Short-Term Mediterranean Dietary Intervention Reduces Plasma Trimethylamine-N-Oxide Levels in Healthy Individuals
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Anthropometric Measurements
2.3. Food Intake
2.4. Blood Parameters
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
BIA | Bioelectrical impedance analysis |
BMI | Body mass index |
FMO1 | Flavin-containing monooxygenase 1 |
FMO3 | Flavin-containing monooxygenase 3 |
GGT | Gamma-glutamyl transferase |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
MEDAS | Mediterranean Diet Adherence Screener |
TMA | Trimethylamine |
TMAO | Trimethylamine-N-oxide |
References
- Dernini, S.; Berry, E.M. Mediterranean Diet: From a healthy diet to a sustainable dietary pattern. Front. Nutr. 2015, 2, 15. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients 2021, 13, 2028. [Google Scholar] [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean diet: A review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef]
- Panagiotou, E.; Andreou, E.; Nicolaou, S.A. The effect of dietary components of the Mediterranean diet on food allergies: A systematic review. Nutrients 2021, 13, 2028. [Google Scholar] [CrossRef] [PubMed]
- Gardener, H.; Caunca, M.R. Mediterranean Diet in Preventing Neurodegenerative Diseases. Curr. Nutr. Rep. 2018, 7, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Simó, C.; García-Cañas, V. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Food and Function. Food Funct. 2020, 11, 6745–6776. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Shanmugham, M.; Bellanger, S.; Leo, C. Gut-Derived Metabolite, Trimethylamine-N-oxide (TMAO) in Cardio-Metabolic Diseases: Detection, Mechanism, and Potential Therapeutics. Pharmaceuticals 2023, 16, 504. [Google Scholar] [CrossRef]
- Constantino-Jonapa, L.; Espinoza-Palacios, Y.; Escalona-Montaño, A.; Hernández-Ruiz, P.; Amezcua-Guerra, L.; Amedei, A.; Aguirre-García, M. Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines 2023, 11, 431. [Google Scholar] [CrossRef]
- Ilari, S.; Proietti, S.; Milani, F.; Vitiello, L.; Muscoli, C.; Russo, P.; Bonassi, S. Dietary Patterns, Oxidative Stress, and Early Inflammation: A Systematic Review and Meta-Analysis Comparing Mediterranean, Vegan, and Vegetarian Diets. Nutrients 2025, 17, 548. [Google Scholar] [CrossRef]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut Microbiota 2016, 65, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Kühn, T.; Rohrmann, S.; Sookthai, D.; Johnson, T.; Katzke, V.; Kaaks, R.; von Eckardstein, A.; Müller, D. Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin. Chem. Lab. Med. 2017, 55, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Hartiala, J.; Bennett, B.J.; Tang, W.H.; Wang, Z.; Stewart, A.F.; Roberts, R.; McPherson, R.; Lusis, A.J.; Hazen, S.L.; Allayee, H. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, M.T.; Ramezani, A.; Manal, A.; Raj, D.S. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins 2016, 8, 326. [Google Scholar] [CrossRef]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2019, 3, CD009825. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef]
- Pekcan, G. Beslenme Durumunun Belirlenmesi. In Hastalıklarda Beslenme Tedavisi; Alphan, E.T., Ed.; Hatiboğlu Yayınevi: Ankara, Türkiye, 2013; pp. 85–134. [Google Scholar]
- Beslenme Bilgi Sistemi (BeBİS 7.2); Stuttgart, Germany, 2010.
