Assessment of the Association Between Anthropometric Indices Related to Overweight and Obesity and Selected Trace Elements and Heavy Metals: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.2.1. Anthropometric Measurements and Determination of Anthropometric Indices Associated with Overweight and Obesity
2.2.2. Blood Sample, Metal Biomarker Levels and Ferritin Level
2.2.3. Socio-Demographic Variables
2.3. Ethical Considerations
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Correlation Between Heavy Metal and Ferritin Concentrations in Blood Serum and Anthropometric Indices Associated with Overweight and Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar]
- Arbi, S.; Oberholzer, H.M.; Van Rooy, M.J.; Venter, C.; Bester, M.J. Effects of chronic exposure to mercury and cadmium alone and in combination on the coagulation system of Sprague-Dawley rats. Ultrastruct. Pathol. 2017, 41, 275–283. [Google Scholar] [CrossRef]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef]
- Habib, S.A.; Saad, E.A.; Elsharkawy, A.A.; Attia, Z.R. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents. Adv. Med. Sci. 2015, 60, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Cayir, Y.; Cayir, A.; Turan, M.I.; Kurt, N.; Kara, M.; Laloglu, E.; Ciftel, M.; Yildirim, A. Antioxidant status in blood of obese children: The relation between trace elements, paraoxonase, and arylesterase values. Biol. Trace Elem. Res. 2014, 160, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.C.; Campos, M.M.; Bogo, M.R. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J. Appl. Toxicol. 2016, 36, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Formigari, A.; Gregianin, E.; Irato, P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J. Appl. Toxicol. 2013, 33, 527–536. [Google Scholar] [CrossRef]
- Yerlikaya, F.H.; Toker, A.; Arıbaş, A. Serum trace elements in obese women with or without diabetes. Indian J. Med. Res. 2013, 137, 339–345. [Google Scholar]
- Cayir, A.; Doneray, H.; Kurt, N.; Orbak, Z.; Kaya, A.; Turan, M.I.; Yildirim, A. Thyroid functions and trace elements in pediatric patients with exogenous obesity. Biol. Trace Elem. Res. 2014, 157, 95–100. [Google Scholar] [CrossRef]
- Gu, Y.C.W.; Qi, Z.; Chen, Y. Investigating relationship between plasma zinc and copper level and elderly obesity. World Latest Med. Inf. 2016, 4, 4–6. [Google Scholar]
- Suliburska, J.; Cofta, S.; Gajewska, E.; Kalmus, G.; Sobieska, M.; Samborski, W.; Krejpcio, Z.; Drzymala-Czyz, S.; Bogdanski, P. The evaluation of selected serum mineral concentrations and their association with insulin resistance in obese adolescents. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2396–2400. [Google Scholar]
- Gu, K.; Li, X.; Xiang, W.; Jiang, X. The Relationship Between Serum Copper and Overweight/Obesity: A Meta-analysis. Biol. Trace Elem. Res. 2020, 194, 336–347. [Google Scholar] [CrossRef]
- Zhao, T.; Huang, Q.; Su, Y.; Sun, W.; Huang, Q.; Wei, W. Zinc and its regulators in pancreas. Inflammopharmacology 2019, 27, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Fukunaka, A.; Fujitani, Y. Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int. J. Mol. Sci. 2018, 19, 476. [Google Scholar] [CrossRef] [PubMed]
- Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake and Food Sources of Zinc, Selenium, and Vitamins A, E and C in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Song, S.W.; Choi, W.S. Association between serum zinc level and body composition: The Korean National Health and Nutrition Examination Survey. Nutrition 2016, 32, 332–337. [Google Scholar] [CrossRef]
