Cardiorespiratory Fitness in Low Calcium Consumers: Potential Impact of Calcium Intake on Cardiorespiratory Fitness
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Dietary Record
2.3. Physical Working Capacity
2.4. Physical Activity Participation
2.5. Anthropometric and Body Composition Measurements
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Ahmed, M.; Praneet Ng, A.; L’Abbe, M.R. Nutrient intakes of Canadian adults: Results from the Canadian Community Health Survey (CCHS)-2015 Public Use Microdata File. Am. J. Clin. Nutr. 2021, 114, 1131–1140. [Google Scholar] [CrossRef]
- National Institutes of Health. Calcium; Office of Dietary Supplements, Ed.; Fact Sheet for Consumers; National Institutes of Health: Bethesda, MD, USA, 2023. [Google Scholar]
- Pereira, M.A.; Jacobs, D.R., Jr.; Van Horn, L.; Slattery, M.L.; Kartashov, A.I.; Ludwig, D.S. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: The CARDIA Study. JAMA 2002, 287, 2081–2089. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T. Mechanism of the calcium-regulation of muscle contraction—In pursuit of its structural basis. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2015, 91, 321–350. [Google Scholar] [CrossRef] [PubMed]
- Sudhof, T.C. Calcium control of neurotransmitter release. Cold Spring Harb. Perspect. Biol. 2012, 4, a011353. [Google Scholar] [CrossRef] [PubMed]
- Boyman, L.; Karbowski, M.; Lederer, W.J. Regulation of Mitochondrial ATP Production: Ca(2+) Signaling and Quality Control. Trends Mol. Med. 2020, 26, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Prompt, C.A.; Quinton, P.M. Functions of calcium in sweat secretion. Nature 1978, 272, 171–172. [Google Scholar] [CrossRef]
- Kaul, A.; Glaser, S.; Hannemann, A.; Schaper, C.; Nauck, M.; Felix, S.B.; Bollmann, T.; Ewert, R.; Friedrich, N. Vitamin D is associated with cardiopulmonary exercise capacity: Results of two independent cohorts of healthy adults. Br. J. Nutr. 2016, 115, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Pu, F.; Chen, N.; Xue, S. Calcium intake, calcium homeostasis and health. Food Sci. Hum. Wellness 2016, 5, 8–16. [Google Scholar] [CrossRef]
- Peacock, C.A.; Pollock, B.S.; Burns, K.L.; Sanders, G.J.; Glickman, E.L. Improving Cardiovascular Performance and Decreasing Perceived Exertion with Lactate Supplement. J. Exerc. Physiol. Online 2012, 15, 68–74. [Google Scholar]
- Zemel, M.B. Role of calcium and dairy products in energy partitioning and weight management. Am. J. Clin. Nutr. 2004, 79, 907S–912S. [Google Scholar] [CrossRef]
- Melanson, E.L.; Sharp, T.A.; Schneider, J.; Donahoo, W.T.; Grunwald, G.K.; Hill, J.O. Relation between calcium intake and fat oxidation in adult humans. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 196–203. [Google Scholar] [CrossRef]
- Michelucci, A.; Liang, C.; Protasi, F.; Dirksen, R.T. Altered Ca(2+) Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021, 11, 424. [Google Scholar] [CrossRef]
- Smogorzewski, M.; Piskorska, G.; Borum, P.R.; Massry, S.G. Chronic renal failure, parathyroid hormone and fatty acids oxidation in skeletal muscle. Kidney Int. 1988, 33, 555–560. [Google Scholar] [CrossRef]
