Pregnancy Outcomes Among Women with Treated Iron Deficiency Anemia: A Retrospective Cohort Study
Abstract
1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Anaemia estimates, 2021 Edition. 2021. Available online: https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children (accessed on 10 September 2025).
- Kirthan, J.P.A.; Somannavar, M.S. Pathophysiology and management of iron deficiency anaemia in pregnancy: A review. Ann. Hematol. 2024, 103, 2637–2646. [Google Scholar] [CrossRef]
- Raut, A.K.; Hiwale, K.M. Iron Deficiency Anemia in Pregnancy. Cureus 2022, 14, e28918. [Google Scholar] [CrossRef]
- Bunyarit Sukrat MD, S.S.M. The Prevalence and Causes of Anemia during Pregnancy in Maharaj Nakorn Chiang Mai Hospital. J. Med. Assoc. Thai 2006, 89, S142–S146. [Google Scholar]
- Suphawet Lertprasopsuk, B.V. Prevalence and Associated Factors of Anemia in Different Periods of Pregnancy. Thai J. Obstet. Gynaecol. 2023, 31, 56–63. [Google Scholar]
- Koller, O. The clinical significance of hemodilution during pregnancy. Obstet. Gynecol. Surv. 1982, 37, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.E.; Shatzel, J.J.; Ryan, K.S.; Hedges, M.A.; Martens, K.; Aslan, J.E.; Lo, J.O. The incidence, complications, and treatment of iron deficiency in pregnancy. Eur. J. Haematol. 2022, 109, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Govindappagari, S.; Burwick, R.M. Treatment of Iron Deficiency Anemia in Pregnancy with Intravenous versus Oral Iron: Systematic Review and Meta-Analysis. Am. J. Perinatol. 2019, 36, 366–376. [Google Scholar] [CrossRef]
- Safarzadeh, S.; Banihashemi, F.; Montazeri, F.; Roozbeh, N.; Darsareh, F. Maternal and Neonatal Outcomes of Iron Deficiency Anemia: A Retrospective Cohort Study. Cureus 2023, 15, e51365. [Google Scholar] [CrossRef]
- Ataide, R.; Fielding, K.; Pasricha, S.R.; Bennett, C. Iron deficiency, pregnancy, and neonatal development. Int. J. Gynaecol. Obstet. 2023, 162 (Suppl. 2), 14–22. [Google Scholar] [CrossRef]
- Sangkhae, V.; Fisher, A.L.; Wong, S.; Koenig, M.D.; Tussing-Humphreys, L.; Chu, A.; Lelić, M.; Ganz, T.; Nemeth, E. Effects of maternal iron status on placental and fetal iron homeostasis. J. Clin. Investig. 2020, 130, 625–640. [Google Scholar] [CrossRef]
- Means, R.T. Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters. Nutrients 2020, 12, 447. [Google Scholar] [CrossRef]
- Reveiz, L.; Gyte, G.M.; Cuervo, L.G.; Casasbuenas, A. Treatments for iron-deficiency anaemia in pregnancy. Cochrane Database Syst. Rev. 2011, CD003094. [Google Scholar] [CrossRef] [PubMed]
- Anemia in Pregnancy: ACOG Practice Bulletin, Number 233. Obstet. Gynecol. 2021, 138, e55–e64. [CrossRef] [PubMed]
- Srour, M.A.; Aqel, S.S.; Srour, K.M.; Younis, K.R.; Samarah, F. Prevalence of Anemia and Iron Deficiency among Palestinian Pregnant Women and Its Association with Pregnancy Outcome. Anemia 2018, 2018, 9135625. [Google Scholar] [CrossRef] [PubMed]
- Habe, S.; Haruna, M.; Yonezawa, K.; Usui, Y.; Sasaki, S.; Nagamatsu, T.; Fujita, M.; Suetsugu, Y.; Ohori, R.; Tanaka, M.; et al. Factors Associated with Anemia and Iron Deficiency during Pregnancy: A Prospective Observational Study in Japan. Nutrients 2024, 16, 418. [Google Scholar] [CrossRef]
- Ali, A.A.; Rayis, D.A.; Abdallah, T.M.; Elbashir, M.I.; Adam, I. Severe anaemia is associated with a higher risk for preeclampsia and poor perinatal outcomes in Kassala hospital, eastern Sudan. BMC Res. Notes 2011, 4, 311. [Google Scholar] [CrossRef]