- Feitosa, M.C.; Lima, V.B.; Moita Neto, J.M.; Marreiro Ddo, N. Plasma concentration of IL-6 and TNF-α and its relationship with zincemia in obese women. Rev. Assoc. Med. Bras. 2013, 59, 429–434. [Google Scholar] [CrossRef]
- Mota Martins, L.; Soares de Oliveira, A.R.; Clímaco Cruz, K.J.; Borges de Araújo, C.G.; de Oliveira, F.E.; Santos de Sousa, G.; do Nascimento Nogueira, N.; do Nascimento Marreiro, D. Influence of cortisol on zinc metabolism in morbidly obese women. Nutr Hosp. 2014, 29, 57–63. [Google Scholar]
- Herter-Aeberli, I.; Thankachan, P.; Bose, B.; Kurpad, A.V. Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India. Eur. J. Nutr. 2016, 55, 2411–2421. [Google Scholar] [CrossRef]
- Bouglé, D.L.; Bureau, F.; Laroche, D. Trace element status in obese children: Relationship with metabolic risk factors. e-SPEN 2009, 4, e98–e100. [Google Scholar] [CrossRef]
- Gu, K.; Xiang, W.; Zhang, Y.; Sun, K.; Jiang, X. The association between serum zinc level and overweight/obesity: A meta-analysis. Eur. J. Nutr. 2019, 58, 2971–2982. [Google Scholar] [CrossRef]
- Li, L.; Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid. Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.K.; Bae, Y.J. Relationship between dietary magnesium, manganese, and copper and metabolic syndrome risk in Korean adults: The Korea National Health and Nutrition Examination Survey (2007–2008). Biol. Trace Elem. Res. 2013, 156, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Su, X.; Su, D.; Zeng, F.; Wang, M.H.; Huang, L.; Huang, E.; Zhu, Y.; Zhao, D.; He, D.; et al. Dietary intake of manganese and the risk of the metabolic syndrome in a Chinese population. Br. J. Nutr. 2016, 116, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Rotter, I.; Kosik-Bogacka, D.; Dołęgowska, B.; Safranow, K.; Lubkowska, A.; Laszczyńska, M. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int. J. Environ. Res. Public Health 2015, 12, 3944–3961. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Bu, J. Relationship between selected serum metallic elements and obesity in children and adolescent in the U.S. Nutrients 2017, 9, 104. [Google Scholar] [CrossRef]
- O’Leary, F.; Samman, S. Vitamin B12 in Health and Disease. Nutrients 2010, 2, 299–316. [Google Scholar] [CrossRef]
- Zheng, F.; Goncalves, F.M.; Abiko, Y.; Li, H.; Kumagai, Y.; Aschner, M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol. 2020, 34, 101475. [Google Scholar] [CrossRef]
- Padilla, M.A.; Elobeid, M.; Ruden, D.M.; Allison, D.B. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. Int. J. Environ. Res. Public Health 2010, 7, 3332–3347. [Google Scholar] [CrossRef]
- Wang, X.; Mukherjee, B.; Park, S.K. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U.S. adults in NHANES 2003–2014. Environ. Int. 2018, 121, 683–694. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Carocci, A.; Sinicropi, M.S. The double face of metals: The intriguing case of chromium. Appl. Sci. 2021, 11, 638. [Google Scholar] [CrossRef]
- Vincent, J.B. Beneficial effects of chromium (III) and vanadium supplements in diabetes. In Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome; Bagchi, D., Nair, S., Eds.; Academic Press: New York, NY, USA, 2018; pp. 365–374. [Google Scholar]
