Bifidobacterium animalis subsp. lactis TISTR 2591 Improves Glycemic Control and Immune Response in Adults with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Crossover Clinical Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Tools and Materials
2.2. Study Design
2.3. Participants
2.4. Sample Size
2.5. Intervention and Assessment
2.6. Outcomes Assessment
2.7. Statistical Analysis
2.8. Use of Artificial Intelligence Tools
3. Results
3.1. Baseline Characteristics of Participants
3.2. Safety Evaluations
3.2.1. Body Composition and Physiological Indicators
3.2.2. Hematological Parameters
3.2.3. Biochemical Indicators
3.3. Efficacy Assessment
3.3.1. Effects on Changes in Fasting Blood Glucose (FBG) Levels
3.3.2. Effects on Pancreatic Function
3.3.3. Effects on Immune System Response
3.3.4. Effects on Adipose Tissue Function
3.3.5. Effects on the Protein Degradation
3.3.6. Effects on Inflammation
3.3.7. Effects on Oxidative Stress and Antioxidant Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BA-2591 | Bifidobacterium animalis subsp. lactis TISTR 2591 |
T2DM | Type 2 diabetes mellitus |
FBG | Fasting Blood Glucose |
HOMA-IR | Homeostasis Model Assessment Indices for Insulin Resistance |
HOMA-β | Homeostasis Model Assessment Indices for Beta-cell Function |
CFU | Colony Forming Unit |
CONSORT | Consolidated Standards of Reporting Trials |
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; Boyko, E.J., Magliano, D.J., Karuranga, S., Piemonte, L., Riley, P., Saeedi, P., Sun, H., Eds.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 978-2-930229-98-0. [Google Scholar]
- Awney, H.A. The Effects of Bifidobacteria on the Lipid Profile and Oxidative Stress Biomarkers of Male Rats Fed Thermally Oxidized Soybean Oil. Biomarkers 2011, 16, 445–452. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Zeng, Z.; Qin, Y.; Shen, Q.; Li, P. Anti-Diabetic Effects of Bifidobacterium animalis 01 through Improving Hepatic Insulin Sensitivity in Type 2 Diabetic Rat Model. J. Funct. Foods 2020, 67, 103843. [Google Scholar] [CrossRef]
- Sharma, P.; Bhardwaj, P.; Singh, R. Administration of Lactobacillus casei and Bifidobacterium bifidum Ameliorated Hyperglycemia, Dyslipidemia, and Oxidative Stress in Diabetic Rats. Int. J. Prev. Med. 2016, 7, 102. [Google Scholar] [CrossRef]
- Zhang, C.; Fang, B.; Zhang, N.; Zhang, Q.; Niu, T.; Zhao, L.; Sun, E.; Wang, J.; Xiao, R.; He, J.; et al. The Effect of Bifidobacterium animalis subsp. lactis MN-Gup on Glucose Metabolism, Gut Microbiota, and Their Metabolites in Type 2 Diabetic Mice. Nutrients 2024, 16, 1691. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, R.; Yang, Y.; Dai, R.; Shang, J.; Yu, Q. Intervention Effect of Probiotic Bifidobacterium on Type 2 Diabetes Mellitus Rats. J. Hyg. Res. 2014, 43, 277-81–285. [Google Scholar]
- Chaiyasut, C.; Sivamaruthi, B.S.; Lailerd, N.; Sirilun, S.; Thangaleela, S.; Khongtan, S.; Bharathi, M.; Kesika, P.; Saelee, M.; Choeisoongnern, T.; et al. Influence of Bifidobacterium breve on the Glycaemic Control, Lipid Profile and Microbiome of Type 2 Diabetic Subjects: A Preliminary Randomized Clinical Trial. Pharmaceuticals 2023, 16, 695. [Google Scholar] [CrossRef]