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Sannino, A.; Toscano, E.; Giugliano, G.; Gargiulo, G.; Franzone, A.; Trimarco, B.; Esposito, G.; Perrino, C. Gut microbe- generated metabolite trimethylamine- N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur. Heart J. 2017, 38, 2948–2956. [Google Scholar] [CrossRef]
- Huc, T.; Drapala, A.; Gawrys, M.; Konop, M.; Bielinska, K.; Zaorska, E.; Samborowska, E.; Wyczalkowska-Tomasik, A.; Pączek, L.; Dadlez, M.; et al. Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1805–H1820. [Google Scholar] [CrossRef]
- Mirji, G.; Worth, A.; Bhat, S.A.; El Sayed, M.; Kannan, T.; Goldman, A.R.; Tang, H.Y.; Liu, Q.; Auslander, N.; Dang, C.V.; et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 2022, 7, eabn0704. [Google Scholar] [CrossRef]
- Organ, C.L.; Li, Z.; Sharp, T.E., III; Polhemus, D.J.; Gupta, N.; Goodchild, T.T.; Tang, W.H.W.; Hazen, S.L.; Lefer, D.J. Nonlethal Inhibition of Gut Microbial Trimethylamine N-oxide Production Improves Cardiac Function and Remodeling in a Murine Model of Heart Failure. J. Am. Heart Assoc. 2020, 9, e016223. [Google Scholar] [CrossRef]
- Gupta, N.; Buffa, J.A.; Roberts, A.B.; Sangwan, N.; Skye, S.M.; Li, L.; Ho, K.J.; Varga, J.; DiDonato, J.A.; Tang, W.H.W.; et al. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1239–1255. [Google Scholar] [CrossRef]
- Nowiński, A.; Ufnal, M. Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition 2018, 46, 7–12. [Google Scholar] [CrossRef]
- Rohrman, S.; Linseisen, J.; Allenspach, M.; von Eckardstein, A.; Müller, D. Plasma Concentrations of Trimethylamine-N-oxide Are Directly Associated with Dairy Food Consumption and Low-Grade Inflammation in a German Adult Population. J. Nutr. 2016, 146, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, X.; Papaemmanouil, A.; Papageorgiou, N.; Savopoulos, C.; Chourdakis, M.; Triantafyllou, A. The Association Between Lifestyle Interventions and Trimethylamine N-Oxide: A Systematic-Narrative Hybrid Literature Review. Nutrients 2025, 17, 1280. [Google Scholar] [CrossRef]
- Miller, C.; Corbin, K.D.; Da Costa, K.-A.; Zhang, S.; Zhao, X.; Galanko, J.; Blevins, T.; Bennett, B.J.; O’Connor, A.; Zeisel, S.H. Effect of egg ingestion on trimethylamine-N-oxide production in humans: A randomized, controlled, dose-response study. Am. J. Clin. Nutr. 2014, 100, 778–786. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, W.H.W.; O’Connell, T.; Garcia, E.; Jeyarajah, E.J.; Li, X.S.; Jia, X.; Weeks, T.L.; Hazen, S.L. Circulating trimethylamine N-oxide levels following fish or seafood consumption. Eur. J. Nutr. 2022, 61, 2357–2364. [Google Scholar] [CrossRef]
- Krüger, R.; Merz, B.; Rist, M.J.; Ferrario, P.G.; Bub, A.; Kulling, S.E.; Watzl, B. Associations of current diet with plasma and urine TMAO in the KarMeN study: Direct and indirect contributions. Mol. Nutr. Food Res. 2017, 61, 1700363. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.E.; Taesuwan, S.; Malysheva, O.V.; Bender, E.; Tulchinsky, N.F.; Yan, J.; Sutter, J.L.; Caudill, M.A. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol. Nutr. Food Res. 2017, 61, 1600324. [Google Scholar] [CrossRef] [PubMed]
