Impact of Sarcopenia and Nutritional Status on Survival of Patients with Aortic Dissection: A Scoping Review
Abstract
1. Introduction
Objectives and Rationale
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
- -
- Articles published in 2015–2025;
- -
- Original articles (observational and randomized trials), meta-analyses, systematic and narrative reviews;
- -
- Articles with access to the full text;
- -
- English-language articles.
- -
- Publications older than 10 years;
- -
- Case reports, comments, letters to the editor, book chapters;
- -
- No full-text article;
- -
- Articles in a language other than English.
- Population
- Concept
- Context
- Types of studies
2.3. Search Strategy
2.4. Extraction of Data
2.5. Critical Appraisal Process
2.6. Process for Including Publications in the Review
3. Factors Influencing the Development of Sarcopenia in Patients with Aortic Dissection
3.1. Obesity
3.2. Age
3.3. Comorbidities
4. Nutritional Status of Patients with Aortic Dissection
5. Survival of Patients with Aortic Dissection Including Sarcopenia and Nutritional Status
6. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RQ | review question |
PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-analysis for Scoping Reviews |
PNI | Prognostic Nutritional Index |
GNRI | Geriatric Nutritional Risk Index |
MRI | Magnetic resonance imaging |
CT | Computed tomography |
References
- Sayer, A.A.; Cruz-Jentoft, A. Sarcopenia definition, diagnosis and treatment: Consensus is growing. Age Ageing 2022, 51, afac220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coletta, G.; Phillips, S.M. An elusive consensus definition of sarcopenia impedes research and clinical treatment: A narrative review. Ageing Res. Rev. 2023, 86, 101883. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, C.; Krause, L.; Sulejmanovic, S.; Kaumkötter, S.; Mengden, T.; Grefe, C.; Knoglinger, E.; Reiss, N.; Brixius, K.; Bjarnason-Wehrens, B.; et al. The prevalence and impact of sarcopenia in older cardiac patients undergoing inpatient cardiac rehabilitation—results from a prospective, observational cohort pre-study. BMC Geriatr. 2024, 24, 94. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I. The epidemiology of sarcopenia. Clin. Geriatr. Med. 2011, 27, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Calvani, R.; Esposito, I.; Massaro, C.; Gava, G.; Picca, A.; Tosato, M.; Marzetti, E.; Landi, F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024, 16, 3271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beckwée, D.; Delaere, A.; Aelbrecht, S.; Baert, V.; Beaudart, C.; Bruyere, O.; de Saint-Hubert, M.; Bautmans, I. Exercise Interventions for the Prevention and Treatment of Sarcopenia. A Systematic Umbrella Review. J. Nutr. Health Aging 2019, 23, 494–502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rogeri, P.S.; Zanella, R., Jr.; Martins, G.L.; Garcia, M.D.A.; Leite, G.; Lugaresi, R.; Gasparini, S.O.; Sperandio, G.A.; Ferreira, L.H.B.; Souza-Junior, T.P.; et al. Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021, 14, 52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harada, H.; Kai, H.; Niiyama, H.; Nishiyama, Y.; Katoh, A.; Yoshida, N.; Fukumoto, Y.; Ikeda, H. Effectiveness of Cardiac Rehabilitation for Prevention and Treatment of Sarcopenia in Patients with Cardiovascular Disease—A Retrospective Cross-Sectional Analysis. J. Nutr. Health Aging 2017, 21, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Kai, H.; Shibata, R.; Niiyama, H.; Nishiyama, Y.; Murohara, T.; Yoshida, N.; Katoh, A.; Ikeda, H. New diagnostic index for sarcopenia in patients with cardiovascular diseases. PLoS ONE 2017, 12, e0178123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, F.; Li, W. Vitamin D and Sarcopenia in the Senior People: A Review of Mechanisms and Comprehensive Prevention and Treatment Strategies. Ther. Clin. Risk Manag. 