- Lima, K.V.; Lima, R.P.; Gonçalves, M.C.; Faintuch, J.; Morais, L.C.; Asciutti, L.S.; Costa, M.J. High frequency of serum chromium deficiency and association of chromium with triglyceride and cholesterol concentrations in patients awaiting bariatric surgery. Obes. Surg. 2014, 24, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Tascilar, M.E.; Ozgen, I.T.; Abaci, A.; Serdar, M.; Aykut, O. Trace elements in obese Turkish children. Biol. Trace Elem. Res. 2011, 143, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Azab, S.F.; Saleh, S.H.; Elsaeed, W.F.; Elshafie, M.A.; Sherief, L.M.; Esh, A.M. Serum trace elements in obese Egyptian children: A case-control study. Ital. J. Pediatr. 2014, 40, 20. [Google Scholar] [CrossRef]
- Son, J.; Morris, J.S.; Park, K. Toenail chromium concentration and metabolic syndrome among Korean adults. Int. J. Environ. Res. Public Health 2018, 15, 682. [Google Scholar] [CrossRef]
- Hilton, C.; Sabaratnam, R.; Drakesmith, H.; Karpe, F. Iron, glucose and fat metabolism and obesity: An intertwined relationship. Int. J. Obes. 2023, 47, 554–563. [Google Scholar] [CrossRef]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Musallam, K.M.; Taher, A.T. Iron deficiency anaemia revisited. J. Intern. Med. 2020, 287, 153–170. [Google Scholar] [CrossRef]
- Gregg, E.W.; Shaw, J.E. Global health effects of overweight and obesity. N. Engl. J. Med. 2017, 377, 80–81. [Google Scholar] [CrossRef]
- Camaschella, C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017, 31, 225–233. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev. 2015, 16, 1081–1093. [Google Scholar] [CrossRef]
- Kaner, G.; Pekcan, G.; Pamuk, G.; Pamuk, B.Ö.; Amoutzopoulos, B. Is iron deficiency related with increased body weight? A cross-sectional study. Progr. Nutr. 2016, 18, 102–110. [Google Scholar]
- Alshwaiyat, N.M.; Ahmad, A.; Wan Hassan, W.M.R.; Al-Jamal, H.A.N. Association between obesity and iron deficiency (Review). Exp. Ther. Med. 2021, 22, 1268. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Read, S. ISO/IEC 17025; 2017-General requirements for the competence of testing and calibration laboratories. Vernier: Geneva, Switzerland, 2017. [Google Scholar]
- Albarracin, C.A.; Fuqua, B.C.; Evans, J.L.; Goldfine, I.D. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2008, 24, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.B. The biochemistry of chromium. J. Nutr. 2000, 130, 715–718. [Google Scholar] [CrossRef]
- Chen, G.; Liu, P.; Pattar, G.R.; Tackett, L.; Bhonagiri, P.; Strawbridge, A.B.; Elmendorf, J.S. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol. Endocrinol. 2006, 20, 857–870. [Google Scholar] [CrossRef]
- Lai, M.H.; Chen, Y.Y.; Cheng, H.H. Chromium yeast supplementation improves fasting plasma glucose and LDL-cholesterol in streptozotocin-induced diabetic rats. Int. J. Vitam. Nutr. Res. 2006, 76, 391–397. [Google Scholar] [CrossRef]
- Hummel, M.; Standl, E.; Schnell, O. Chromium in metabolic and cardiovascular disease. Horm. Metab. Res. 2007, 39, 743–751. [Google Scholar] [CrossRef]
- Lewicki, S.; Zdanowski, R.; Krzyżowska, M.; Lewicka, A.; Dębski, B.; Niemcewicz, M.; Goniewicz, M. The role of Chromium III in the organism and its possible use in diabetes and obesity treatment. Ann. Agric. Environ. Med. 2014, 21, 331–335. [Google Scholar] [CrossRef]
- Tsang, C.; Taghizadeh, M.; Aghabagheri, E.; Asemi, Z.; Jafarnejad, S. A meta-analysis of the effect of chromium supplementation on anthropometric indices of subjects with overweight or obesity. Clin. Obes. 2019, 9, e12313. [Google Scholar] [CrossRef]