- Klungsupya, P.; Saiki, P.; Wannissorn, B.; Ruengsomwong, S.; Muangman, T.; Bamrungchue, N.; Taengphan, W. Probiotic Property and Biological Activities of Bifidobacterium animalis subsp. lactis TISTR 2591 Isolated from Thai Population. World J. Adv. Res. Rev. 2020, 5, 149–162. [Google Scholar] [CrossRef]
- Mazloom, Z.; Yousefinejad, A.; Dabbaghmanesh, M.H. Effect of Probiotics on Lipid Profile, Glycemic Control, Insulin Action, Oxidative Stress, and Inflammatory Markers in Patients with Type 2 Diabetes: A Clinical Trial. Iran. J. Med. Sci. 2011, 38, 38–43. [Google Scholar] [CrossRef]
- Hanchang, W.; Dissook, S.; Wongmanee, N.; Rojanaverawong, W.; Charoenphon, N.; Pakaew, K.; Sitdhipol, J.; Thanagornyothin, T.; Phapugrangkul, P.; Ayudthaya, S.P.N.; et al. Antidiabetic Effect of Bifidobacterium animalis TISTR 2591 in a Rat Model of Type 2 Diabetes. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef]
- Bovenschen, H.J.; Janssen, M.J.R.; Van Oijen, M.G.H.; Laheij, R.J.F.; Van Rossum, L.G.M.; Jansen, J.B.M.J. Evaluation of a Gastrointestinal Symptoms Questionnaire. Dig. Dis. Sci. 2006, 51, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Bespinyowong, R.; Pongthananikorn, S.; Chiabchalard, A. Efficacy and Safety of Gymnema Inodorum Tea Consumption in Type 2 Diabetic Patients. Chulalongkorn Med. J. 2013, 57, 587–599. [Google Scholar] [CrossRef]
- Yoon, H. Relationship between Metabolic Syndrome, Metabolic Syndrome Score, Insulin Resistance and Beta Cell Function in Korean Adults with Obesity. Korean J. Clin. Lab. Sci. 2020, 52, 327–334. [Google Scholar] [CrossRef]
- Feldman, E. Thiobarbituric Acid Reactive Substances (TBARS) Assay; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhou, J.; Diao, X.; Wang, T.; Chen, G.; Lin, Q.; Yang, X.; Xu, J. Phylogenetic Diversity and Antioxidant Activities of Culturable Fungal Endophytes Associated with the Mangrove Species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS ONE 2018, 13, e0197359. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An Overview of Beneficial Effects. Antonie Van Leeuwenhoek 2002, 82, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Hickson, M. Probiotics in the Prevention of Antibiotic-Associated Diarrhoea and Clostridium difficile Infection. Ther. Adv. Gastroenterol. 2011, 4, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The Pros, Cons, and Many Unknowns of Probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef] [PubMed]
- Dwidar, A.M.; Hawash, N.; Ziada, D.H.; Hasan, A.M.; El-kalla, F.S.; Badawi, R. The Impact of Probiotics on Gut Microbiota and Non-Alcoholic Fatty Liver Disease (NAFLD) Progression Based on Controlled Attenuated Parameter (CAP) Elastography: Randomized Controlled Trial. Int. J. Health Sci. 2022, 6, 10882–10900. [Google Scholar] [CrossRef]
- Bohlouli, J.; Namjoo, I.; Borzoo-Isfahani, M.; Hojjati Kermani, M.A.; Balouch Zehi, Z.; Moravejolahkami, A.R. Effect of Probiotics on Oxidative Stress and Inflammatory Status in Diabetic Nephropathy: A Systematic Review and Meta-Analysis of Clinical Trials. Heliyon 2021, 7, e05925. [Google Scholar] [CrossRef] [PubMed]
- Riveros, N.F.H.; García-Corredor, L.; Martínez-Solarte, M.A.; González-Clavijo, A. Effect of Bifidobacterium Intake on Body Weight and Body Fat in Overweight and Obese Adult Subjects: A Systematic Review and Meta-Analysis. J. Am. Nutr. Assoc. 2024, 43, 519–531. [Google Scholar] [CrossRef]