2024, 20, 577–595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ho, K.M.; Bham, E.; Pavey, W. Incidence of Venous Thromboembolism and Benefits and Risks of Thromboprophylaxis After Cardiac Surgery: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2015, 4, e002652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, J.A.; Jensen, M.R.; Harmsen, W.S.; Gabriel, S.E.; Lewallen, D.G. Cardiac and thromboembolic complications and mortality in patients undergoing total hip and total knee arthroplasty. Ann. Rheum. Dis. 2011, 70, 2082–2088. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cushman, M.; Barnes, G.D.; Creager, M.A.; Diaz, J.A.; Henke, P.K.; Machlus, K.R.; Nieman, M.T.; Wolberg, A.S.; American Heart Association Council on Peripheral Vascular Disease; Council on Arteriosclerosis, Thrombosis and Vascular Biology; et al. Venous Thromboembolism Research Priorities: A Scientific Statement From the American Heart Association and the International Society on Thrombosis and Haemostasis. Circulation 2020, 142, e85–e94. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, L.; Ispoglou, T.; Prokopidis, K.; Alqallaf, J.; Wilson, O.; Stavropoulos-Kalinoglou, A. Acute Sarcopenia: Systematic Review and Meta-Analysis on Its Incidence and Muscle Parameter Shifts During Hospitalisation. J. Cachexia Sarcopenia Muscle 2025, 16, e13662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haruna, K.; Minami, S.; Miyoshi, N.; Fujino, S.; Mizumoto, R.; Toyoda, Y.; Hayashi, R.; Kato, S.; Takeda, M.; Sekido, Y.; et al. Examination of Sarcopenia with Obesity as a Prognostic Factor in Patients with Colorectal Cancer Using the Psoas Muscle Mass Index. Cancers 2024, 16, 3429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, S.; Kamiya, K.; Hamazaki, N.; Matsuzawa, R.; Nozaki, K.; Ichinosawa, Y.; Harada, M.; Nakamura, T.; Maekawa, E.; Noda, C.; et al. SARC-F questionnaire identifies physical limitations and predicts post discharge outcomes in elderly patients with cardiovascular disease. JCSM Clin. Rep. 2018, 3, 1–11. [Google Scholar] [CrossRef]
- Fayh, A.P.T.; Guedes, F.F.O.; Calado, G.C.F.; Queiroz, S.A.; Anselmo, M.G.G.B.; Sousa, I.M. SARC-F Is a Predictor of Longer LOS and Hospital Readmission in Hospitalized Patients after a Cardiovascular Event. Nutrients 2022, 14, 3154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noda, T.; Kamiya, K.; Hamazaki, N.; Yamashita, M.; Miki, T.; Nozaki, K.; Uchida, S.; Ueno, K.; Maekawa, E.; Terada, T.; et al. Screening for sarcopenia with SARC-F in older patients hospitalized with cardiovascular disease. Eur. J. Cardiovasc. Nurs. 2024, 23, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Huang, W.; Ouyang, T.; Fang, C.; Lei, K. Comparison of the efficacy between Del Nido cardioplegia and HTK cardioplegia in Stanford type A aortic dissection patients undergoing open-heart surgery. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2022, 47, 1235–1243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Y.; Xu, Y.; Cai, Y. Analysis of nutritional status and influencing factors in patients with thoracoabdominal aortic dissection receiving 3D printing-assisted stent graft fenestration. J. Cardiothorac. Surg. 2023, 18, 91. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.; Cindy, S.; Catalin, T.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Peters, M.; Godfrey, C.; McInerney, P.; Baldini Soares, C.; Khalil, H.; Parker, D. Methodology for JBI scoping reviews. In The Joanna Briggs Institute Reviewers’ Manual; The Joanna Briggs Institute: Adelaide, Australia, 2015; pp. 1–24. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.; Khalil, H. Chapter 11: Scoping Reviews (2020 version). In JBI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; The Joanna Briggs Institute: Adelaide, Australia, 2020. [Google Scholar] [CrossRef]