- Tuzcu, M.; Sahin, N.; Orhan, C.; Agca, C.A.; Akdemir, F.; Tuzcu, Z.; Komorowski, J.; Sahin, K. Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr. Metab. 2011, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Onakpoya, I.; Posadzki, P.; Ernst, E. Chromium supplementation in overweight and obesity: A systematic review and meta-analysis of randomized clinical trials. Obes. Rev. 2013, 14, 496–507. [Google Scholar] [CrossRef] [PubMed]
- King, J.C. Assessment of zinc status. J. Nutr. 1990, 120, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Alikaşifoğlu, A.; Gönç, N.; Özön, Z.A.; Sen, Y.; Kandemir, N. The relationship between serum adiponectin, tumor necrosis factor-alpha, leptin levels and insulin sensitivity in childhood and adolescent obesity: Adiponectin is a marker of metabolic syndrome. J. Clin. Res. Pediatr. Endocrinol. 2009, 1, 233–239. [Google Scholar] [CrossRef]
- Zavala, G.; Long, K.Z.; García, O.P.; Caamaño Mdel, C.; Aguilar, T.; Salgado, L.M.; Rosado, J.L. Specific micronutrient concentrations are associated with inflammatory cytokines in a rural population of Mexican women with a high prevalence of obesity. Br. J. Nutr. 2013, 109, 686–694. [Google Scholar] [CrossRef]
- Egefjord, L.; Jensen, J.L.; Bang-Berthelsen, C.H.; Petersen, A.B.; Smidt, K.; Schmitz, O.; Karlsen, A.E.; Pociot, F.; Chimienti, F.; Rungby, J.; et al. Zinc transporter gene expression is regulated by pro-inflammatory cytokines: A potential role for zinc transporters in beta-cell apoptosis? BMC Endocr. Disord. 2009, 9, 7. [Google Scholar] [CrossRef]
- Ghayour-Mobarhan, M.; Taylor, A.; New, S.A.; Lamb, D.J.; Ferns, G.A. Determinants of serum copper, zinc and selenium in healthy subjects. Ann. Clin. Biochem. 2005, 42, 364–375. [Google Scholar] [CrossRef]
- Dambal, S.S.; Kumari, S. Relationship of obesity with micronutrient status. Int. J. Appl. Biol. Pharm. 2011, 2, 280–284. [Google Scholar]
- Mantzoros, C.S.; Prasad, A.S.; Beck, F.W.; Grabowski, S.; Kaplan, J.; Adair, C.; Brewer, G.J. Zinc may regulate serum leptin concentrations in humans. J. Am. Coll. Nutr. 1998, 17, 270–275. [Google Scholar] [CrossRef]
- García, O.P.; Ronquillo, D.; Caamaño Mdel, C.; Camacho, M.; Long, K.Z.; Rosado, J.L. Zinc, vitamin A, and vitamin C status are associated with leptin concentrations and obesity in Mexican women: Results from a cross-sectional study. Nutr. Metab. 2012, 9, 59. [Google Scholar] [CrossRef]
- Jung, C.H.; Kim, M.S. Molecular mechanisms of central leptin resistance in obesity. Arch. Pharm. Res. 2013, 36, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Crujeiras, A.B.; Carreira, M.C.; Cabia, B.; Andrade, S.; Amil, M.; Casanueva, F.F. Leptin resistance in obesity: An epigenetic landscape. Life Sci. 2015, 140, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Sáinz, N.; González-Navarro, C.J.; Martínez, J.A.; Moreno-Aliaga, M.J. Leptin signaling as a therapeutic target of obesity. Expert. Opin. Ther. Targets 2015, 19, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.G., Jr.; Leibel, R.L.; Seeley, R.J.; Schwartz, M.W. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol. Metab. 2010, 21, 643–651. [Google Scholar] [CrossRef]
- Shintani, M.; Ogawa, Y.; Ebihara, K.; Aizawa-Abe, M.; Miyanaga, F.; Takaya, K.; Hayashi, T.; Inoue, G.; Hosoda, K.; Kojima, M.; et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 2001, 50, 227–232. [Google Scholar] [CrossRef]
- Stofkova, A. Leptin and adiponectin: From energy and metabolic dysbalance to inflammation and autoimmunity. Endocr. Regul. 2009, 43, 157–168. [Google Scholar]