- Kober, A.K.M.H.; Saha, S.; Ayyash, M.; Namai, F.; Nishiyama, K.; Yoda, K.; Villena, J.; Kitazawa, H. Insights into the Anti-Adipogenic and Anti-Inflammatory Potentialities of Probiotics against Obesity. Nutrients 2024, 16, 1373. [Google Scholar] [CrossRef]
- Nishida, C.; Barba, C.; Cavalli-Sforza, T.; Cutter, J.; Deurenberg, P.; Darnton-Hill, I.; Deurenberg-Yap, M.; Gill, T.; James, P.; Ko, G.; et al. Appropriate Body-Mass Index for Asian Populations and Its Implications for Policy and Intervention Strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.C.W.; Chan, J.C.N. Type 2 Diabetes in East Asians: Similarities and Differences with Populations in Europe and the United States. Ann. N. Y. Acad. Sci. 2013, 1281, 64–91. [Google Scholar] [CrossRef]
- Salles, B.I.M.; Cioffi, D.; Ferreira, S.R.G. Probiotics Supplementation and Insulin Resistance: A Systematic Review. Diabetol. Metab. Syndr. 2020, 12, 98. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ. Microbiol. 2016, 19, 29–41. [Google Scholar] [CrossRef]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-Chain Fatty Acids in Control of Body Weight and Insulin Sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef]
- Sharma, V.K.; Singh, T.G.; Dhiman, S.; Garg, N. Mechanisms of Beneficial Effects of Probiotics in Diabetes Mellitus. In Probiotic Research in Therapeutics; Springer Nature: Singapore, 2022; pp. 97–124. ISBN 978-981-16-8444-9. [Google Scholar]
- Zhang, D.; Gao, X.; Li, H.; Borger, D.K.; Wei, Q.; Yang, E.; Xu, C.; Pinho, S.; Frenette, P.S. The Microbiota Regulates Hematopoietic Stem Cell Fate Decisions by Controlling Iron Availability in Bone Marrow. Cell Stem Cell 2022, 29, 232–247.e7. [Google Scholar] [CrossRef]
- Azizpour, K.; van Kessel, K.; Oudega, R.; Rutten, F. The Effect of Probiotic Lactic Acid Bacteria (LAB) Strains on the Platelet Activation: A Flow Cytometry-Based Study. J. Probiotics Health 2017, 5, 185. [Google Scholar] [CrossRef]
- Asgharian, A.; Mohammadi, V.; Gholi, Z.; Esmaillzade, A.; Feizi, A.; Askari, G. The Effect of Synbiotic Supplementation on Body Composition and Lipid Profile in Patients with NAFLD: A Randomized, Double Blind, Placebo-Controlled Clinical Trial Study. Iran. Red Crescent Med. J. 2017, 19, e42902. [Google Scholar] [CrossRef]
- Suastika, A.V.; Widiana, I.G.R.; Fatmawati, N.N.D.; Suastika, K.; Paulus, I.B.; Sujaya, I.N. The Role of Probiotics and Synbiotics on Treatment of Gestational Diabetes: Systematic Review and Meta-Analysis. AJOG Glob. Rep. 2024, 4, 100285. [Google Scholar] [CrossRef]
- Abildinova, G.Z.; Benberin, V.V.; Vochshenkova, T.A.; Afshar, A.; Mussin, N.M.; Kaliyev, A.A.; Zhussupova, Z.; Tamadon, A. The Gut-Brain-Metabolic Axis: Exploring the Role of Microbiota in Insulin Resistance and Cognitive Function. Front. Microbiol. 2024, 15, 1463958. [Google Scholar] [CrossRef] [PubMed]
- Van Syoc, E.P.; Damani, J.; DiMattia, Z.; Ganda, E.; Rogers, C.J. The Effects of Bifidobacterium Probiotic Supplementation on Blood Glucose: A Systematic Review and Meta-Analysis of Animal Models and Clinical Evidence. Adv. Nutr. 2023, 15, 100137. [Google Scholar] [CrossRef]