- Bom, J.S.; Bae, H.B.; Kim, J. Sarcopenia as a predictor of long-term mortality after acute type a aortic dissection surgery: A retrospective observational study. Med. Biol. Sci. Eng. 2025, 8, 72–81. [Google Scholar] [CrossRef]
- Kays, J.K.; Liang, T.W.; Zimmers, T.A.; Milgrom, D.P.; Abduljabar, H.; Young, A.; Kim, B.J.; Bell, T.M.; Fajardo, A.; Murphy, M.P.; et al. Sarcopenia is a Significant Predictor of Mortality After Abdominal Aortic Aneurysm Repair. JCSM Clin. Rep. 2018, 3, e00053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ishigaki, T.; Wakasa, S.; Shingu, Y.; Ohkawa, Y.; Yamada, A. Impact of sarcopenia on early and mid-term outcomes of surgery for acute type A aortic dissection in octogenarians. Gen. Thorac. Cardiovasc. Surg. 2023, 71, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Xie, L.; Zhang, Z.; Wu, Q.; Xie, Y.; Qiu, Z.; Chen, L. Clinical usefulness of psoas muscle thickness for the prognosis of acute type A aortic dissection patients undergoing total arch replacement. J. Thorac. Dis. 2024, 16, 3722–3731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, Y.; Chen, Q.; Peng, Y.; Chen, Y.; Huang, X.; Lin, L.; Zhang, X.; Chen, L.W. Prognostic nutritional index predicts in-hospital mortality in patients with acute type A aortic dissection. Heart Lung. 2021, 50, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, S.; Peng, Y.; Pan, Q.; Hong, N.; Chen, L.; Lin, Y. Association between geriatric nutritional risk index and In-Hospital mortality in acute aortic dissection patients: A retrospective cohort study. BMC Cardiovasc. Disord. 2025, 25, 572. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, S.; Nguyen, T.T.; Zhang, Y.; Ryu, D.; Gariani, K. Sarcopenic obesity: Epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front. Endocrinol. 2023, 14, 1185221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Batsis, J.A.; Mackenzie, T.A.; Barre, L.K.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity and mortality in older adults: Results from the National Health and Nutrition Examination Survey III. Eur. J. Clin. Nutr. 2014, 68, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Gusmao-Sena, M.H.; Curvello-Silva, K.; Barreto-Medeiros, J.M.; Da-Cunha-Daltro, C.H. Association between sarcopenic obesity and cardiovascular risk: Where are we? Nutr. Hosp. 2016, 33, 592. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Mao, C.; Gao, X.; Ji, J.S.; Kraus, V.B.; Yin, Z.; Yuan, J.; Chen, H.; Luo, J.; Zhou, J.; et al. The obesity paradox is mostly driven by decreased noncardiovascular disease mortality in the oldest old in China: A 20-year prospective cohort study. Nat. Aging 2022, 2, 389–396. [Google Scholar] [CrossRef]
- Liu, C.; Wong, P.Y.; Chung, Y.L.; Chow, S.K.; Cheung, W.H.; Law, S.W.; Chan, J.C.N.; Wong, R.M.Y. Deciphering the “obesity paradox” in the elderly: A systematic review and meta-analysis of sarcopenic obesity. Obes. Rev. 2023, 24, e13534. [Google Scholar] [CrossRef]