- Popko, K.; Gorska, E.; Stelmaszczyk-Emmel, A.; Plywaczewski, R.; Stoklosa, A.; Gorecka, D.; Pyrzak, B.; Demkow, U. Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010, 15, 120–122. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Y.; Huang, T.; An, P.; Yu, D.; Yu, Z.; Li, H.; Sheng, H.; Cai, L.; Xue, J.; et al. Associations between ionomic profile and metabolic abnormalities in human population. PLoS ONE 2012, 7, e38845. [Google Scholar] [CrossRef]
- Osredkar, J. Copper and zinc, biological role and significance of copper/zinc imbalance. J Clin. Toxicol. 2011, S3, 001. [Google Scholar] [CrossRef]
- Kärberg, K.; Forbes, A.; Lember, M. Raised dietary Zn:Cu ratio increases the risk of atherosclerosis in type 2 diabetes. Clin. Nutr. ESPEN 2022, 50, 218–224. [Google Scholar] [CrossRef]
- Coimbra, S.; Catarino, C.; Santos-Silva, A. The role of adipocytes in the modulation of iron metabolism in obesity. Obes. Rev. 2013, 14, 771–779. [Google Scholar] [CrossRef]
- Aderibigbe, O.R.; Pisa, P.T.; Mamabolo, R.L.; Kruger, H.S.; Vorster, H.H. The relationship between indices of iron status and selected anthropometric cardiovascular disease risk markers in an African population: The THUSA study. Cardiovasc. J. Afr. 2011, 22, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Madani, M.; Tabatabaie, F. Comparative evaluation of iron deficiency among obese and non-obese children. Iran. J. Pediatr. Hematol. Oncol. 2014, 4, 160–166. [Google Scholar]
- Hitha, H.; Gowda, D.; Mirajkar, A. Serum ferritin level as an early indicator of metabolic dysregulation in young obese adults—A cross-sectional study. Can. J. Physiol. Pharmacol. 2018, 96, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Bian, N.; Wang, J.; Chang, X.; An, Y.; Wang, G.; Liu, J. Serum ferritin levels are associated with adipose tissue dysfunction-related indices in obese adults. Biol. Trace Elem. Res. 2023, 201, 636–643. [Google Scholar] [CrossRef]
- Han, H.; Ni, P.; Zhang, S.; Ji, X.; Zhu, M.; Ma, W.; Ge, H.; Chu, H. The association of body mass index and weight waist adjustment index with serum ferritin in a national study of US adults. Eur. J. Med. Res. 2023, 28, 374. [Google Scholar] [CrossRef]
- Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res. Clin. Pract. 2005, 69, 29–35. [Google Scholar] [CrossRef]
- Vincent, H.K.; Bourguignon, C.M.; Taylor, A.G. Relationship of the dietary phytochemical index to weight gain, oxidative stress and inflammation in overweight young adults. J. Hum. Nutr. Diet. 2010, 23, 20–29. [Google Scholar] [CrossRef]
- Skalnaya, M.G.; Skalny, A.V.; Grabeklis, A.R.; Serebryansky, E.P.; Demidov, V.A.; Tinkov, A.A. Hair trace elements in overweight and obese adults in association with metabolic parameters. Biol. Trace Elem. Res. 2018, 186, 12–20. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Z.; Lu, L.; Zhang, L.; Luo, X. Effect of different manganese sources on activities and gene expression of key enzymes in fat metabolism of broilers. Sci. Agric. Sin. 2011, 44, 3558–3850. [Google Scholar]
- Baquer, N.Z.; Sinclair, M.; Kunjara, S.; Yadav, U.C.; McLean, P. Regulation of glucose utilization and lipogenesis in adipose tissue of diabetic and fat fed animals: Effects of insulin and manganese. J. Biosci. 2003, 28, 215–221. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lyu, E.S.; Oh, S.Y.; Park, H.R.; Ro, H.K.; Heo, Y.R.; Hyun, T.; Choi, M.K. Daily copper and manganese intakes and their relation to blood pressure in normotensive adults. Clin. Nutr. Res. 2015, 4, 259–266. [Google Scholar] [CrossRef]