- Hsieh, P.S.; Ho, H.H.; Tsao, S.P.; Hsieh, S.H.; Lin, W.Y.; Chen, J.F.; Kuo, Y.W.; Tsai, S.Y.; Huang, H.Y. Multi-Strain Probiotic Supplement Attenuates Streptozotocin-Induced Type-2 Diabetes by Reducing Inflammation and β-Cell Death in Rats. PLoS ONE 2021, 16, e0251646. [Google Scholar] [CrossRef]
- Everard, A.; Cani, P.D. Diabetes, Obesity and Gut Microbiota. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 73–83. [Google Scholar] [CrossRef]
- Barnett, A.G.; van der Pols, J.C.; Dobson, A.J. Regression to the Mean: What It Is and How to Deal with It. Int. J. Epidemiol. 2005, 34, 215–220. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V. The Effects of Probiotic and Conventional Yoghurt on Diabetes Markers and Insulin Resistance in Type 2 Diabetic Patients: A Randomized Controlled Clinical Trial. Iran. J. Endocrinol. Metab. 2010, 13, 1–8. [Google Scholar]
- Araújo, A.D.M.; Botelho, P.B.; Ribeiro, D.J.S.; Magalhães, K.G.; Nakano, E.Y.; Arruda, S.F. A Multiple-Strain Probiotic Product Provides a Better Enzymatic Antioxidant Response in Individuals with Constipation in a Double-Blind Randomized Controlled Trial. Nutrition 2021, 89, 111225. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V. Probiotic Yogurt Improves Antioxidant Status in Type 2 Diabetic Patients. Nutrition 2011, 28, 539–543. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. Summary of Revisions: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S5–S10. [Google Scholar] [CrossRef]
- Kwon, H.K.; Lee, C.G.; So, J.S.; Chae, C.S.; Hwang, J.S.; Sahoo, A.; Nam, J.H.; Rhee, J.H.; Hwang, K.C.; Im, S.H. Generation of Regulatory Dendritic Cells and CD4+ Foxp3+ T Cells by Probiotics Administration Suppresses Immune Disorders. Proc. Natl. Acad. Sci. USA 2010, 107, 2159–2164. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Sarker, M.; Wan, D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. Biomed. Res. Int. 2018, 2018, 8063647. [Google Scholar] [CrossRef] [PubMed]
- Sabico, S.; Al-Mashharawi, A.; Al-Daghri, N.M.; Wani, K.; Amer, O.E.; Hussain, D.S.; Ahmed Ansari, M.G.; Masoud, M.S.; Alokail, M.S.; McTernan, P.G. Effects of a 6-Month Multi-Strain Probiotics Supplementation in Endotoxemic, Inflammatory and Cardiometabolic Status of T2DM Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2018, 38, 1561–1569. [Google Scholar] [CrossRef]
- Su, Y.; Ren, J.; Zhang, J.; Zheng, J.; Zhang, Q.; Tian, Y.; Zhang, Y.; Jiang, Y.; Zhang, W. Lactobacillus paracasei JY062 Alleviates Glucolipid Metabolism Disorders via the Adipoinsular Axis and Gut Microbiota. Nutrients 2024, 16, 267. [Google Scholar] [CrossRef]
- LE, T.K.C.; Hosaka, T.; LE, T.T.T.; Nguyen, T.G.; Tran, Q.B.; LE, T.H.H.; Da Pham, X. Oral Administration of Bifidobacterium spp. Improves Insulin Resistance, in-Duces Adiponectin, and Prevents Inflammatory Adipokine Expressions. Biomed. Res. 2014, 35, 303–310. [Google Scholar] [CrossRef]
- Vermeulen, I.; Li, M.; van Mourik, H.; Yadati, T.; Eijkel, G.; Balluff, B.; Godschalk, R.; Temmerman, L.; Biessen, E.A.L.; Kulkarni, A.; et al. Inhibition of Intracellular versus Extracellular Cathepsin D Differentially Alters the Liver Lipidome of Mice with Metabolic Dysfunction-Associated Steatohepatitis. FEBS J. 2024, 292, 1781–1797. [Google Scholar] [CrossRef]