- Argyridou, S.; Davies, M.J.; Biddle, G.J.H.; Bernieh, D.; Suzuki, T.; Dawkins, N.P.; Rowlands, A.V.; Khunti, K.; Yates, T.; Smith, A.C. Evaluation of an 8-Week Vegan Diet on Plasma Trimethylamine-N-Oxide and Postchallenge Glucose in Adults with Dysglycemia or Obesity. J. Nutr. 2021, 151, 1844–1853. [Google Scholar] [CrossRef]
- Lombardo, M.; Aulisa, G.; Marcon, D.; Rizzo, G. The Influence of Animal- or Plant-Based Diets on Blood and Urine Trimethylamine-N-Oxide (TMAO) Levels in Humans. Curr. Nutr. Rep. 2022, 11, 56–68. [Google Scholar] [CrossRef]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Somma, C.D.; Maisto, M.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine N-oxide, Mediterranean diet, and nutrition in healthy, normal-weight adults: Also a matter of sex? Nutrition 2019, 62, 7–17. [Google Scholar] [CrossRef]
- Griffin, L.E.; Djuric, Z.; Angiletta, C.J.; Mitchell, C.M.; Baugh, M.E.; Davy, K.P.; Neilson, A.P. A mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct. 2019, 10, 2138–2147. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Ivey, K.; Wang, D.; Wilkinson, J.; Franke, A.; Lee, K.; Chan, A.; Huttenhower, C.; Hu, F.; et al. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: Findings from a longitudinal cohort of US men. Gut 2021, 71, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Bédard, A.; Tchernof, A.; Lamarche, B.; Corneau, L.; Dodin, S.; Lemieux, S. Effects of the traditional Mediterranean diet on adiponectin and leptin concentrations in men and premenopausal women: Do sex differences exist? Eur. J. Clin. Nutr. 2014, 68, 561–566. [Google Scholar] [CrossRef]
- Goldberg, L.R.; Strycker, L.A. Personality traits and eating habits: The assessment of food preferences in a large community sample. Personal. Individ. Differ. 2002, 32, 49–65. [Google Scholar] [CrossRef]
- Canadian Institutes of Health Research, Institute of Gender and Health. What a Difference Sex and Gender Make: A Gender, Sex and Health Research Casebook; Canadian Institutes of Health Research, Institute of Gender and Health: Ottawa, ON, Canada, 2012. [Google Scholar]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean Diet, its Components, and Cardiovascular Disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef]
- Tzima, N.; Pitsavos, C.; Panagiotakos, D.B.; Skoumas, J.; Zampelas, A.; Chrysohoou, C.; Stefanadis, C. Mediterranean diet and insulin sensitivity, lipid profile and blood pressure levels, in overweight and obese people; the Attica study. Lipids Health Dis. 2007, 6, 22. [Google Scholar] [CrossRef]
- Sangouni, A.A.; Hassani Zadeh, S.; Mozaffari-Khosravi, H.; Hosseinzadeh, M. Effect of Mediterranean diet on liver enzymes: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2022, 128, 1231–1239. [Google Scholar] [CrossRef]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef] [PubMed]
- Bajerska, J.; Chmurzyńska, A.; Muzsik, A.; Krzyżanowska, P.; Mądry, E.; Malinowska, A.; Walkowiak, J. Weight loss and metabolic health effects from energy-restricted Mediterranean and Central-European diets in postmenopausal women: A randomized controlled trial. Sci. Rep. 2018, 8, 11170. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Kastorini, C.M.; Panagiotakos, D.B.; Giugliano, D. Mediterranean diet and weight loss: Meta-analysis of randomized controlled trials. Metab. Syndr. Relat. Disord. 2011, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