- Kim, T.N.; Yang, S.J.; Yoo, H.J.; Lim, K.I.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: The Korean sarcopenic obesity study. Int. J. Obes. 2009, 33, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Wagenaar, C.A.; Dekker, L.H.; Navis, G.J. Prevalence of sarcopenic obesity and sarcopenic overweight in the general population: The lifelines cohort study. Clin. Nutr. 2021, 40, 4422–4429. [Google Scholar] [CrossRef]
- Gao, Q.; Mei, F.; Shang, Y.; Hu, K.; Chen, F.; Zhao, L.; Ma, B. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 4633–4641. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hwang, S.J.; McMahon, G.M.; Curhan, G.C.; McLean, R.R.; Murabito, J.M.; Fox, C.S. Mid-adulthood cardiometabolic risk factor profiles of sarcopenic obesity. Obesity 2016, 24, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xie, X.; Dou, Q.; Liu, C.; Zhang, W.; Yang, Y.; Deng, R.; Cheng, A.S.K. Association of sarcopenic obesity with the risk of all-cause mortality among adults over a broad range of different settings: A updated meta-analysis. BMC Geriatr. 2019, 19, 183. [Google Scholar] [CrossRef] [PubMed]
- Farmer, R.E.; Mathur, R.; Schmidt, A.F.; Bhaskaran, K.; Fatemifar, G.; Eastwood, S.V.; Finan, C.; Denaxas, S.; Smeeth, L.; Chaturvedi, N. Associations between measures of sarcopenic obesity and risk of cardiovascular disease and mortality: A cohort study and mendelian randomization analysis using the UK biobank. J. Am. Heart Assoc. 2019, 8, e011638. [Google Scholar] [CrossRef]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic obesity and risk of cardiovascular disease and mortality: A population-based cohort study of older men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef]
- Prado, C.M.; Batsis, J.A.; Donini, L.M.; Gonzalez, M.C.; Siervo, M. Sarcopenic obesity in older adults: A clinical overview. Nat. Rev. Endocrinol. 2024, 20, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chucherd, O.; Vallibhakara, O.; Vallibhakara, S.A.; Sophonsritsuk, A.; Chattrakulchai, K.; Anantaburarana, M. Association of Sarcopenic Obesity and Osteoporosis in Postmenopausal Women: Risk Factors and Protective Effects of Hormonal Therapy and Nutritional Status. Arch. Osteoporos. 2025, 20, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Damanti, S.; Senini, E.; De Lorenzo, R.; Merolla, A.; Santoro, S.; Festorazzi, C.; Messina, M.; Vitali, G.; Sciorati, C.; Rovere-Querini, P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024, 16, 3428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimizu, T.; Kimura, N.; Mieno, M.; Hori, D.; Shiraishi, M.; Tashima, Y.; Yuri, K.; Itagaki, R.; Aizawa, K.; Kawahito, K.; et al. Effects of Obesity on Outcomes of Acute Type A Aortic Dissection Repair in Japan. Circ. Rep. 2020, 2, 639–647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xia, L.; Liu, Y.; Yang, Z.; Ge, Y.; Wang, L.; Du, Y.; Jiang, H. Obesity and acute type A aortic dissection: Unraveling surgical outcomes through the lens of the upper hemisternotomy approach. Front. Cardiovasc. Med. 2024, 11, 1301895. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pfeiffer, P.; Wittemann, K.; Mattern, L.; Buchholz, V.; El Beyrouti, H.; Ghazy, A.; Oezkur, M.; Duerr, G.D.; Probst, C.; Treede, H.; et al. The Effect of Obesity on Short- and Long-Term Outcome after Surgical Treatment for Acute Type A Aortic Dissection. Life 2024, 14, 955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schlosser, F.; Vaatjes, I.; van der Heijden, G.J.M.G.; Moll, F.L.; Verhagen, H.J.M.; Muhs, B.E.; de Borst, G.J.; Groenestege, A.T.T.; Kardaun, J.W.P.F.; de Bruin, A.; et al. Mortality after elective abdominal aortic aneurysm repair. Ann. Surg. 2010, 251, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Martin, C.; Heyland, D.K. Nutrition therapy for the critically ill surgical patient with aortic aneurysmal rupture: Defining and improving current practice. JPEN J. Parenter. Enter. Nutr. 2015, 39, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Gavri, C.; Kokkoris, S.; Vasileiadis, I.; Oeconomopoulou, A.C.; Kotanidou, A.; Nanas, S.; Routsi, C. Route of nutrition and risk of blood stream infections in critically ill patients; a comparative study. Clin. Nutr. ESPEN 2016, 12, e14–e19. [Google Scholar] [CrossRef] [PubMed]
- Cahill, N.E.; Murch, L.; Jeejeebhoy, K.; McClave, S.A.; Day, A.G.; Wang, M.; Heyland, D.K. When early enteral feeding is not possible in critically ill patients: Results of a multicenter observational study. JPEN J. Parenter. Enter. Nutr. 2011, 35, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Walston, J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012, 24, 623–627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daly, R.M.; Gianoudis, J.; Prosser, M.; Kidgell, D.; Ellis, K.A.; O’Connell, S.; Nowson, C.A. The effects of a protein enriched diet with lean red meat combined with a multi-modal exercise program on muscle and cognitive health and function in older adults: Study protocol for a randomised controlled trial. Trials 2015, 16, 339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papadopoulou, S.K. Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients 2020, 12, 1293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Groenendijk, I.; Kramer, C.S.; den Boeft, L.M.; Hobbelen, H.S.M.; van der Putten, G.J.; de Groot, L.C.P.G.M. Hip Fracture Patients in Geriatric Rehabilitation Show Poor Nutritional Status, Dietary Intake and Muscle Health. Nutrients 2020, 12, 2528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verlaan, S.; Aspray, T.J.; Bauer, J.M.; Cederholm, T.; Hemsworth, J.; Hill, T.R.; McPhee, J.S.; Piasecki, M.; Seal, C.; Sieber, C.C.; et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin. Nutr. 2017, 36, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Díaz, M.D.C.; López-Gómez, J.J.; García-Virto, V.; Aguado-Hernández, H.J.; De Luis-Román, D.A. Prevalence of sarcopenia in patients older than 75 years admitted for hip fracture. Endocrinol. Diabetes Nutr. Engl. Ed. 2023, 70, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Callisaya, M.L.; Duque, G.; Ebeling, P.R.; Scott, D. Assistive technologies to overcome sarcopenia in ageing. Maturitas 2018, 112, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Bloom, I.; Shand, C.; Cooper, C.; Robinson, S.; Baird, J. Diet Quality and Sarcopenia in Older Adults: A Systematic Review. Nutrients 2018, 10, 308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Estrera, A.L.; Safi, H.J. Aortic dissections in the elderly: Ethical dilemmas of treatment. Tex. Heart Inst. J. 2012, 39, 831–833. [Google Scholar] [PubMed] [PubMed Central]
- Nithikasem, S.; Hung, G.; Chakraborty, A.; Gunda, S.; Baek, S.W.; Ikegami, H.; Sunagawa, G.; Russo, M.J.; Lee, L.; Lemaire, A. Aortic Dissections in the Elderly: Older Age in Patients with Acute Aortic Syndromes Is Associated with Delayed Time to Surgery. Cureus 2024, 16, e70355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hemli, J.M.; Pupovac, S.S.; Gleason, T.G.; Sundt, T.M.; Desai, N.D.; Pacini, D.; Ouzounian, M.; Appoo, J.J.; Montgomery, D.G.; Eagle, K.A.; et al. Management of acute type A aortic dissection in the elderly: An analysis from, I.R.A.D. Eur. J. Cardiothorac. Surg. 2022, 61, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.T.; Ling, S.M.; Ferrucci, L.; Bartlett, S.J.; Andersen, R.E.; Towns, M.; Muller, D.; Fontaine, K.R.; Bathon, J.M. Abnormal body composition phenotypes in older rheumatoid arthritis patients: Association with disease characteristics and pharmacotherapies. Arthritis Rheum. 2008, 59, 807–815. [Google Scholar] [CrossRef]