- Silva, N.S.; Cerdeira, C.D.; Reis, T.M.; Rodrigues, M.R. Effects of Probiotics on Markers of Oxidative/Nitrosative Stress and Damage Associated with Inflammation in Non-Communicable Diseases: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Naseri, K.; Saadati, S.; Ashtary-Larky, D.; Asbaghi, O.; Ghaemi, F.; Pashayee-Khamene, F.; Yari, Z.; de Courten, B. Probiotics and Synbiotics Supplementation Improve Glycemic Control Parameters in Subjects with Prediabetes and Type 2 Diabetes Mellitus: A GRADE-Assessed Systematic Review, Meta-Analysis, and Meta-Regression of Randomized Clinical Trials. Pharmacol. Res. 2022, 184, 106399. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Z.; Zhang, Q.; Su, D.; Wang, P.; Li, Y.; Shi, W.; Zhang, Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024, 16, 2494. [Google Scholar] [CrossRef] [PubMed]
- Chantarangkul, C.; Phuengmaung, P.; Leelahavanichkul, A.; Piewngam, P.; Otto, M.; Taweechotipatr, M. Lipid-Lowering and Antioxidant Properties of Probiotic Bifidobacterium Animalis MSMC83 in Rats on a High-Fat Diet. Benef. Microbes. 2024, 16, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Naseri, K.; Saadati, S.; Ghaemi, F.; Ashtary-Larky, D.; Asbaghi, O.; Sadeghi, A.; Afrisham, R.; de Courten, B. The Effects of Probiotic and Synbiotic Supplementation on Inflammation, Oxidative Stress, and Circulating Adiponectin and Leptin Concentration in Subjects with Prediabetes and Type 2 Diabetes Mellitus: A GRADE-Assessed Systematic Review, Meta-Analysis, and Meta-Regression of Randomized Clinical Trials. Eur. J. Nutr. 2022, 62, 543–561. [Google Scholar] [CrossRef]
- Nikbakht, E.; Khalesi, S.; Singh, I.; Williams, L.T.; West, N.P.; Colson, N. Effect of Probiotics and Synbiotics on Blood Glucose: A Systematic Review and Meta-Analysis of Controlled Trials. Eur. J. Nutr. 2016, 57, 95–106. [Google Scholar] [CrossRef]
- Zheng, H.J.; Guo, J.; Jia, Q.; Huang, Y.S.; Huang, W.-J.; Zhang, W.; Zhang, F.; Liu, W.J.; Wang, Y. The Effect of Probiotic and Synbiotic Supplementation on Biomarkers of Inflammation and Oxidative Stress in Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2019, 142, 303–313. [Google Scholar] [CrossRef] [PubMed]
Parameters | Participants (n = 42) | p-Value b | |
---|---|---|---|
Group A (n = 21) | Group B (n = 21) | ||
Sex (Male/Female) | 3 (14.29)/18 (85.71) | 5 (23.81)/16 (76.19) | 0.216 |
Age (years) | 57.24 ± 5.59 | 59.05 ± 5.88 | 0.063 |
FBG (mg/dL) | 135.70 ± 16.71 | 134.30 ± 18.86 | 0.320 |
HbA1c | 7.10 ± 1.82 | 6.64 ± 1.27 | 0.298 |
BMI (kg/m2) | 24.03 ± 5.26 | 25.19 ± 5.022 | 0.203 |
Waist cir. (cm) | 83.57 ± 12.55 | 86.50 ± 11.12 | 0.210 |
Hip cir. (cm) | 95.83 ± 10.43 | 95.94 ± 9.424 | 0.419 |
Waist/Hip Ratio | 0.88 ± 0.06 | 0.90 ± 0.06 | 0.150 |
SYS (mmHg) | 134.60 ± 13.40 | 140.40 ± 21.40 | 0.193 |
DIA (mmHg) | 81.05 ± 7.27 | 81.33 ± 10.19 | 0.428 |
HR (BPM) | 88.48 ± 8.841 | 86.48 ± 16.12 | 0.108 |
Parameters | Probiotic (n = 42) | Placebo (n = 42) | p-Value b | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Mean Difference | 95% CI | Before | After | Mean Difference | 95% CI | ||