- Kumari, S.; Garg, N.; Kumar, A.; Guru, P.K.I.; Ansari, S.; Anwar, S.; Singh, K.P.; Kumari, P.; Mishra, P.K.; Gupta, B.K.; et al. Maternal and severe anaemia in delivering women is associated with risk of preterm and low birth weight: A cross sectional study from Jharkhand, India. One Health 2019, 8, 100098. [Google Scholar] [CrossRef]
- Smithers, L.G.; Gialamas, A.; Scheil, W.; Brinkman, S.; Lynch, J.W. Anaemia of pregnancy, perinatal outcomes and children’s developmental vulnerability: A whole-of-population study. Paediatr. Perinat. Epidemiol. 2014, 28, 381–390. [Google Scholar] [CrossRef]
- Ajepe, A.A.; Okunade, K.S.; Sekumade, A.I.; Daramola, E.S.; Beke, M.O.; Ijasan, O.; Olowoselu, O.F.; Afolabi, B.B. Prevalence and foetomaternal effects of iron deficiency anaemia among pregnant women in Lagos, Nigeria. PLoS ONE 2020, 15, e0227965. [Google Scholar] [CrossRef]
- Lao, T.T.; Wong, L.L.; Hui, S.Y.A.; Sahota, D.S. Iron Deficiency Anaemia and Atonic Postpartum Haemorrhage Following Labour. Reprod. Sci. 2022, 29, 1102–1110. [Google Scholar] [CrossRef]
- Rogozińska, E.; Daru, J.; Nicolaides, M.; Amezcua-Prieto, C.; Robinson, S.; Wang, R.; Godolphin, P.J.; Saborido, C.M.; Zamora, J.; Khan, K.S.; et al. Iron preparations for women of reproductive age with iron deficiency anaemia in pregnancy (FRIDA): A systematic review and network meta-analysis. Lancet Haematol. 2021, 8, e503–e512. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.; Axon, E.; Daru, J.; Rogozińska, E. Effect and safety of intravenous iron compared to oral iron for treatment of iron deficiency anaemia in pregnancy. Cochrane Database Syst. Rev. 2024, 12, CD016136. [Google Scholar] [CrossRef]
- Rahmati, S.; Azami, M.; Badfar, G.; Parizad, N.; Sayehmiri, K. The relationship between maternal anemia during pregnancy with preterm birth: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2020, 33, 2679–2689. [Google Scholar] [CrossRef]
- Corwin, E.J.; Murray-Kolb, L.E.; Beard, J.L. Low hemoglobin level is a risk factor for postpartum depression. J. Nutr. 2003, 133, 4139–4142. [Google Scholar] [CrossRef]
- Georgieff, M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020, 223, 516–524. [Google Scholar] [CrossRef]
- Perez, E.M.; Hendricks, M.K.; Beard, J.L.; Murray-Kolb, L.E.; Berg, A.; Tomlinson, M.; Irlam, J.; Isaacs, W.; Njengele, T.; Sive, A.; et al. Mother-infant interactions and infant development are altered by maternal iron deficiency anemia. J. Nutr. 2005, 135, 850–855. [Google Scholar] [CrossRef]
- Tamura, T.; Goldenberg, R.L.; Hou, J.; Johnston, K.E.; Cliver, S.P.; Ramey, S.L.; Nelson, K.G. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J. Pediatr. 2002, 140, 165–170. [Google Scholar] [CrossRef]
Baseline Characteristics | Controls (n = 28,132) | Iron Deficiency Anemia (n = 634) | p-Value |
---|---|---|---|
Maternal age (year) (mean ± SD) | 28.4 ± 6.8 | 28.6 ± 6.0 | 0.345 |
Pre-pregnancy BMI: Kg/m2 | 21.6 ± 3.5 | 21.3 ± 3.3 | 0.053 |
Parity (Nulliparous/parous) | 15,842/12,290 (56.3%/43.7%) | 315/319 (49.7%/50.3%) | 0.001 |
Hb at first visit: gm/dL; (mean ± SD) | 13.0 ± 1.6 | 8.9 ± 1.9 | <0.001 |
Hb early third trimester: gm/dL; (mean ± SD) | 12.1 ± 0.9 | 11.9 ± 1.6 | <0.001 |
Hb before delivery: gm/dL; (mean ± SD) | 13.1 ± 1.3 | 12.2 ± 1.3 | <0.001 |
Residency (Others/Chiang Mai) | 8111/20,021 (28.8%/71.2%) | 180/454 (28.4%/71.6%) | 0.809 |
Socioeconomic status (High/Low) | 13,181/14,951 (46.9%/53.1%) | 270/364 (42.6%/57.4%) | 0.033 |
Fetal sex (Male/Female) | 14,658/13,439 (52.2%/47.8%) | 322/309 (51.0%/49.0%) | 0.571 |
Pregnancy Outcomes | Controls (n = 28,132) | Iron Deficiency Anemia (n = 634) | p-Value | Relative Risk (95% CI) |
---|---|---|---|---|
Gestational age (weeks) | 37.9 ± 2.4 | 37.6 ± 2.5 | 0.001 | |
