 2022).
- Austin, P.C.; White, I.R.; Lee, D.S.; van Buuren, S. Missing data in clinical research: A tutorial on multiple imputation. Can. J. Cardiol. 2021, 37, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Raymaekers, J.; Rousseeuw, P.J. Transforming variables to central normality. Mach. Learn. 2021, 110, 4953–4975. [Google Scholar] [CrossRef]
- Gao, Y.; Cai, W.; Gao, L.; Wang, J.; Liang, J.; Kwok, H.; Jia, C.; Li, L. Physical activity-related injuries among university students: A multicentre cross-sectional study in China. BMJ Open 2018, 8, e021845. [Google Scholar] [CrossRef]
- Cai, W.; Tang, D.; Gao, Y.; Yang, W.; Chen, S.; Gao, L.; Jia, C.; Li, L. Characteristics and associated factors of physical activity-related injuries among university students in southern China. Sci. Rep. 2020, 10, 4174. [Google Scholar] [CrossRef]
- Mello, G.T.d.; Lopes, M.V.V.; Minatto, G.; Costa, R.M.d.; Matias, T.S.; Guerra, P.H.; Filho, V.C.B.; Silva, K.S. Clustering of physical activity, diet and sedentary behavior among youth from low-, middle-, and high-income countries: A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 10924. [Google Scholar] [CrossRef]
- Matias, T.S.; Silva, K.S.; Silva, J.A.; de Mello, G.T.; Salmon, J. Clustering of diet, physical activity and sedentary behavior among Brazilian adolescents in the national school-based health survey (PeNSE 2015). BMC Public Health 2018, 18, 1283. [Google Scholar] [CrossRef]
- Russell, K.; Davison, C.; King, N.; Pike, I.; Pickett, W. Understanding clusters of risk factors across different environmental and social contexts for the prediction of injuries among Canadian youth. Injury 2016, 47, 1143–1150. [Google Scholar] [CrossRef]
- Tang, D.; Cai, W.; Gao, Y.; Hong, H.; Liu, Y.; Sun, Y.; Luo, Y.; Zhang, H. Physical activity-related injuries of college students in southern China: A 1-year prospective study. Sci. Rep. 2020, 10, 8034. [Google Scholar] [CrossRef] [PubMed]
- Fallowfield, J.L.; Leiper, R.G.; Shaw, A.M.; Whittamore, D.R.; Lanham-New, S.A.; Allsopp, A.J.; Kluzek, S.; Arden, N.K.; Sanchez-Santos, M.T. Risk of injury in Royal Air Force training: Does sex really matter? Mil. Med. 2020, 185, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Hardaker, N.J.; Hume, P.A.; Sims, S.T. Differences in injury profiles between female and male athletes across the participant classification framework: A systematic review and meta-analysis. Sports Med. 2024, 54, 1595–1665. [Google Scholar] [CrossRef]
- Ristolainen, L.; Heinonen, A.; Waller, B.; Kujala, U.M.; Kettunen, J.A. Gender differences in sport injury risk and types of injuries: A retrospective twelve-month study on cross-country skiers, swimmers, long-distance runners and soccer players. J. Sports Sci. Med. 2009, 8, 443–451. [Google Scholar]
- Pfeifer, C.E.; Beattie, P.F.; Sacko, R.S.; Hand, A. Risk factors associated with non-contact anterior cruciate ligament injury: A systematic review. Int. J. Sports Phys. Ther. 2018, 13, 575–587. [Google Scholar] [CrossRef]
- Smith, H.C.; Vacek, P.; Johnson, R.J.; Slauterbeck, J.R.; Hashemi, J.; Shultz, S.; Beynnon, B.D. Risk factors for anterior cruciate ligament injury: A review of the literature—Part 1: Neuromuscular and anatomic risk. Sports Health 2012, 4, 69–78. [Google Scholar] [CrossRef]
- Zumwalt, M. Musculoskeletal injury and the exercising female. In The Exercising Female: Science and Its Application; Forsyth, J., Roberts, C.-M., Eds.; Routledge: London, UK, 2018; pp. 142–159. [Google Scholar]