Weight (kg) | 58.69 ± 12.90 | 58.79 ± 12.70 | 0.105 | −0.410 to 0.620 | 58.27 ± 12.39 | 58.60 ± 12.75 | 0.331 | −0.184 to 0.846 | 0.202 |
BMI (kg/m2) | 24.72 ± 5.26 | 24.78 ± 5.22 | 0.054 | −0.169 to 0.276 | 24.54 ± 5.04 | 24.68 ± 5.18 | 0.134 | −0.089 to 0.357 | 0.215 |
Hip circumference (cm) | 97.22 ± 10.47 | 96.27 ± 9.59 | −0.943 | −2.44 to 0.561 | 96.46 ± 10.17 | 96.36 ± 10.08 | −0.100 | −1.604 to 1.404 | 0.216 |
Waist circumference (cm) | 87.35 ± 12.76 | 86.46 ± 12.42 | −0.883 | −2.899 to 1.132 | 87.17 ± 11.56 | 86.28 ± 11.63 | −0.891 | −2.906 to 1.125 | 0.482 |
Waist/Hip Ratio | 0.89 ± 0.06 | 0.89 ± 0.07 | 0.000 | −0.021 to 0.0210 | 0.90 ± 0.06 | 0.89 ± 0.05 | −0.009 | −0.029 to 0.012 | 0.260 |
SYS (mmHg) | 138.83 ± 20.29 | 138.57 ± 19.26 | −0.262 | −4.869 to 4.345 | 139.14 ± 17.94 | 134.59 ± 15.09 | −4.548 | −9.155 to 0.059 | 0.064 |
DIA (mmHg) | 82.21 ± 9.49 | 80.76 ± 10.69 | −1.452 | −4.459 to 1.554 | 82.19 ± 9.54 | 79.64 ± 9.82 | −2.548 | −5.554 to 0.459 | 0.322 |
HR (BPM) | 86.45 ± 12.64 | 86.24 ± 14.38 | −0.214 | −2.820 to 2.391 | 87.69 ± 13.78 | 86.45 ± 13.81 | −1.238 | −3.843 to 1.367 | 0.303 |
Fat mass (%) | 29.65 ± 11.24 | 31.35 ± 10.81 | 1.702 | −1.072 to 4.477 | 29.98 ± 10.97 | 32.62 ± 10.00 | 2.648 | −0.126 to 5.422 | 0.276 |
Body water (%) | 52.16 ± 5.76 | 51.65 ± 5.69 | −0.505 | −1.007 to −0.002 | 51.82 ± 5.62 | 51.58 ± 5.33 | −0.233 | −0.735 to 0.269 | 0.136 |
Visceral fat (cm2) | 7.63 ± 3.45 | 8.01 ± 3.15 | 0.381 | −0.159 to 0.921 | 7.86 ± 3.08 | 7.90 ± 3.22 | 0.036 | −0.504 to 0.576 | 0.067 |
Bone mass (kg) | 2.42 ± 0.84 | 2.46 ± 0.82 | 0.045 | −0.085 to 0.174 | 2.42 ± 0.78 | 2.42 ± 0.84 | −0.000 | −0.130 to 0.130 | 0.206 |
BMR (kcal) | 1127.97 ± 187.28 | 1108.44 ± 180.97 | −19.520 | −38.490 to −0.556 | 1103.09 ± 174.19 | 1108.19 ± 183.84 | 5.095 | −13.87 to 24.06 | 0.011 * |
Parameters | Probiotic (n = 42) | Placebo (n = 42) | p-Value b | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Mean Difference | 95% CI | Before | After | Mean Difference | 95% CI | ||
WBC (×103 µL) | 7.98 ± 2.18 | 7.88 ± 2.58 | −0.103 | −0.606 to 0.399 | 8.15 ± 2.08 | 7.74 ± 2.08 | −0.404 | −0.907 to 0.098 | 0.084 |
RBC (×106 µL) | 4.74 ± 0.67 | 4.69 ± 0.76 | −0.047 | −0.242 to 0.1474 | 4.79 ± 0.77 | 4.79 ± 0.64 | −0.007 | −0.201 to 0.188 | 0.140 |
HBG (g/dL) | 12.71 ± 1.57 | 12.44 ± 1.72 | −0.271 | −0.768 to 0.225 | 12.82 ± 2.19 | 12.74 ± 1.71 | −0.076 | −0.572 to 0.420 | 0.041 * |
HCT (%) | 38.69 ± 4.06 | 38.24 ± 4.82 | −0.452 | −2.017 to 1.112 | 39.32 ± 6.22 | 38.87 ± 4.48 | −0.450 | −2.015 to 1.115 | 0.488 |
MCV (fl) | 82.62 ± 10.79 | 82.66 ± 11.17 | 0.033 | −0.870 to 0.937 | 82.72 ± 10.56 | 81.99 ± 10.70 | −0.733 | −1.637 to 0.170 | 0.003 * |
MCH (pg) | 27.22 ± 4.37 | 26.96 ± 4.39 | −0.252 | −0.608 to 0.104 | 27.03 ± 4.29 | 26.94 ± 4.34 | −0.098 | −0.454 to 0.258 | 0.138 |
MCHC (g/dL) | 32.80 ± 1.30 | 32.50 ± 1.27 | −0.300 | −0.502 to −0.098 | 32.54 ± 1.36 | 32.71 ± 1.36 | 0.174 | −0.028 to 0.376 | <0.001 * |
PLT count (×103 µL) | 280.19 ± 86.57 | 300.83 ± 76.99 | 20.640 | 5.036 to 36.250 | 301.28 ± 74.33 | 292.54 ± 89.84 | −8.738 | −24.34 to 6.868 | <0.001 * |
Neutrophil (%) | 57.05 ± 8.12 | 56.02 ± 8.77 | −1.024 | −3.895 to 1.847 | 57.45 ± 8.12 | 55.05 ± 10.11 | −2.405 | −5.276 to 0.466 | 0.089 |