Birth weight (g) | 2965 ± 665 | 2864 ± 582 | <0.001 | |
Preeclampsia | 1439 (5.1%) | 28 (4.4%) | 0.429 | 0.86 (0.60–1.24) |
Antepartum hemorrhage | 909 (3.2%) | 19 (2.9%) | 0.741 | 0.98 (0.59–1.45) |
Cesarean section | 7065 (25.1%) | 140 (22.1%) | 0.081 | 0.88 (0.79–1.02) |
Preterm birth | 4052 (14.4%) | 116 (18.3%) | <0.001 | 1.27 (1.07–1.50) |
Fetal growth restriction | 1602 (5.7%) | 50 (7.9%) | <0.001 | 1.38 (1.06–1.81) |
Low birth weight | 3915 (13.9%) | 122 (19.2%) | <0.001 | 1.38 (1.17–1.63) |
Low Apgar scores at 5 min (<7) | 838 (2.9%) | 19 (3.0%) | 0.981 | 1.01 (0.64–1.57) |
Estimated blood loss (mL) | 350 ± 267 | 339 ± 250 | 0.310 | |
Postpartum hemorrhage | 2960 (10.5%) | 58 (9.1%) | 0.264 | 0.87 (0.68–1.11) |
Fetal anomalies | 539 (1.9%) | 13 (2.0%) | 0.807 | 1.07 (0.62–1.84) |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Potential Risk Factors for Preterm Birth | p-Value | Odds Ratio (95% CI) | p-Value | Adjusted Odds Ratio (95% CI) |
Iron deficiency anemia | 0.006 | 1.04 (1.01–1.07) | 0.008 | 1.04 (1.01–1.07) |
Maternal age | <0.001 | 0.99 (0.99–0.99) | 0.153 | 1.00 (0.99–1.00) |
Pre-pregnancy BMI | 0.871 | 1.00 (0.99–1.00) | 0.934 | 1.00 (0.99–1.00) |
Parity | 0.437 | 1.00 (0.99–1.01) | 0.785 | 0.99 (0.98–1.01) |
Socioeconomic status (Low: High) | <0.001 | 1.05 (1.04–1.06) | <0.001 | 1.05 (1.04–1.06) |
Potential Risk Factors for Fetal Growth Restriction | p-Value | Odds Ratio (95% CI) | p-Value | Adjusted Odds Ratio (95% CI) |
Iron deficiency anemia | 0.019 | 1.02 (1.00–1.04) | 0.013 | 1.02 (1.00–1.04) |
Maternal age | 0.004 | 0.99 (0.99–0.99) | 0.047 | 1.00 (1.00–1.00) |
Pre-pregnancy BMI | 0.382 | 1.00 (0.99–1.00) | 0.381 | 1.00 (0.99–1.00) |
Parity | <0.001 | 0.97 (0.97–0.98) | <0.001 | 0.97 (0.96–0.98) |
Socioeconomic status (Low: High) | <0.001 | 1.01 (1.01–1.02) | <0.001 | 1.02 (1.01–1.02) |
Potential Risk Factors for Low Birth Weight Newborns | p-Value | Odds Ratio (95% CI) | p-Value | Adjusted Odds Ratio (95% CI) |
Iron deficiency anemia | <0.001 | 1.05 (1.02–1.08) | <0.001 | 1.05 (1.03–1.08) |
Maternal age | 0.001 | 0.99 (0.99–0.99) | 0.265 | 1.00 (1.00–1.00) |
Pre-pregnancy BMI | 0.598 | 1.00 (0.99–1.00) | 0.630 | 1.00 (0.99–1.00) |
Parity | <0.001 | 0.97 (0.96–0.98) | <0.001 | 0.97 (0.96–0.97) |
Socioeconomic status (Low: High) | <0.001 | 1.04 (1.03–1.05) | <0.001 | 1.12 (1.08–1.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamlungkuea, T.; Kaewchung, C.; Sublon, N.; Tanyongmasakul, N.; Butsart, S.; Winijchai, P.; Jatavan, P.; Tongsong, T. Pregnancy Outcomes Among Women with Treated Iron Deficiency Anemia: A Retrospective Cohort Study. Nutrients 2025, 17, 3168. https://doi.org/10.3390/nu17193168
Kamlungkuea T, Kaewchung C, Sublon N, Tanyongmasakul N, Butsart S, Winijchai P, Jatavan P, Tongsong T. Pregnancy Outcomes Among Women with Treated Iron Deficiency Anemia: A Retrospective Cohort Study. Nutrients. 2025; 17(19):3168. https://doi.org/10.3390/nu17193168
Chicago/Turabian StyleKamlungkuea, Threebhorn, Chutima Kaewchung, Netjantra Sublon, Nuchpawee Tanyongmasakul, Surangfahom Butsart, Passkorn Winijchai, Phudit Jatavan, and Theera Tongsong. 2025. "Pregnancy Outcomes Among Women with Treated Iron Deficiency Anemia: A Retrospective Cohort Study" Nutrients 17, no. 19: 3168. https://doi.org/10.3390/nu17193168
APA StyleKamlungkuea, T., Kaewchung, C., Sublon, N., Tanyongmasakul, N., Butsart, S., Winijchai, P., Jatavan, P., & Tongsong, T. (2025). Pregnancy Outcomes Among Women with Treated Iron Deficiency Anemia: A Retrospective Cohort Study. Nutrients, 17(19), 3168. https://doi.org/10.3390/nu17193168