- Kinscherf, R.; Claus, R.; Wagner, M.; Gehrke, C.; Kamencic, H.; Hou, D.; Nauen, O.; Schmiedt, W.; Kovacs, G.; Pill, J.; et al. Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J. 1998, 12, 461–467. [Google Scholar] [CrossRef]
- Shatrov, V.A.; Brüne, B. Induced expression of manganese superoxide dismutase by non-toxic concentrations of oxidized low-density lipoprotein (oxLDL) protects against oxLDL-mediated cytotoxicity. Biochem. J. 2003, 374, 505–511. [Google Scholar] [CrossRef]
- Ohashi, M.; Runge, M.S.; Faraci, F.M.; Heistad, D.D. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2331–2336. [Google Scholar] [CrossRef]
- Fang, X.; Weintraub, N.L.; Rios, C.D.; Chappell, D.A.; Zwacka, R.M.; Engelhardt, J.F.; Oberley, L.W.; Yan, T.; Heistad, D.D.; Spector, A.A. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells. Circ. Res. 1998, 82, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Lozhkin, A.P.; Biktagirov, T.B.; Abdul’ianov, V.A.; Gorshkov, O.V.; Timonina, E.V.; Mamin, G.V.; Orlinskiĭ, S.B.; Silkin, N.I.; Chernov, V.M.; Salakhov, M.; et al. Manganese in atherogenesis: Detection, origin, and role. Biomed. Khim. 2012, 58, 291–299. [Google Scholar] [CrossRef] [PubMed]
| Element | LOD [mg/kg] | LOQ [mg/kg] | Precision [%] | Recovery [%] | Expanded Uncertainty [%] |
|---|---|---|---|---|---|
| Fe | 4.3 | 8.6 | 8.6 | 96 | 9 |
| Cu | 1.3 | 2.6 | 2.3 | 99 | 20 |
| Zn | 0.4 | 0.9 | 5.1 | 106 | 14 |
| Mn | 1.1 | 2.2 | 9,2 | 97 | 7 |
| Co | 0.012 | 0.024 | 7.12 | 101 | 11 |
| Cr | 0.015 | 0.030 | 3.63 | 97 | 16 |
| Variables | Study Group (n = 74) | Control Group (n = 72) | p |
|---|---|---|---|
| Demographic data: | |||
| Age [years] b | 57.38 ± 4.72 | 53.67 ± 6.32 | <0.001 |
| Gender (male) a | 54 (73.0) | 44 (61.1) | 0.13 |
| Place of residence (city) a | 31 (41.9) | 49 (68.1) | 0.001 |
| University education a | 14 (18.9) | 43 (59.7) | <0.001 |
| Current smoking a | 22 (29.73) | 7 (9.72) | 0.002 |
| Anthropometric variables: | |||
| BMI [kg/m2] b | 28.78 ± 4.97 | 26.58 ± 4.12 | 0.004 |
| WC [cm] b | 103.54 ± 12.78 | 93.12 ± 12.85 | <0.001 |
| HC [cm] b | 104.95 ± 10.79 | 103.32 ± 7.77 | 0.3 |
| WHR b | 0.99 ± 0.08 | 0.9 ± 0.09 | <0.001 |
| WHtR b | 0.6 ± 0.07 | 0.54 ± 0.07 | <0.001 |
| BAI b | 28.57 ± 6.38 | 28.25 ± 4.68 | 0.72 |
| FM% b | 30.83 ± 7.49 | 30.2 ± 7.05 | 0.6 |
| Selected trace elements, heavy metals and ferritin in blood serum: | |||
| Cu (10−6) µg/mL c | 0.97 (0.83–1.13) | 0.72 (0.62–0.87) | <0.001 |
| Zn (10−6) µg/mL c | 0.45 (0.40–0.55) | 0.36 (0.33–0.42) | <0.001 |
| Mn (10−9) ng/mL c | 2.42 (1.17–4.55) | 0.27 (0.12–0.54) | <0.001 |
| Co (10−9) ng/mL c | 0.33 (0.26–0.43) | 0.17 (0.12–0.26) | <0.001 |
| Cr (10−9) ng/mL c | 130.89 (109.29–173.86) | 132.26 (115.26–150.41) | 0.69 |
| Fe µg/mL c | 0.78 (0.66–1.02) | 0.51 (0.38–0.66) | <0.001 |
| Zn/Fe c | 0.61 (0.38–0.81) | 0.722 (0.54–1.22) | 0.005 |
| Zn/Cu c | 0.47 (0.38–0.58) | 0.48 (0.38–0.67) | 0.272 |
| Ferritin [ng/mL] c | 148.18 (61.11–215.35) | 88.25 (27.68–163.58) | 0.007 |
| Cu | Zn | Mn | Co | Cr | Fe | Zn/Fe | Zn/Cu | Ferritin | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Study group: | ||||||||||
| BMI | r | −0.007 | −0.156 | −0.009 | −0.056 | 0.15 | −0.087 | −0.036 | −0.117 | 0.108 |
| p | 0.951 | 0.185 | 0.937 | 0.637 | 0.202 | 0.46 | 0.759 | 0.321 | 0.34 | |
| WC | r | −0.014 | −0.09 | 0.063 | 0.029 | 0.156 | −0.016 | −0.068 | −0.049 | 0.152 |
| p | 0.909 | 0.444 | 0.599 | 0.807 | 0.186 | 0.893 | 0.562 | 0.676 | 0.179 | |
| HC | r | −0.049 | −0.053 | 0.038 | 0.03 | 0.216 | −0.152 | 0.064 | −0.007 | 0.092 |
| p | 0.68 | 0.656 | 0.749 | 0.749 | 0.065 | 0.195 | 0.589 | 0.954 | 0.415 | |