Lymphocyte (%) | 32.24 ± 7.35 | 33.00 ± 6.53 | 0.762 | −1.820 to 3.344 | 31.83 ± 6.32 | 33.74 ± 8.38 | 1.905 | −0.677 to 4.487 | 0.070 |
Monocyte (%) | 6.83 ± 2.04 | 6.74 ± 2.15 | −0.095 | −0.645 to 0.454 | 6.78 ± 1.93 | 7.16 ± 2.36 | 0.381 | −0.169 to 0.931 | 0.085 |
Eosinophil (%) | 3.57 ± 3.12 | 3.71 ± 3.74 | 0.143 | −0.506 to 0.791 | 3.62 ± 3.14 | 3.81 ± 3.40 | 0.191 | −0.458 to 0.838 | 0.448 |
Basophil (%) | 0.54 ± 0.55 | 0.62 ± 0.62 | 0.071 | −0.194 to 0.337 | 0.50 ± 0.55 | 0.54 ± 0.55 | 0.048 | −0.218 to 0.314 | 0.381 |
Parameters | Probiotic (n = 42) | Placebo (n = 42) | p-Value b | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Mean Difference | 95% CI | Before | After | Mean Difference | 95% CI | ||
BUN (mg/dL) | 14.44 ± 3.91 | 14.35 ± 4.32 | −0.086 | −1.436 to 1.264 | 14.47 ± 3.91 | 15.38 ± 4.36 | 0.917 | −0.433 to 2.267 | 0.035 * |
Creatinine (mg/dL) | 0.82 ± 0.24 | 0.82 ± 0.22 | −0.003 | −0.038 to 0.032 | 0.85 ± 0.26 | 0.84 ± 0.26 | −0.014 | −0.049 to 0.021 | 0.177 |
Cholesterol (mg/dL) | 189.50 ± 44.35 | 186.40 ± 39.19 | −3.095 | −11.15 to 4.963 | 188.45 ± 46.56 | 190.48 ± 48.40 | 2.024 | −6.035 to 10.080 | 0.077 |
Triglyceride (mg/dL) | 172.47 ± 73.62 | 170.62 ± 88.62 | −1.857 | −32.980 to 29.260 | 177.16 ± 94.57 | 189.16 ± 102.22 | 12.000 | −19.120 to 43.120 | 0.215 |
HDL-C (mg/dL) | 55.52 ± 19.16 | 55.83 ± 20.26 | 0.310 | −3.659 to 4.278 | 56.17 ± 26.00 | 54.36 ± 20.68 | −1.810 | −5.778 to 2.159 | 0.213 |
LDL-C (mg/dL) | 102.21 ± 37.68 | 99.17 ± 36.08 | −3.048 | −11.590 to 5.494 | 99.64 ± 38.59 | 104.88 ± 38.78 | 5.238 | −3.304 to 13.780 | 0.009 * |
LDL-c/HDL-c | 1.98 ± 0.79 | 1.95 ± 0.78 | −0.036 | −0.196 to 0.124 | 1.98 ± 0.85 | 2.06 ± 0.80 | 0.089 | −0.071 to 0.248 | 0.024 * |
AST/SGOT (U/L) | 36.45 ± 23.33 | 36.88 ± 26.08 | 0.429 | −3.955 to 4.812 | 34.67 ± 21.64 | 37.50 ± 29.07 | 2.833 | −1.550 to 7.217 | 0.212 |
ALT/SGPT (U/L) | 30.24 ± 24.82 | 32.88 ± 29.86 | 2.643 | −1.069 to 6.354 | 30.90 ± 28.53 | 31.19 ± 27.86 | 0.286 | −3.426 to 3.997 | 0.170 |
ALP (U/L) | 90.86 ± 31.14 | 90.07 ± 32.63 | −0.786 | −6.280 to 4.708 | 90.43 ± 30.68 | 88.00 ± 27.28 | −2.429 | −7.922 to 3.065 | 0.298 |
Parameters | Probiotic (n = 42) | Placebo (n = 42) | p-Value b | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Mean Difference | 95% CI | Before | After | Mean Difference | 95% CI | ||
Blood Glucose Level | |||||||||
FBG (mg/dL) | 137.90 ± 21.98 | 139.00 ± 25.82 | 1.143 | −7.399 to 9.685 | 131.00 ± 20.59 | 143.50 ± 27.76 | 12.570 | 4.030 to 21.110 | <0.001 * |
HbA1c (%) | 6.88 ± 1.62 | 6.95 ± 1.52 | 0.071 | −0.2073 to 0.350 | 6.84 ± 1.35 | 6.86 ± 1.41 | 0.014 | −0.264 to 0.292 | 0.188 |
Pancreatic Beta Cell Function | |||||||||
Fasting Insulin (µIU/mL) | 14.88 ± 5.28 | 16.27 ± 5.34 | 1.386 | −0.894 to 3.666 | 17.30 ± 6.83 | 18.51 ± 7.02 | 1.208 | −1.072 to 3.488 | 0.461 |
HOMA-IR | 5.06 ± 1.90 | 5.63 ± 2.22 | 0.567 | −0.284 to 1.417 | 5.66 ± 2.56 | 6.64 ± 3.06 | 0.980 | 0.129 to 1.830 | 0.006 * |
HOMA-β (%) | 77.30 ± 37.05 | 84.09 ± 37.68 | 6.791 | −7.913 to 21.490 | 96.12 ± 37.64 | 87.81 ± 33.23 | −8.313 | −23.020 to 6.391 | <0.001 * |
Immune Response | |||||||||
IgM (mg/dL) | 330.60 ± 218.50 | 480.90 ± 342.80 | 150.300 | 57.690 to 242.90 | 553.00 ± 364.40 | 421.50 ± 246.30 | −131.500 | −224.100 to −38.880 | <0.001 * |