- Koster, A.; Ding, J.; Stenholm, S.; Caserotti, P.; Houston, D.K.; Nicklas, B.J.; You, T.; Lee, J.S.; Visser, M.; Newman, A.B.; et al. Does the amount of fat mass predict agerelated loss of lean mass, muscle strength, and muscle quality in older adults? J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 888–895. [Google Scholar] [CrossRef]
- Robinson, S.; Cooper, C.; Aihie, S.A. Nutrition and sarcopenia: A review of the evidence and implications for preventive strategies. J. Aging Res. 2012, 2012, 510801. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Luo, K.; Gu, Z.; Hu, J.; Liu, X.; Xiao, Q. Correlational analysis of sarcopenia and multimorbidity among older inpatients. BMC Musculoskelet. Disord. 2024, 25, 309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bellelli, G.; Zambon, A.; Volpato, S.; Abete, P.; Bianchi, L.; Bo, M.; Cherubini, A.; Corica, F.; Di Bari, M.; Maggio, M.; et al. The association between delirium and sarcopenia in older adult patients admitted to acute geriatrics units: Results from the GLISTEN multicenter observational study. Clin. Nutr. 2018, 37, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Clynes, M.A.; Edwards, M.H.; Buehring, B.; Dennison, E.M.; Binkley, N.; Cooper, C. Definitions of sarcopenia: Associations with previous falls and fracture in a population sample. Calcif. Tissue Int. 2015, 97, 445–452. [Google Scholar] [CrossRef]
- Brilleman, S.L.; Salisbury, C. Comparing measures of multimorbidity to predict outcomes in primary care: A cross sectional study. Fam. Pract. 2013, 30, 172–178. [Google Scholar] [CrossRef]
- Mesinovic, J.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab. Syndr. Obes. 2019, 12, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- Coll, P.P.; Phu, S.; Hajjar, S.H.; Kirk, B.; Duque, G.; Taxel, P. The prevention of osteoporosis and sarcopenia in older adults. J. Am. Geriatr. Soc. 2021, 69, 1388–1398. [Google Scholar] [CrossRef]
- Inoue, T.; Maeda, K.; Nagano, A.; Shimizu, A.; Ueshima, J.; Murotani, K.; Sato, K.; Hotta, K.; Morishita, S.; Tsubaki, A. Related factors and clinical outcomes of Osteosarcopenia: A narrative review. Nutrients 2021, 13, 291. [Google Scholar] [CrossRef]
- Gao, Q.; Hu, K.; Yan, C.; Zhao, B.; Mei, F.; Chen, F.; Zhao, L.; Shang, Y.; Ma, Y.; Ma, B. Associated factors of Sarcopenia in Community-Dwelling older adults: A systematic review and Meta-analysis. Nutrients 2021, 13, 4291. [Google Scholar] [CrossRef]
- Zhang, F.-M.; Wu, H.-F.; Shi, H.-P.; Yu, Z.; Zhuang, C.-L. Sarcopenia and malignancies: Epidemiology, clinical classification and implications. Ageing Res. Rev. 2023, 91, 102057. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yao, Y.; Yan, S.; Gao, R.; Lu, W.; He, W. Chiral protein supraparticles for tumor suppression and synergistic immunotherapy: An enabling strategy for bioactive supramolecular chirality construction. Nano Lett. 2020, 20, 5844–5852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cui, F.; Cao, C.; Wang, Q.; Zou, Q. Single-cell RNA analysis reveals the potential risk of organ-specific cell types vulnerable to SARS-CoV-2 infections. Comput. Biol. Med. 2022, 140, 105092. [Google Scholar] [CrossRef]