- Tremblay, A.; Perusse, L.; Bertrand, C.; Jacob, R.; Couture, C.; Drapeau, V. Effects of sodium intake and cardiorespiratory fitness on body composition and genetic susceptibility to obesity: Results from the Quebec Family Study. Br. J. Nutr. 2023, 129, 77–86. [Google Scholar] [CrossRef]
- Chaput, J.P.; Perusse, L.; Despres, J.P.; Tremblay, A.; Bouchard, C. Findings from the Quebec Family Study on the Etiology of Obesity: Genetics and Environmental Highlights. Curr. Obes. Rep. 2014, 3, 54–66. [Google Scholar] [CrossRef]
- Tremblay, A.; Sévigny, J.; Leblanc, C.; Bouchard, C. The reproducibility of a three-day dietary record. Nutr. Res. 1983, 3, 819–830. [Google Scholar] [CrossRef]
- Lortie, G.; Bouchard, C.; Leblanc, C.; Tremblay, A.; Simoneau, J.A.; Theriault, G.; Savoie, J.P. Familial similarity in aerobic power. Hum. Biol. 1982, 54, 801–812. [Google Scholar] [PubMed]
- Astrand, P.O.; Ryhming, I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J. Appl. Physiol. 1954, 7, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Tremblay, A.; Leblanc, C.; Lortie, G.; Savard, R.; Theriault, G. A method to assess energy expenditure in children and adults. Am. J. Clin. Nutr. 1983, 37, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Despres, J.P.; Bouchard, C.; Tremblay, A. Short sleep duration is associated with reduced leptin levels and increased adiposity: Results from the Quebec family study. Obesity 2007, 15, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. The gross composition of the body. Adv. Biol. Med. Phys. 1956, 4, 239–280. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to mediation, moderation and conditional process analysis. In A Regression-Based Approach; Guilford Press: New York, NY, USA, 2018. [Google Scholar]
- Greer, B.; Mojock, C.; Arjmandi, B.; Kim, J.S.; Ormsbee, M.; Panton, L. Twelve week calcium collagen chelate or calcium plus vitamin D supplementation does not affect bone metabolism in trained cyclists. J. Sci. Cycl. 2022, 11, 49–58. [Google Scholar] [CrossRef]
- Zemel, M.B. Regulation of adiposity and obesity risk by dietary calcium: Mechanisms and implications. J. Am. Coll. Nutr. 2002, 21, 146S–151S. [Google Scholar] [CrossRef]
- Perna, A.F.; Smogorzewski, M.; Massry, S.G. Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium. Kidney Int. 1989, 36, 453–457. [Google Scholar] [CrossRef]
- Li, X.; Zhao, X.; Qin, Z.; Li, J.; Sun, B.; Liu, L. Regulation of calcium homeostasis in endoplasmic reticulum-mitochondria crosstalk: Implications for skeletal muscle atrophy. Cell Commun. Signal. 2025, 23, 17. [Google Scholar] [CrossRef] [PubMed]
- Voss, L.; Nobrega, M.; Bandeira, L.; Griz, L.; Rocha-Filho, P.A.S.; Bandeira, F. Impaired physical function and evaluation of quality of life in normocalcemic and hypercalcemic primary hyperparathyroidism. Bone 2020, 141, 115583. [Google Scholar] [CrossRef] [PubMed]
- Amstrup, A.K.; Rejnmark, L.; Vestergaard, P.; Sikjaer, T.; Rolighed, L.; Heickendorff, L.; Mosekilde, L. Vitamin D status, physical performance and body mass in patients surgically cured for primary hyperparathyroidism compared with healthy controls—A cross-sectional study. Clin. Endocrinol. 2011, 74, 130–136. [Google Scholar] [CrossRef]
