Decision-Making Scores and Hunger Susceptibility: A Positive Correlation Mediated by Fasting FGF21 Independently of Body Fat
Abstract
1. Introduction
2. Methodology
2.1. Cognitive and Behavioral Assessment
2.2. Statistical Analyses
3. Results
3.1. Clinical Characteristics
3.2. Correlations Between FGF21, IGT, and TFEQ
3.3. Fasting FGF21 as a Mediator
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Bray, G.A.; Kim, K.K.; Wilding, J.P.H.; World Obesity, F. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Stover, P.J.; Field, M.S.; Andermann, M.L.; Bailey, R.L.; Batterham, R.L.; Cauffman, E.; Fruhbeck, G.; Iversen, P.O.; Starke-Reed, P.; Sternson, S.M.; et al. Neurobiology of eating behavior, nutrition, and health. J. Intern. Med. 2023, 294, 582–604. [Google Scholar] [CrossRef] [PubMed]
- Stunkard, A.J.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985, 29, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Roh, E.; Song, D.K.; Kim, M.-S. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp. Mol. Med. 2016, 48, e216. [Google Scholar] [CrossRef]
- Trevino-Alvarez, A.M.; Cabeza de Baca, T.; Stinson, E.J.; Gluck, M.E.; Chang, D.C.; Piaggi, P.; Krakoff, J. Greater anhedonia scores in healthy individuals are associated with less decline in 24-hour energy expenditure with fasting: Evidence for a link between behavioral traits and spendthrift phenotype. Physiol. Behav. 2023, 269, 114281. [Google Scholar] [CrossRef]
- Treviño-Alvarez, A.M.; Sánchez-Ruiz, J.A.; Barrera, F.J.; Rodríguez-Bautista, M.; Romo-Nava, F.; McElroy, S.L.; Cuéllar-Barboza, A.B. Weight changes in adults with major depressive disorder: A systematic review and meta-analysis of prospective studies. J. Affect. Disord. 2023, 332, 1–8. [Google Scholar] [CrossRef]
- Wu, C.T.; Chaffin, A.T.; Ryan, K.K. Fibroblast Growth Factor 21 Facilitates the Homeostatic Control of Feeding Behavior. J. Clin. Med. 2022, 11, 580. [Google Scholar] [CrossRef]
- Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, M. Fibroblast growth factor 21 and bone homeostasis. Biomed. J. 2023, 46, 100548. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, S.; Owen, B.M.; Song, P.; Hernandez, G.; Zhang, Y.; Zhou, Y.; Scott, W.T.; Paratala, B.; Turner, T.; Smith, A.; et al. FGF21 Regulates Sweet and Alcohol Preference. Cell Metab. 2016, 23, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Sa-Nguanmoo, P.; Tanajak, P.; Kerdphoo, S.; Satjaritanun, P.; Wang, X.; Liang, G.; Li, X.; Jiang, C.; Pratchayasakul, W.; Chattipakorn, N.; et al. FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats. Horm. Behav. 2016, 85, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Søberg, S.; Andersen, E.S.; Dalsgaard, N.B.; Jarlhelt, I.; Hansen, N.L.; Hoffmann, N.; Vilsbøll, T.; Chenchar, A.; Jensen, M.; Grevengoed, T.J.; et al. FGF21, a liver hormone that inhibits alcohol intake in mice, increases in human circulation after acute alcohol ingestion and sustained binge drinking at Oktoberfest. Mol. Metab. 2018, 11, 96–103. [Google Scholar] [CrossRef]
- Vinales, K.L.; Begaye, B.; Bogardus, C.; Walter, M.; Krakoff, J.; Piaggi, P. FGF21 Is a Hormonal Mediator of the Human “Thrifty” Metabolic Phenotype. Diabetes 2019, 68, 318–323. [Google Scholar] [CrossRef]
- Basolo, A.; Hollstein, T.; Shah, M.H.; Walter, M.; Krakoff, J.; Votruba, S.B.; Piaggi, P. Higher fasting plasma FGF21 concentration is associated with lower ad libitum soda consumption in humans. Am. J. Clin. Nutr. 2021, 114, 1518–1522. [Google Scholar] [CrossRef]