| WHR | r | −0.083 | −0.054 | 0.001 | 0.043 | −0.043 | 0.174 | 0.058 | 0.212 | −0.187 |
| p | 0.487 | 0.65 | 0.995 | 0.72 | 0.718 | 0.137 | 0.626 | 0.059 | 0.111 | |
| WHtR | r | −0.02 | −0.138 | −0.069 | −0.099 | 0.21 | −0.067 | −0.056 | −0.085 | 0.03 |
| p | 0.864 | 0.241 | 0.567 | 0.405 | 0.073 | 0.572 | 0.634 | 0.472 | 0.789 | |
| BAI | r | 0.009 | −0.104 | −0.129 | −0.153 | 0.265 | −0.207 | 0.071 | −0.109 | −0.091 |
| p | 0.937 | 0.379 | 0.28 | 0.197 | 0.023 | 0.077 | 0.547 | 0.357 | 0.423 | |
| FM% | r | 0.158 | −0.252 | −0.175 | −0.15 | 0.073 | −0.119 | −0.092 | −0.354 | −0.285 |
| p | 0.181 | 0.03 | 0.142 | 0.205 | 0.538 | 0.315 | 0.436 | 0.002 | 0.011 | |
| Control group: | ||||||||||
| BMI | r | −0119 | 0.129 | −0.05 | −0.143 | −0.034 | 0.013 | 0.068 | 0.146 | 0.392 |
| p | 0.321 | 0.282 | 0.679 | 0.23 | 0.777 | 0.917 | 0.572 | 0.226 | <0.001 | |
| WC | r | −0.196 | 0.207 | −0.19 | −0.123 | 0.132 | 0.087 | 0.061 | 0.22 | 0.486 |
| p | 0.098 | 0.083 | 0.111 | 0.303 | 0.269 | 0.467 | 0.616 | 0.066 | <0.001 | |
| HC | r | −0.079 | 0.101 | 0.027 | 0.011 | 0.026 | 0.112 | −0.001 | 0.155 | 0.155 |
| p | 0.51 | 0.402 | 0.824 | 0.93 | 0.829 | 0.349 | 0.993 | 0.171 | 0.171 | |
| WHR | r | −0.191 | 0.191 | −0.239 | −0.211 | 0.199 | 0.06 | 0.041 | 0.195 | 0.549 |
| p | 0.109 | 0.111 | 0.043 | 0.075 | 0.094 | 0.616 | 0.732 | 0.104 | <0.001 | |
| WHtR | r | −0.124 | 0.235 | −0.12 | −0.031 | 0.142 | 0.021 | 0.114 | 0.223 | 0.308 |
| p | 0.3 | 0.048 | 0.317 | 0.795 | 0.234 | 0.858 | 0.342 | 0.062 | 0.006 | |
| BAI | r | 0.111 | −0.039 | 0.112 | 0.19 | 0.007 | −0.098 | 0.056 | −0.024 | −0.357 |
| p | 0.351 | 0.748 | 0.349 | 0.109 | 0.953 | 0.412 | 0.644 | 0.842 | 0.001 | |
| FM% | r | 0.075 | −0.048 | 0.119 | 0.227 | −0.21 | −0.148 | 0.124 | −0.004 | −0.483 |
| p | 0.53 | 0.693 | 0.319 | 0.055 | 0.077 | 0.215 | 0.301 | 0.975 | <0.001 | |
| Cu | Zn | Mn | Co | Cr | Fe | Zn/Fe | Zn/Cu | Ferritin | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Study group: | ||||||||||
| BMI | bA (SE) | −0.1 (0.126) | −0.216 (0.118) | −0.075 (0.122) | −0.134 (0.121) | 0.118 (0.119) | −0.081 (0.118) | −0.084 (0.12) | −0.15 (0.125) | 0.103 (0.122) |
| p | 0.429 | 0.072 | 0.542 | 0.274 | 0.325 | 0.493 | 0.487 | 0.233 | 0.403 | |
| WC | bA (SE) | −0.068 (0.12) | −0.2 (0.114) | −0.096 (0.116) | −0.104 (0.117) | 0.153 (0.114) | −0.062 (0.113) | −0.092 (0.115) | −0.155 (0.12) | 0.02 (0.119) |
| p | 0.574 | 0.083 | 0.411 | 0.377 | 0.183 | 0.584 | 0.427 | 0.2 | 0.864 | |
| HC | bA (SE) | −0.095 (0.124) | −0.132 (0.118) | −0.027 (0.12) | −0.09 (0.12) | 0.211 (0.115) | −0.085 (0.116) | −0.003 (0.119) | −0.081 (0.124) | 0.056 (0.119) |
| p | 0.446 | 0.268 | 0.825 | 0.455 | 0.071 | 0.465 | 0.982 | 0.513 | 0.638 | |
| WHR | bA (SE) | 0.017 (0.103) | −0.149 (0.097) | −0.09 (0.099) | −0.037 (0.099) | −0.023 (0.098) | 0.01 (0.096) | −0.131 (0.097) | −0.143 (0.101) | −0.041 (0.1) |
| p | 0.871 | 0.13 | 0.362 | 0.713 | 0.816 | 0.92 | 0.183 | 0.161 | 0.683 | |
| WHtR | bA (SE) | −0.096 (0.124) | −0.194 (0.117) | −0.148 (0.119) | −0.141 (0.119) | 0.182 (0.116) | −0.074 (0.116) | −0.053 (0.119) | −0.128 (0.123) | 0.04 (0.12) |
| p | 0.44 | 0.102 | 0.215 | 0.24 | 0.121 | 0.525 | 0.655 | 0.301 | 0.74 | |
| BAI | bA (SE) | −0.104 (0.106) | −0.097 (0.1) | −0.089 (0.101) | −0.123 (0.1) | 0.201 (0.097) | −0.085 (0.098) | 0.051 (0.1) | −0.037 (0.105) | 0.071 (0.099) |
| p | 0.328 | 0.338 | 0.381 | 0.224 | 0.042 | 0.392 | 0.616 | 0.727 | 0.473 | |