IgG (mg/dL) | 479.40 ± 233.70 | 740.90 ± 256.70 | 261.500 | 130.50 to 392.40 | 638.40 ± 362.20 | 387.7 ± 164.30 | −250.700 | −381.700 to −119.700 | <0.001 * |
Parameters | Probiotic (n = 42) | Placebo (n = 42) | p-Value b | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Mean Difference | 95% CI | Before | After | Mean Difference | 95% CI | ||
Adipocyte function | |||||||||
Adiponectin (µg/mL) | 28.61 ± 17.65 | 23.54 ± 14.09 | −5.075 | −9.704 to −0.446 | 29.00 ± 16.90 | 23.99 ± 14.94 | −5.005 | −9.634 to −0.375 | 0.437 |
Protein Degradation | |||||||||
Cathepsin D (FI unit/mg protein) | 32,236 ± 9194 | 30,508 ± 8617 | −1728.0 | −4992 to 1536 | 30,795 ± 8660 | 32,529 ± 8291 | 1734.0 | −1530 to 4998 | 0.005 * |
Inflammation | |||||||||
hs-CRP (mg/L) | 2.94 ± 3.74 | 2.89 ± 3.09 | −0.053 | −0.810 to 0.704 | 2.94 ± 3.29 | 3.20 ± 3.45 | 0.271 | −0.486 to 1.020 | 0.213 |
IL−6 (pg/mL) | 39.99 ± 17.91 | 55.83 ± 24.12 | 15.840 | 6.486 to 25.190 | 39.32 ± 16.13 | 53.31 ± 19.47 | 13.990 | 5.409 to 22.570 | 0.386 |
Lipid peroxidation | |||||||||
Plasma MDA (mmol/L) | 0.29 ± 0.10 | 0.25 ± 0.08 | −0.041 | −0.112 to 0.030 | 0.38 ± 0.14 | 0.30 ± 0.16 | −0.069 | −0.140 to 0.001 | 0.206 |
Antioxidant | |||||||||
TEAC (mg TE/mL) | 0.200 ± 0.005 | 0.196 ± 0.005 | −0.004 | −0.006 to −0.001 | 0.199 ± 0.005 | 0.202 ± 0.005 | 0.002 | −0.001 to 0.005 | <0.001 * |
RBCs Glutathione (µmol/L) | 152.90 ± 65.20 | 173.50 ± 87.36 | 20.600 | −27.940 to 69.130 | 193.60 ± 104.60 | 194.60 ± 95.65 | 0.933 | −47.600 to 49.470 | 0.190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khiaolaongam, W.; Boonyapranai, K.; Sitdhipol, J.; Thaveethaptaikul, P.; Khongrum, J.; Chonpathompikunlert, P.; Ounjaijean, S. Bifidobacterium animalis subsp. lactis TISTR 2591 Improves Glycemic Control and Immune Response in Adults with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Crossover Clinical Trial. Nutrients 2025, 17, 3097. https://doi.org/10.3390/nu17193097
Khiaolaongam W, Boonyapranai K, Sitdhipol J, Thaveethaptaikul P, Khongrum J, Chonpathompikunlert P, Ounjaijean S. Bifidobacterium animalis subsp. lactis TISTR 2591 Improves Glycemic Control and Immune Response in Adults with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Crossover Clinical Trial. Nutrients. 2025; 17(19):3097. https://doi.org/10.3390/nu17193097
Chicago/Turabian StyleKhiaolaongam, Wiritphon, Kongsak Boonyapranai, Jaruwan Sitdhipol, Punnathorn Thaveethaptaikul, Jurairat Khongrum, Pennapa Chonpathompikunlert, and Sakaewan Ounjaijean. 2025. "Bifidobacterium animalis subsp. lactis TISTR 2591 Improves Glycemic Control and Immune Response in Adults with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Crossover Clinical Trial" Nutrients 17, no. 19: 3097. https://doi.org/10.3390/nu17193097
APA StyleKhiaolaongam, W., Boonyapranai, K., Sitdhipol, J., Thaveethaptaikul, P., Khongrum, J., Chonpathompikunlert, P., & Ounjaijean, S. (2025). Bifidobacterium animalis subsp. lactis TISTR 2591 Improves Glycemic Control and Immune Response in Adults with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Crossover Clinical Trial. Nutrients, 17(19), 3097. https://doi.org/10.3390/nu17193097