- Colliander, E.B.; Strigard, K.; Westblad, P.; Rolf, C.; Nordenstrom, J. Muscle strength and endurance after surgery for primary hyperparathyroidism. Eur. J. Surg. 1998, 164, 489–494. [Google Scholar] [CrossRef]
- Hedman, I.; Grimby, G.; Tisell, L.E. Improvement of muscle strength after treatment for hyperparathyroidism. Acta Chir. Scand. 1984, 150, 521–524. [Google Scholar] [PubMed]
- Diniz, E.T.; Bandeira, F.; Lins, O.G.; Cavalcanti, E.N.; de Arruda, T.M.; Januario, A.M.; Diniz, K.T.; Marques, T.F.; Azevedo, H. Primary hyperparathyroidism is associated with subclinical peripheral neural alterations. Endocr. Pract. 2013, 19, 219–225. [Google Scholar] [CrossRef]
- Ramezani Ahmadi, A.; Mohammadshahi, M.; Alizadeh, A.; Ahmadi Angali, K.; Jahanshahi, A. Effects of vitamin D3 supplementation for 12 weeks on serum levels of anabolic hormones, anaerobic power, and aerobic performance in active male subjects: A randomized, double-blind, placebo-controlled trial. Eur. J. Sport. Sci. 2020, 20, 1355–1367. [Google Scholar] [CrossRef]
- Montenegro, K.R.; Carlessi, R.; Cruzat, V.; Newsholme, P. Effects of vitamin D on primary human skeletal muscle cell proliferation, differentiation, protein synthesis and bioenergetics. J. Steroid Biochem. Mol. Biol. 2019, 193, 105423. [Google Scholar] [CrossRef] [PubMed]
- Girgis, C.M. Vitamin D and Skeletal Muscle: Emerging Roles in Development, Anabolism and Repair. Calcif. Tissue Int. 2020, 106, 47–57. [Google Scholar] [CrossRef]
- Bolland, M.J.; Avenell, A.; Baron, J.A.; Grey, A.; MacLennan, G.S.; Gamble, G.D.; Reid, I.R. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: Meta-analysis. BMJ 2010, 341, c3691. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Shi, H.; Greer, B.; Dirienzo, D.; Zemel, P.C. Regulation of adiposity by dietary calcium. FASEB J. 2000, 14, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Jacqmain, M.; Doucet, E.; Despres, J.P.; Bouchard, C.; Tremblay, A. Calcium intake, body composition, and lipoprotein-lipid concentrations in adults. Am. J. Clin. Nutr. 2003, 77, 1448–1452. [Google Scholar] [CrossRef] [PubMed]
- Melanson, E.L.; Donahoo, W.T.; Dong, F.; Ida, T.; Zemel, M.B. Effect of low- and high-calcium dairy-based diets on macronutrient oxidation in humans. Obes. Res. 2005, 13, 2102–2112. [Google Scholar] [CrossRef]
- Tordoff, M.G. Calcium: Taste, intake, and appetite. Physiol. Rev. 2001, 81, 1567–1597. [Google Scholar] [CrossRef]
Variable | Tertiles of Calcium Intake | ||
---|---|---|---|
Males | Low (n = 85) | Middle (n = 86) | High (n = 86) |
Age (years) | 43.7 ± 14.1 | 40.8 ± 15.0 | 32.9 ± 13.2 |
Calcium intake (mg/day) | 579 ± 140 | 980 ± 134 | 1544 ± 314 |
Females | Low (n = 106) | Middle (n = 107) | High (n = 106) |
Age (years) | 40.3 ± 14.2 | 37.5 ± 13.2 | 34.9 ± 13.4 |
Calcium intake (mg/day) | 500 ± 105 | 818 ± 78 | 1214 ± 271 |
(a) Males | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Low Ca | Middle Ca | High Ca | p Value | Group Difference | ||||||
N | Mean | SEM | N | Mean | SEM | N | Mean | SEM | |||
PWC150/KG | 78 | 10.76 | 0.38 | 76 | 10.65 | 0.38 | 83 | 11.99 | 0.38 | 0.0239 | H-M |
MN89 | 81 | 1.62 | 0.37 | 85 | 1.36 | 0.36 | 83 | 2.48 | 0.38 | 0.0891 | |