Females (n = 30) | Males (n = 23) | Total (n = 53) | ||||
---|---|---|---|---|---|---|
Age (X ± SD) (years) | 41.00 ± 8.40 | 36.13 ± 8.86 | 38.89 ± 8.86 | |||
N | % | N | % | N | % | |
Marital status | ||||||
Single | 15 | 50 | 8 | 34.8 | 23 | 43.4 |
Married | 15 | 50 | 15 | 65.2 | 30 | 56.6 |
Education level | ||||||
Low | 2 | 6.7 | - | - | 2 | 3.8 |
Intermediate | 4 | 13.3 | 5 | 21.7 | 9 | 17.0 |
High | 24 | 80.0 | 18 | 78.3 | 42 | 79.2 |
Any chronic disease | ||||||
Yes | 11 | 36.7 | 5 | 21.7 | 16 | 30.2 |
No | 19 | 63.3 | 18 | 78.3 | 37 | 69.8 |
Using any medication | ||||||
Yes | 3 | 10.0 | 1 | 4.3 | 4 | 7.5 |
No | 27 | 90.0 | 22 | 95.7 | 49 | 92.5 |
Females (n = 30) | Males (n = 23) | Total (n = 53) | |
---|---|---|---|
Values | |||
X ± SD | X ± SD | X ± SD | |
Weight (kg) | 64.39 ± 9.83 | 77.24 ± 7.24 | 69.96 ± 10.84 |
BMI (kg/m2) | 24.73 ± 3.51 | 24.83 ± 2.75 | 24.77 ± 3.17 |
Fat mass (kg) | 17.04 ± 6.75 | 14.66 ± 4.40 | 16 ± 5.92 |
Fat (%) | 26.52 ± 8.37 | 20.88 ± 9.48 | 24.07 ± 9.22 |
Muscle mass (kg) | 53.75 ± 8.98 | 59.44 ± 4.82 | 50.56 ± 10.79 |
Muscle (%) | 70.52 ± 6.66 | 77.16 ± 4.36 | 73.40 ± 6.62 |
Water (kg) | 31.74 ± 2.88 | 43.77 ± 2.74 | 36.96 ± 6.63 |
Water (%) | 49.83 ± 4.16 | 56.88 ± 3.20 | 52.89 ± 5.14 |
Waist (cm) | 77.06 ± 10.12 | 87.91 ± 6,59 | 81.77 ± 10.24 |
Hip (cm) | 97.06 ± 6.62 | 98.56 ± 4.05 | 97.71 ± 5.65 |
Waist/Hip | 0.78 ± 0.05 | 0.88 ± 0.03 | 0.83 ± 0.06 |
Females | Males | Total | p | |
---|---|---|---|---|
Values | ||||
(n = 30) | (n = 23) | (n = 53) | ||
Energy (kcal) | 1240.75 ± 341.82 | 1697.12 ± 402.62 | 1438 ± 431.15 | <0.001 a |
CHO (g) | 107.09 ± 47.27 | 156.81 ± 51.61 | 128.67 ± 54.70 | 0.001 a |
Protein (g) | 51.96 (46.85–57.72) | 80.98 (62.13–94.93) | 56.35 (50.86–79.86) | <0.001 b |
Fat (g) | 65.68 ± 17.79 | 79.94 ± 20.56 | 71.87 ± 20.16 | 0.009 a |
PUFA (g) | 15.37 ± 4.38 | 18.43 ± 6.27 | 16.70 ± 5.45 | 0.041 a |
SFA (g) | 23.60 ± 8.09 | 28.35 ± 6.98 | 25.66 ± 7.92 | 0.029 a |
MUFA (g) | 22.10 ± 6.16 | 27.15 ± 8.38 | 24.29 ± 7.57 | 0.015 a |
Omega 3 (g) | 1.76 ± 0.54 | 2.44 ± 1.09 | 2.05 ± 0.89 | 0.011 a |
Omega 6 (g) | 13.51 ± 4.29 | 15.67 ± 5.25 | 14.45 ± 4.80 | 0.105 a |
Thiamine (mg) | 0.56 ± 0.12 | 0.77 ± 0.25 | 0.65 ± 0.22 | 0.001 a |
Niacin (mg) | 9.18 ± 2.30 | 14.18 ± 4.55 | 11.35 ± 4.24 | <0.001 a |
Vit B12 (mg) | 3.87 ± 1.52 | 5.78 ± 2.10 | 4.70 ± 2.02 | <0.001 a |
Vit E (mg) | 13.99 ± 3.96 | 15.56 ± 5.06 | 14.67 ± 4.49 | 0.209 a |
Fiber (g) | 14.53 ± 4.70 | 17.16 ± 6.78 | 15.67 ± 5.79 | 0.102 a |
Cholesterol (mg) | 289.42 ± 132.17 | 350.11 ± 125.30 | 315.76 ± 131.55 | 0.096 a |
Vit A (RE) | 908.68 (638.35–1191.50) | 705.07 (614.02–976.10) | 801.27 (635.27–1100.70) | 0.127 b |
Vit B6 (mg) | 0.93 ± 0.19 | 1.25 ± 0.33 | 1.07 ± 0.30 | <0.001 a |
Riboflavin (mg) | 0.96 ± 0.20 | 1.26 ± 0.35 | 1.09 ± 0.31 | <0.001 a |
Vit C (mcg) | 68.95 (47.56–84.89) | 55.69 (43.48–83.26) | 63.89 (45.06–83.13) | 0.419 b |
Groups (Points) | Females | Males | Total | p | |||