- Hill, C.M.; Qualls-Creekmore, E.; Berthoud, H.R.; Soto, P.; Yu, S.; McDougal, D.H.; Münzberg, H.; Morrison, C.D. FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology 2020, 161, bqaa019. [Google Scholar] [CrossRef]
- Ho, M.F.; Zhang, C.; Moon, I.; Wei, L.; Coombes, B.; Biernacka, J.; Skime, M.; Choi, D.S.; Frye, M.; Schmidt, K.; et al. Genome-wide association study for circulating FGF21 in patients with alcohol use disorder: Molecular links between the SNHG16 locus and catecholamine metabolism. Mol. Metab. 2022, 63, 101534. [Google Scholar] [CrossRef]
- Klausen, M.K.; Thomsen, M.; Wortwein, G.; Fink-Jensen, A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br. J. Pharmacol. 2022, 179, 625–641. [Google Scholar] [CrossRef]
- Treviño-Alvarez, A.M.; Cabeza de Baca, T.; Stinson, E.J.; Fry, H.T.; Gluck, M.E.; Chang, D.C.; Piaggi, P.; Krakoff, J. FGF21 as a potential mediator of eating behavior. In Proceedings of the International Conference of Eating Disorders (ICED 2024), New York, NY, USA, 14–16 March 2024. [Google Scholar]
- Dushay, J.R.; Toschi, E.; Mitten, E.K.; Fisher, F.M.; Herman, M.A.; Maratos-Flier, E. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol. Metab. 2015, 4, 51–57. [Google Scholar] [CrossRef]
- von Holstein-Rathlou, S.; BonDurant, L.D.; Peltekian, L.; Naber, M.C.; Yin, T.C.; Claflin, K.E.; Urizar, A.I.; Madsen, A.N.; Ratner, C.; Holst, B.; et al. FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metab. 2016, 23, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Patte, K.; Curtis, C.; Reid, C. Immediate pleasures and future consequences. A neuropsychological study of binge eating and obesity. Appetite 2010, 54, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Stinson, E.J.; Krakoff, J.; Gluck, M.E. Depressive symptoms and poorer performance on the Stroop Task are associated with weight gain. Physiol. Behav. 2018, 186, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.C.; Piaggi, P.; Burkholder, J.E.; Votruba, S.B.; Krakoff, J.; Gluck, M.E. Higher insulin and higher body fat via leptin are associated with disadvantageous decisions in the Iowa gambling task. Physiol. Behav. 2016, 167, 392–398. [Google Scholar] [CrossRef]
- Schlogl, M.; Piaggi, P.; Pannacciuli, N.; Bonfiglio, S.M.; Krakoff, J.; Thearle, M.S. Energy Expenditure Responses to Fasting and Overfeeding Identify Phenotypes Associated with Weight Change. Diabetes 2015, 64, 3680–3689. [Google Scholar] [CrossRef]
- The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26 (Suppl. 1), S5–S20. [Google Scholar] [CrossRef]
- Thearle, M.S.; Pannacciulli, N.; Bonfiglio, S.; Pacak, K.; Krakoff, J. Extent and determinants of thermogenic responses to 24 hours of fasting, energy balance, and five different overfeeding diets in humans. J. Clin. Endocrinol. Metab. 2013, 98, 2791–2799. [Google Scholar] [CrossRef]
- Ferraro, R.; Boyce, V.L.; Swinburn, B.; De Gregorio, M.; Ravussin, E. Energy cost of physical activity on a metabolic ward in relationship to obesity. Am. J. Clin. Nutr. 1991, 53, 1368–1371. [Google Scholar] [CrossRef]
- Reinhardt, M.; Piaggi, P.; DeMers, B.; Trinidad, C.; Krakoff, J. Cross calibration of two dual-energy X-ray densitometers and comparison of visceral adipose tissue measurements by iDXA and MRI. Obesity 2017, 25, 332–337. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2007, 30 (Suppl. 1), S42–S47. [Google Scholar] [CrossRef]
- Bryant, E.J.; Rehman, J.; Pepper, L.B.; Walters, E.R. Obesity and Eating Disturbance: The Role of TFEQ Restraint and Disinhibition. Curr. Obes. Rep. 2019, 8, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A. Iowa Gambling Task; Psychological Assessment Resources: Lutz, FL, USA, 2007. [Google Scholar]