| FM | bA (SE) | −0.078 (0.096) | −0.224 (0.086) | −0.047 (0.09) | −0.074 (0.091) | 0.031 (0.09) | −0.033 (0.089) | −0.047 (0.09) | −0.166 (0.092) | 0.054 (0.088) |
| p | 0.419 | 0.012 | 0.607 | 0.418 | 0.733 | 0.709 | 0.604 | 0.076 | 0.54 | |
| Control group: | ||||||||||
| BMI | bA (SE) | −0.094 (0.119) | 0.018 (0.121) | −0.023 (0.119) | −0.058 (0.125) | −0.11 (0.125) | −0.048 (0.119) | −0.01 (0.12) | 0.054 (0.121) | 0.16 (0.142) |
| p | 0.431 | 0.884 | 0.844 | 0.643 | 0.384 | 0.69 | 0.933 | 0.654 | 0.264 | |
| WC | bA (SE) | −0.089 (0.108) | 0.097 (0.109) | −0.072 (0.107) | 0.047 (0.113) | −0.015 (0.114) | 0.059 (0.108) | 0.077 (0.108) | 0.116 (0.108) | 0.18 (0.129) |
| p | 0.413 | 0.378 | 0.503 | 0.682 | 0.895 | 0.585 | 0.481 | 0.289 | 0.168 | |
| HC | bA (SE) | −0.092 (0.125) | 0.165 (0.125) | −0.076 (0.124) | 0.004 (0.131) | 0.005 (0.132) | 0.003 (0.125) | 0.09 (0.125) | 0.201 (0.124) | 0.228 (0.148) |
| p | 0.465 | 0.191 | 0.544 | 0.977 | 0.973 | 0.984 | 0.477 | 0.111 | 0.13 | |
| WHR | bA (SE) | −0.051 (0.097) | 0.005 (0.098) | −0.037 (0.096) | 0.058 (0.101) | −0.022 (0.102) | 0.086 (0.096) | 0.029 (0.098) | 0.005 (0.098) | 0.062 (0.115) |
| p | 0.604 | 0.962 | 0.702 | 0.569 | 0.832 | 0.377 | 0.768 | 0.956 | 0.594 | |
| WHtR | bA (SE) | −0.103 (0.12) | 0.063 (0.122) | −0.054 (0.12) | 0.072 (0.126) | 0.03 (0.127) | 0.052 (0.12) | 0.056 (0.121) | 0.078 (0.122) | 0.194 (0.144) |
| p | 0.395 | 0.605 | 0.653 | 0.57 | 0.813 | 0.666 | 0.645 | 0.526 | 0.181 | |
| BAI | bA (SE) | −0.075 (0.103) | 0.057 (0.104) | −0.016 (0.102) | 0.05 (0.108) | 0.1 (0.108) | −0.029 (0.103) | 0.027 (0.104) | 0.068 (0.104) | 0.168 (0.12) |
| p | 0.471 | 0.59 | 0.878 | 0.642 | 0.356 | 0.778 | 0.794 | 0.519 | 0.166 | |
| FM% | bA (SE) | −0.127 (0.096) | 0.077 (0.098) | 0.064 (0.096) | −0.067 (0.101) | −0.051 (0.102) | −0.002 (0.097) | 0.045 (0.097) | 0.104 (0.098) | 0.034 (0.115) |
| p | 0.188 | 0.435 | 0.508 | 0.507 | 0.619 | 0.983 | 0.643 | 0.289 | 0.769 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowicki, G.J.; Cybulska, A.M.; Polak, M.; Grochans, E.; Bohatyrewicz, R.; Blicharska, E.; Czernecki, T.; Adamczuk, A.; Łapot, M.; Ślusarska, B. Assessment of the Association Between Anthropometric Indices Related to Overweight and Obesity and Selected Trace Elements and Heavy Metals: A Cross-Sectional Study. Nutrients 2025, 17, 3141. https://doi.org/10.3390/nu17193141
Nowicki GJ, Cybulska AM, Polak M, Grochans E, Bohatyrewicz R, Blicharska E, Czernecki T, Adamczuk A, Łapot M, Ślusarska B. Assessment of the Association Between Anthropometric Indices Related to Overweight and Obesity and Selected Trace Elements and Heavy Metals: A Cross-Sectional Study. Nutrients. 2025; 17(19):3141. https://doi.org/10.3390/nu17193141
Chicago/Turabian StyleNowicki, Grzegorz Józef, Anna Maria Cybulska, Maciej Polak, Elżbieta Grochans, Romuald Bohatyrewicz, Eliza Blicharska, Tomasz Czernecki, Agnieszka Adamczuk, Magdalena Łapot, and Barbara Ślusarska. 2025. "Assessment of the Association Between Anthropometric Indices Related to Overweight and Obesity and Selected Trace Elements and Heavy Metals: A Cross-Sectional Study" Nutrients 17, no. 19: 3141. https://doi.org/10.3390/nu17193141
APA StyleNowicki, G. J., Cybulska, A. M., Polak, M., Grochans, E., Bohatyrewicz, R., Blicharska, E., Czernecki, T., Adamczuk, A., Łapot, M., & Ślusarska, B. (2025). Assessment of the Association Between Anthropometric Indices Related to Overweight and Obesity and Selected Trace Elements and Heavy Metals: A Cross-Sectional Study. Nutrients, 17(19), 3141. https://doi.org/10.3390/nu17193141