---|---|---|---|---|---|---|---|
(n = 30) | (n = 23) | (n = 53) | |||||
S | % | S | % | S | % | ||
<7 | 21 | 70.0 | 16 | 69.6 | 37 | 69.8 | |
7–8 | 4 | 13.3 | 2 | 8.7 | 6 | 11.3 | 0.755 c |
>9 | 5 | 16.7 | 5 | 21.7 | 10 | 18.9 |
Males (n = 10) | Females (n = 10) | |||||
---|---|---|---|---|---|---|
First | Second | p | First | Second | p | |
Weight (kg) | 79.20 ± 8.41 | 76.57 ± 8.75 | 0.001 * | 69.65 ± 8.57 | 68.43 ± 9.40 | 0.095 |
BMI (kg/m2) | 25.12 ± 2.17 | 24.28 ± 2.34 | 0.001 * | 26.92 ± 2.37 | 26.43 ± 2.58 | 0.071 |
Fat mass (kg) | 15.79 ± 3.95 | 14.70 ± 4.60 | 0.021 * | 21.91 ± 5.59 | 21.60 ± 5.58 | 0.425 |
Fat (%) | 19.70 ± 3.17 | 18.85 ± 4.06 | 0.085 | 33.50 ± 7.47 | 31.19 ± 4.30 | 0.405 |
Muscle mass (kg) | 60.24 ± 4.91 | 58.79 ± 4.69 | 0.001 * | 45.34 ± 4.18 | 44.44 ± 4.51 | 0.190 |
Muscle (%) | 76.28 ± 3.02 | 77.10 ± 3.86 | 0.082 | 65.42 ± 4.45 | 65.29 ± 4.07 | 0.809 |
Water mass (kg) | 44.93 ± 2.62 | 43.96 ± 2.53 | <0.001 * | 33.16 ± 3.20 | 32.31 ± 1.86 | 0.287 |
Water (%) | 57.00 ± 3.11 | 57.77 ± 3.66 | 0.040 * | 47.89 ± 3.93 | 47.67 ± 3.79 | 0.816 |
Waist (cm) | 90.2 ± 6.19 | 88.4 ± 7.33 | 0.014 * | 84.20 ± 8.43 | 83.60 ± 8.50 | 0.217 |
Hip (cm) | 100.00 ± 3.33 | 99.10 ± 4.22 | 0.068 | 101.90 ± 5.38 | 101.60 ± 5.66 | 0.434 |
Waist/Hip | 0.89 ± 0.03 | 0.88 ± 0.03 | 0.019 * | 0.82 ± 0.03 | 0.81 ± 0.04 | 0.443 |
Males (n = 10) | Females (n = 10) | |||||
---|---|---|---|---|---|---|
First | Second | p | First | Second | p | |
TMAO b | 14.79 (1.04–29.91) | 8.12 (5.92–25.79) | 0.005 * | 15.99 (12.56–19.86) | 6.50 (5.84–6.85) | 0.005 * |
FBS a | 94.60 ± 5.14 | 94.50 ± 4.94 | 0.963 | 95.00 ± 9.75 | 94.50 ± 4.94 | 0.714 |
Total cholesterol b | 221.5 (203.25–230.5) | 186.5 (165.25–208) | 0.009 * | 211.5 (189–235) | 214 (190–231) | 0.541 |
HDL cholesterol a | 48.20 ± 13.23 | 46.20 ± 6.77 | 0.549 | 61.60 ± 10.91 | 62.10 ± 12.01 | 0.749 |
LDL cholesterol a | 151.40 ± 23.04 | 132.10 ± 27.35 | 0.035 * | 129.50 ± 45.62 | 133.70 ± 44.98 | 0.474 |
Triglyceride b | 115.5 (76.5–203) | 82 (56–169.75) | 0.013 * | 101.5 (62–130.5) | 85 (61–110) | 0.414 |
ALT b | 41.5 (29–55) | 31.5 (28–33.75) | 0.022 * | 29.5 (24.25–35.75) | 25 (21–29.5) | 0.139 |
AST a | 20.60 ± 5.44 | 18.80 ± 4.70 | 0.457 | 18.70 ± 4.00 | 17.90 ± 4.60 | 0.621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deniz, M.Ş.; Baş, M. Short-Term Mediterranean Dietary Intervention Reduces Plasma Trimethylamine-N-Oxide Levels in Healthy Individuals. Nutrients 2025, 17, 3135. https://doi.org/10.3390/nu17193135
Deniz MŞ, Baş M. Short-Term Mediterranean Dietary Intervention Reduces Plasma Trimethylamine-N-Oxide Levels in Healthy Individuals. Nutrients. 2025; 17(19):3135. https://doi.org/10.3390/nu17193135
Chicago/Turabian StyleDeniz, Melike Şeyma, and Murat Baş. 2025. "Short-Term Mediterranean Dietary Intervention Reduces Plasma Trimethylamine-N-Oxide Levels in Healthy Individuals" Nutrients 17, no. 19: 3135. https://doi.org/10.3390/nu17193135
APA StyleDeniz, M. Ş., & Baş, M. (2025). Short-Term Mediterranean Dietary Intervention Reduces Plasma Trimethylamine-N-Oxide Levels in Healthy Individuals. Nutrients, 17(19), 3135. https://doi.org/10.3390/nu17193135