- Bechara, A.; Damasio, A.R.; Damasio, H.; Anderson, S.W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994, 50, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Berthoud, H.R.; Munzberg, H.; Morrison, C.D. Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms. Gastroenterology 2017, 152, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Hollstein, T.; Heinitz, S.; Ando, T.; Rodzevik, T.L.; Basolo, A.; Walter, M.; Chang, D.C.; Krakoff, J.; Piaggi, P. Metabolic Responses to 24-Hour Fasting and Mild Cold Exposure in Overweight Individuals Are Correlated and Accompanied by Changes in FGF21 Concentration. Diabetes 2020, 69, 1382–1388. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Lun, M.; Kim, S.M.; Bredella, M.A.; Wright, S.; Zhang, Y.; Lee, H.; Catana, C.; Klibanski, A.; Patwari, P.; et al. FGF21 and the late adaptive response to starvation in humans. J. Clin. Investig. 2015, 125, 4601–4611. [Google Scholar] [CrossRef]
- Maida, A.; Zota, A.; Sjøberg, K.A.; Schumacher, J.; Sijmonsma, T.P.; Pfenninger, A.; Christensen, M.M.; Gantert, T.; Fuhrmeister, J.; Rothermel, U.; et al. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J. Clin. Investig. 2016, 126, 3263–3278. [Google Scholar] [CrossRef]
- Hollstein, T.; Ando, T.; Basolo, A.; Krakoff, J.; Votruba, S.B.; Piaggi, P. Metabolic response to fasting predicts weight gain during low-protein overfeeding in lean men: Further evidence for spendthrift and thrifty metabolic phenotypes. Am. J. Clin. Nutr. 2019, 110, 593–604. [Google Scholar] [CrossRef]
- Søberg, S.; Sandholt, C.H.; Jespersen, N.Z.; Toft, U.; Madsen, A.L.; von Holstein-Rathlou, S.; Grevengoed, T.J.; Christensen, K.B.; Bredie, W.L.P.; Potthoff, M.J.; et al. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans. Cell Metab. 2017, 25, 1045–1053.e6. [Google Scholar] [CrossRef]
- Cavedini, P.; Zorzi, C.; Bassi, T.; Gorini, A.; Baraldi, C.; Ubbiali, A.; Bellodi, L. Decision-making functioning as a predictor of treatment outcome in anorexia nervosa. Psychiatry Res. 2006, 145, 179–187. [Google Scholar] [CrossRef]
- Beck, I.R.; Stinson, E.J.; Thearle, M.S.; Krakoff, J.; Gluck, M.E. Anhedonia is an important mediator of performance on the Iowa Gambling Task in individuals with obesity. Psychol. Neurosci. 2017, 10, 363–371. [Google Scholar] [CrossRef]
- Hsuchou, H.; Pan, W.; Kastin, A.J. The fasting polypeptide FGF21 can enter brain from blood. Peptides 2007, 28, 2382–2386. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.; Hallschmid, M.; Adya, R.; Kern, W.; Lehnert, H.; Randeva, H.S. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: Relationship with plasma FGF21 and body adiposity. Diabetes 2011, 60, 2758–2762. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.M.; Chui, P.C.; Antonellis, P.J.; Bina, H.A.; Kharitonenkov, A.; Flier, J.S.; Maratos-Flier, E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 2010, 59, 2781–2789. [Google Scholar] [CrossRef] [PubMed]
- Bookout, A.L.; de Groot, M.H.; Owen, B.M.; Lee, S.; Gautron, L.; Lawrence, H.L.; Ding, X.; Elmquist, J.K.; Takahashi, J.S.; Mangelsdorf, D.J.; et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 2013, 19, 1147–1152. [Google Scholar] [CrossRef]
- Flippo, K.H.; Trammell, S.A.J.; Gillum, M.P.; Aklan, I.; Perez, M.B.; Yavuz, Y.; Smith, N.K.; Jensen-Cody, S.O.; Zhou, B.; Claflin, K.E.; et al. FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit. Cell Metab. 2022, 34, 317–328.e6. [Google Scholar] [CrossRef]