- Khoshro, S.; Abbasalizad Farhangi, M. Major dietary patterns, exercise addiction, and eating disorders among a sample of physically active young adults. Nutr. Metab. Insights 2024, 17, 11786388241258938. [Google Scholar] [CrossRef]
- Sulsky, S.I.; Bulzacchelli, M.T.; Zhu, L.; Karlsson, L.; McKinnon, C.J.; Hill, O.T.; Kardouni, J.R. Risk Factors for Training-Related Injuries During U.S. Army Basic Combat Training. Mil. Med. 2018, 183, 55–65. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.S. Risk compensation, motivation, injuries, and biomechanics in competitive sport. Br. J. Sports Med. 2004, 38, 522–525. [Google Scholar] [CrossRef]
- Miranda, V.P.N.; dos Santos Amorim, P.R.; Bastos, R.R.; Canabrava, K.L.R.; Júnior, M.V.M.; Faria, F.R.; do Carmo Castro Franceschini, S.; do Carmo Gouveia Peluzio, M.; Priore, S.E. Association of Lifestyle and Body Composition on Risk Factors of Cardiometabolic Diseases and Biomarkers in Female Adolescents. Mediat. Inflamm. 2020, 2020, 9170640. [Google Scholar] [CrossRef] [PubMed]
- Bennasar-Veny, M.; Yañez, A.M.; Pericas, J.; Ballester, L.; Fernandez-Dominguez, J.C.; Tauler, P.; Aguilo, A. Cluster analysis of health-related lifestyles in university students. Int. J. Environ. Res. Public Health 2020, 17, 1776. [Google Scholar] [CrossRef]
- Medina-Vadora, M.M.; Ledesma, R.; Varela, S.; Pereyra, F.; Carzoglio, J.; Nieto, C.; Lorenzo, A.; Carballo, M.A. A clustering study of dietary patterns and physical activity among workers of the Uruguayan state electrical company. Nutrients 2024, 16, 304. [Google Scholar] [CrossRef] [PubMed]
- Alosaimi, N.; Alhazmi, A.; Aljuhani, O.; Rukieah, M.; Almalki, M.; Althumiri, N.; Almigbal, T.H.; BinDhim, N.F. Clustering of diet, physical activity and sedentary behaviour and related physical and mental health outcomes: A systematic review. BMC Public Health 2023, 23, 1572. [Google Scholar] [CrossRef] [PubMed]
Males (n = 91) | Females (n = 118) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | 95% CI | SD | Mean | 95% CI | SD | t | p | |||
Lower | Upper | Lower | Upper | ||||||||
age | 20.5 | 20.2 | 20.7 | 1.0 | 20.3 | 20.2 | 20.5 | 0.8 | 0.79 | 0.429 | |
Body height [cm] | 183.6 | 182.2 | 185.1 | 7.1 | 168.7 | 167.8 | 169.7 | 5.3 | 17.41 | p < 0.001 | |
Anthropometry | Body weight [kg] | 79.2 | 77.1 | 81.3 | 10.0 | 61.1 | 59.6 | 62.7 | 8.4 | 14.17 | p < 0.001 |
BMI [kg/m2] | 23.6 | 23.1 | 24.1 | 2.4 | 21.6 | 21.1 | 22.1 | 2.7 | −12.75 | p < 0.001 | |
Fat mass [%] | 15.3 | 14.4 | 16.2 | 4.2 | 23.9 | 23.0 | 24.9 | 5.3 | 5.45 | p < 0.001 | |
Walking intensity | 0.0 | −0.2 | 0.2 | 1.0 | 0.0 | −0.2 | 0.2 | 1.0 | 0.02 | 0.986 | |
Moderate intensity | 0.2 | 0.0 | 0.4 | 1.0 | −0.2 | −0.3 | 0.0 | 1.0 | 2.59 | 0.010 | |
IPAQ | Vigorous intensity | 0.1 | −0.2 | 0.3 | 1.0 | 0.0 | −0.2 | 0.1 | 1.0 | 0.66 | 0.510 |
Sitting average | −0.2 | −0.4 | 0.0 | 0.9 | 0.2 | 0.0 | 0.4 | 1.0 | −2.79 | 0.006 | |
Wholebread | −0.1 | −0.3 | 0.1 | 0.8 | 0.1 | −0.1 | 0.3 | 1.1 | −1.49 | 0.137 | |
Milk | 0.0 | −0.2 | 0.2 | 1.1 | −0.1 | −0.2 | 0.1 | 0.9 | 0.58 | 0.566 | |
Fermented milk | 0.0 | −0.2 | 0.2 | 1.0 | 0.0 | −0.2 | 0.2 | 1.0 | −0.20 | 0.839 | |
Curd cheese | 0.2 | −0.1 | 0.4 | 1.1 | −0.1 | −0.3 | 0.0 | 0.8 | 2.43 | 0.016 | |
Fish | 0.1 | −0.2 | 0.3 | 1.2 | −0.1 | −0.2 | 0.1 | 0.8 | 1.05 | 0.297 | |
QEB | Legumes | 0.0 | −0.2 | 0.3 | 1.2 | 0.0 | −0.2 | 0.1 | 0.9 | 0.25 | 0.806 |
Fruits | −0.1 | −0.3 | 0.1 | 0.9 | 0.1 | −0.1 | 0.3 | 1.1 | −1.71 | 0.089 | |
Vegetables | −0.1 | −0.3 | 0.1 | 1.0 | 0.0 | −0.1 | 0.2 | 1.0 | −0.86 | 0.393 | |
Fastfood | 0.0 | −0.2 | 0.2 | 1.0 | 0.0 | −0.2 | 0.2 | 1.0 | −0.17 | 0.865 | |