VO2 max (mlO2/kg.min−1) | 85 | 25.43 | 0.75 | 86 | 25 | 0.75 | 86 | 28.13 | 0.77 | 0.0086 | H-M/H-L |
VITAMIN D (mcg/d) | 85 | 4.44 | 0.43 | 86 | 6.53 | 0.43 | 86 | 9.89 | 0.44 | <0.0001 | H-L/H-M/M-L |
BODY WEIGHT (cm) | 85 | 78.86 | 1.81 | 86 | 76.63 | 1.8 | 86 | 80.37 | 1.88 | 0.2871 | |
BMI (kg/m2) | 85 | 26.28 | 0.55 | 86 | 25.46 | 0.55 | 86 | 26.62 | 0.57 | 0.2398 | |
PERCENT BODY FAT | 81 | 22.74 | 0.84 | 86 | 21.13 | 0.82 | 85 | 20.93 | 0.85 | 0.2198 | |
FAT MASS (kg) | 81 | 19.42 | 1.16 | 86 | 17.12 | 1.13 | 85 | 17.73 | 1.18 | 0.2789 | |
FAT-FREE MASS (kg) | 81 | 60.18 | 0.87 | 86 | 59.51 | 0.85 | 85 | 62.74 | 0.88 | 0.0157 | H-M |
(b) Females | |||||||||||
Variable | Low Ca | Middle Ca | High Ca | p Value | Group Difference | ||||||
N | Mean | SEM | N | Mean | SEM | N | Mean | SEM | |||
PWC150/KG | 82 | 6.72 | 0.26 | 90 | 7.22 | 0.25 | 87 | 7.53 | 0.26 | 0.0731 | |
MN89 | 99 | 0.86 | 0.18 | 104 | 0.87 | 0.18 | 102 | 1.38 | 0.18 | 0.0806 | |
VO2 max (mlO2/kg.min−1) | 106 | 16.65 | 0.47 | 107 | 17.6 | 0.47 | 106 | 17.92 | 0.47 | 0.1184 | |
VITAMIN D (mcg/d) | 106 | 2.91 | 0.26 | 107 | 5.12 | 0.26 | 106 | 7.37 | 0.26 | <0.0001 | H-L/H-M/M-L |
BODY WEIGHT (cm) | 106 | 69.14 | 1.75 | 107 | 68.47 | 1.76 | 106 | 66.95 | 1.78 | 0.629 | |
BMI (kg/m2) | 106 | 26.92 | 0.67 | 107 | 26.28 | 0.67 | 106 | 25.73 | 0.67 | 0.4122 | |
PERCENT BODY FAT | 95 | 33.15 | 0.96 | 104 | 30.55 | 0.92 | 104 | 29.49 | 0.93 | 0.0118 | H-L |
FAT MASS (kg) | 95 | 24.33 | 1.31 | 104 | 22.54 | 1.26 | 104 | 21.01 | 1.27 | 0.1484 | |
FAT-FREE MASS (kg) | 95 | 45.28 | 0.63 | 104 | 46.12 | 0.61 | 104 | 45.32 | 0.61 | 0.5011 |
Variable | Males | Females | ||
---|---|---|---|---|
Calcium | Vitamin D | Calcium | Vitamin D | |
Age | −0.34 *** | −0.04 | −0.16 ** | 0.04 |
PWC150 | 0.16 * | 0.12 | 0.15 * | 0.02 |
VO2 max | 0.31 *** | 0.12 | 0.19 *** | 0.01 |
MN89 | 0.14 * | 0.14 * | 0.10 | 0.01 |
BODY WEIGHT | −0.02 | 0.02 | −0.03 | 0.09 |
BMI | −0.10 | 0.01 | −0.09 | 0.09 |
PERCENT BODY FAT | −0.30 *** | −0.06 | −0.17 ** | 0.01 |
FAT MASS | −0.21 *** | −0.05 | −0.09 | 0.06 |
FAT-FREE MASS | 0.22 *** | 0.09 | 0.05 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennedy, J.; Pérusse, L.; Drapeau, V.; Tremblay, A. Cardiorespiratory Fitness in Low Calcium Consumers: Potential Impact of Calcium Intake on Cardiorespiratory Fitness. Nutrients 2025, 17, 3138. https://doi.org/10.3390/nu17193138
Kennedy J, Pérusse L, Drapeau V, Tremblay A. Cardiorespiratory Fitness in Low Calcium Consumers: Potential Impact of Calcium Intake on Cardiorespiratory Fitness. Nutrients. 2025; 17(19):3138. https://doi.org/10.3390/nu17193138
Chicago/Turabian StyleKennedy, Julian, Louis Pérusse, Vicky Drapeau, and Angelo Tremblay. 2025. "Cardiorespiratory Fitness in Low Calcium Consumers: Potential Impact of Calcium Intake on Cardiorespiratory Fitness" Nutrients 17, no. 19: 3138. https://doi.org/10.3390/nu17193138
APA StyleKennedy, J., Pérusse, L., Drapeau, V., & Tremblay, A. (2025). Cardiorespiratory Fitness in Low Calcium Consumers: Potential Impact of Calcium Intake on Cardiorespiratory Fitness. Nutrients, 17(19), 3138. https://doi.org/10.3390/nu17193138