- Bechara, A.; Damasio, H.; Damasio, A.R. Role of the Amygdala in Decision-Making. Ann. N. Y. Acad. Sci. 2003, 985, 356–369. [Google Scholar] [CrossRef]
- Bresch, A.; Rullmann, M.; Luthardt, J.; Becker, G.A.; Patt, M.; Ding, Y.S.; Hilbert, A.; Sabri, O.; Hesse, S. Hunger and disinhibition but not cognitive restraint are associated with central norepinephrine transporter availability. Appetite 2017, 117, 270–274. [Google Scholar] [CrossRef]
- Epperlein, S.; Gebhardt, C.; Rohde, K.; Chakaroun, R.; Patt, M.; Schamarek, I.; Kralisch, S.; Heiker, J.T.; Scholz, M.; Stumvoll, M.; et al. The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits. Biomedicines 2021, 9, 345. [Google Scholar] [CrossRef]
- Dolegowska, K.; Marchelek-Mysliwiec, M.; Nowosiad-Magda, M.; Slawinski, M.; Dolegowska, B. FGF19 subfamily members: FGF19 and FGF21. J. Physiol. Biochem. 2019, 75, 229–240. [Google Scholar] [CrossRef]
- Robitzsch, A. Comparing the robustness of the structural after measurement (SAM) approach to structural equation modeling (SEM) against local model misspecifications with alternative estimation approaches. Stats 2022, 5, 631–672. [Google Scholar] [CrossRef]
- Rosseel, Y.; Loh, W.W. A structural after measurement approach to structural equation modeling. Psychol. Methods 2024, 29, 561–588. [Google Scholar] [CrossRef]
Total n = 98 | |
---|---|
Women, n (%) | 19 (19.4) |
Age (years), mean ± SD, n = 98 | 37.0 ± 10.6 |
Race/Ethnicity, n (%) | |
Black | 22 (22.5) |
White | 31 (31.6) |
Hispanic | 15 (15.3) |
Native American | 30 (30.6) |
Body weight (kg), mean ± SD, n = 98 | 79.6 ± 13.8 |
BMI (kg/m2), mean ± SD, n = 98 | 26.6 ± 4.3 |
Fat mass (kg), mean ± SD, n = 98 | 23.3 ± 10.3 |
Fat-free mass (kg), mean ± SD, n = 98 | 56.3 ± 9.6 |
TFEQ Disinhibition, mean ± SD, n = 95 | 3.2 ± 2.3 |
TFEQ Hunger, mean ± SD, n = 95 | 3.4 ± 3.1 |
TFEQ Restraint, mean ± SD, n = 95 | 8.0 ± 4.6 |
FGF21 levels (pg/mL), median [25 pct–75 pct], n = 95 | 152.0 [87.25–238.75] |
Iowa Gambling Task scores, n = 89 | |
Raw scores | 8.9 ± 25.5 |
Demographically corrected T score | 47.7 ± 8.9 |
Demographically corrected percentile | 40.8 ± 26.5 |
Total Money | −717.5 ± 1221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treviño-Alvarez, A.M.; Cabeza de Baca, T.; Stinson, E.J.; Fry, H.T.; Gluck, M.E.; Chang, D.C.; Piaggi, P.; Krakoff, J. Decision-Making Scores and Hunger Susceptibility: A Positive Correlation Mediated by Fasting FGF21 Independently of Body Fat. Nutrients 2025, 17, 3160. https://doi.org/10.3390/nu17193160
Treviño-Alvarez AM, Cabeza de Baca T, Stinson EJ, Fry HT, Gluck ME, Chang DC, Piaggi P, Krakoff J. Decision-Making Scores and Hunger Susceptibility: A Positive Correlation Mediated by Fasting FGF21 Independently of Body Fat. Nutrients. 2025; 17(19):3160. https://doi.org/10.3390/nu17193160
Chicago/Turabian StyleTreviño-Alvarez, Andrés M., Tomás Cabeza de Baca, Emma J. Stinson, Hannah T. Fry, Marci E. Gluck, Douglas C. Chang, Paolo Piaggi, and Jonathan Krakoff. 2025. "Decision-Making Scores and Hunger Susceptibility: A Positive Correlation Mediated by Fasting FGF21 Independently of Body Fat" Nutrients 17, no. 19: 3160. https://doi.org/10.3390/nu17193160
APA StyleTreviño-Alvarez, A. M., Cabeza de Baca, T., Stinson, E. J., Fry, H. T., Gluck, M. E., Chang, D. C., Piaggi, P., & Krakoff, J. (2025). Decision-Making Scores and Hunger Susceptibility: A Positive Correlation Mediated by Fasting FGF21 Independently of Body Fat. Nutrients, 17(19), 3160. https://doi.org/10.3390/nu17193160