Fried meals | 0.1 | −0.1 | 0.2 | 0.9 | 0.0 | −0.2 | 0.2 | 1.1 | 0.17 | 0.864 | |
Yellow cheese | −0.1 | −0.3 | 0.1 | 0.9 | 0.1 | −0.1 | 0.3 | 1.0 | −1.40 | 0.163 | |
Sweets | −0.1 | −0.3 | 0.1 | 0.8 | 0.1 | −0.1 | 0.3 | 1.1 | −1.56 | 0.119 | |
Canned meals | 0.0 | −0.2 | 0.2 | 1.0 | 0.1 | −0.1 | 0.2 | 1.0 | −0.59 | 0.559 | |
Sweetened beverages | 0.0 | −0.2 | 0.1 | 0.9 | 0.0 | −0.2 | 0.2 | 1.1 | −0.63 | 0.532 | |
Energetic drinks | −0.1 | −0.3 | 0.1 | 0.8 | 0.0 | −0.2 | 0.2 | 1.1 | −0.85 | 0.395 | |
Alcoholic drinks | −0.1 | −0.2 | 0.1 | 0.8 | 0.0 | −0.2 | 0.3 | 1.1 | −0.78 | 0.438 |
Model | Number of Classes | BIC | Entropy |
---|---|---|---|
2-class | 2 | 11,464.88 | 1.000 |
3-class | 3 | 11,472.92 | 0.942 |
4-class | 4 | 11,332.12 | 0.931 |
5-class | 5 | 11,333.59 | 0.931 |
6-class | 6 | 11,362.52 | 0.933 |
Profile | Variable (Component) | z-Mean |
---|---|---|
1 | Vegetables | +1.05 |
Fruits | +0.82 | |
Vigorous PA | +0.75 | |
Sweets | −0.64 | |
Energy drinks | −0.55 | |
2 | Alcoholic drinks | +0.98 |
Fast food | +0.77 | |
Legumes | −0.61 | |
Vegetables | −0.59 | |
Fruits | −0.52 | |
3 | Sitting time | +1.12 |
Sweetened beverages | +0.83 | |
Fried meals | +0.71 | |
Milk | −0.65 | |
Walking | −0.58 | |
4 | Vegetables | +1.20 |
Legumes | +0.92 | |
Fermented milk | +0.81 | |
Fast food | −0.73 | |
Sweetened beverages | −0.62 |
Profile | Injury | |
---|---|---|
0 | 1 | |
1 | 8 (47.1%) | 9 (52.9%) |
2 | 19 (55.9%) | 15 (44.1%) |
3 | 41 (39.4%) | 63 (60.6%) |
4 | 18 (33.3%) | 36 (66.7%) |
Term | Std. Error | Statistic | p-Value | OR | −95% CI | 95% CI |
---|---|---|---|---|---|---|
profile: Profile 2 | 0.604 | −0.503 | 0.615 | 0.738 | 0.222 | 2.42 |
profile: Profile 3 | 0.533 | 0.514 | 0.607 | 1.31 | 0.453 | 3.76 |
profile: Profile 4 | 0.572 | 1.01 | 0.311 | 1.79 | 0.574 | 5.54 |
sex: m | 0.295 | 2.24 | 0.0248 | 1.94 | 1.09 | 3.48 |
Term | Std. Error | Statistic | p-Value | OR | −95% CI | 95% CI |
---|---|---|---|---|---|---|
Profile 2 (Female vs. Profile 1) | 0.763 | −0.579 | 0.563 | 0.643 | 0.139 | 2.920 |
Profile 3 (Female vs. Profile 1) | 0.689 | 0.108 | 0.914 | 1.080 | 0.271 | 4.290 |
Profile 4 (Female vs. Profile 1) | 0.732 | 0.628 | 0.530 | 1.580 | 0.368 | 6.870 |
Sex: Male (vs. Female, Profile 1) | 0.992 | 0.290 | 0.772 | 1.330 | 0.189 | 10.100 |
Interaction: Profile 2 × Male | 1.240 | 0.272 | 0.786 | 1.400 | 0.119 | 16.100 |
Interaction: Profile 3 × Male | 1.070 | 0.452 | 0.651 | 1.620 | 0.186 | 13.400 |
Interaction: Profile 4 × Male | 1.160 | 0.254 | 0.800 | 1.340 | 0.132 | 13.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J. Integrated Behavioral Profiles of Physical Activity and Dietary Intake in Young Adults and Their Associations with Lower Limb Injury Occurrence. Nutrients 2025, 17, 3196. https://doi.org/10.3390/nu17203196
Domaradzki J. Integrated Behavioral Profiles of Physical Activity and Dietary Intake in Young Adults and Their Associations with Lower Limb Injury Occurrence. Nutrients. 2025; 17(20):3196. https://doi.org/10.3390/nu17203196
Chicago/Turabian StyleDomaradzki, Jarosław. 2025. "Integrated Behavioral Profiles of Physical Activity and Dietary Intake in Young Adults and Their Associations with Lower Limb Injury Occurrence" Nutrients 17, no. 20: 3196. https://doi.org/10.3390/nu17203196
APA StyleDomaradzki, J. (2025). Integrated Behavioral Profiles of Physical Activity and Dietary Intake in Young Adults and Their Associations with Lower Limb Injury Occurrence. Nutrients, 17(20), 3196. https://doi.org/10.3390/nu17203196