- Zhuo, Z.; Wan, Y.; Guan, D.; Ni, S.; Wang, L.; Zhang, Z.; Liu, J.; Liang, C.; Yu, Y.; Lu, A.; et al. A loop-based and AGO-incorporated virtual screening model targeting AGO-mediated miRNA–mRNA interactions for drug discovery to rescue bone phenotype in genetically modified mice. Adv. Sci. 2020, 7, 1903451. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, F. Core-shell chitosan microsphere with antimicrobial and vascularized functions for promoting skin wound healing. Mater. Des. 2021, 204, 109683. [Google Scholar] [CrossRef]
- Sultan, I.; Siki, M.A.; Bavaria, J.E.; Dibble, T.R.; Savino, D.C.; Kilic, A.; Szeto, W.; Vallabhajosyula, P.; Fairman, R.M.; Jackson, B.M.; et al. Predicting distal aortic remodeling after endovascular repair for chronic DeBakey III aortic dissection. Ann. Thorac. Surg. 2018, 105, 1691–1696. [Google Scholar] [CrossRef]
- Qiu, J.T.; Zhang, L.; Luo, X.J.; Yang, J.; Liu, S.; Jiang, W.X.; Yu, C.T. Correlation between of aortic dissection onset and climate change. Chin. J. Surg. 2018, 56, 74–77. [Google Scholar] [CrossRef]
- Banko, D.; Rosenthal, N.; Chung, J.; Lomax, C.; Washesky, P.F. Comparing the risk of bloodstream infections by type of parenteral nutrition preparation method: A large retrospective, observational study. Clin. Nutr. ESPEN 2019, 30, 100–106. [Google Scholar] [CrossRef]
- Lin, Q.X. Comparative analysis of early enteral nutrition and parenteral nutrition in the prevention of related infections after esophageal cancer surgery. China Health Stand. Manag. 2018, 9, 11–13. [Google Scholar]
- Greenfield, J.R.; Campbell, L.V. Relationship between inflammation, insulin resistance and type 2 diabetes: ‘cause or effect’? Curr. Diabetes Rev. 2006, 2, 195–211. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Gariballa, S.; Forster, S. Effects of acute-phase response on nutritional status and clinical outcome of hospitalized patients. Nutrition 2006, 22, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A.; Hertfordshire Cohort Study Group. Diet and its relationship with grip strength in community-dwelling older men and women: The Hertfordshire cohort study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef]
- Tomey, K.M.; Sowers, M.R.; Crandall, C.; Johnston, J.; Jannausch, M.; Yosef, M. Dietary intake related to prevalent functional limitations in midlife women. Am. J. Epidemiol. 2008, 167, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef]
- Stimpson, J.P.; Nash, A.C.; Ju, H.; Eschbach, K. Neighborhood deprivation is associated with lower levels of serum carotenoids among adults participating in the third national health and nutrition examination survey. J. Am. Diet. Assoc. 2007, 107, 1895–1902. [Google Scholar] [CrossRef]
- Phua, A.I.; Hon, K.Y.; Holt, A.; O’CAllaghan, M.; Bihari, S. Candida catheter-related bloodstream infection in patients on home parenteral nutrition—Rates, risk factors, outcomes, and management. Clin. Nutr. ESPEN 2019, 31, 1–9. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed]
- Uchitomi, R.; Oyabu, M.; Kamei, Y. Vitamin D and Sarcopenia: Potential of Vitamin D Supplementation in Sarcopenia Prevention and Treatment. Nutrients 2020, 12, 3189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bartali, B.; Salvini, S.; Turrini, A.; Lauretani, F.; Russo, C.R.; Corsi, A.M.; Bandinelli, S.; D’AMicis, A.; Palli, D.; Guralnik, J.M.; et al. Age and disability affect dietary intake. J. Nutr. 2003, 133, 2868–2873. [Google Scholar] [CrossRef]
- Merchant, R.A.; Seetharaman, S.; Au, L.; Wong, M.W.K.; Wong, B.L.L.; Tan, L.F.; Chen, M.Z.; Ng, S.E.; Soong, J.T.Y.; Hui, R.J.Y.; et al. Relationship of Fat Mass Index and Fat Free Mass Index with Body Mass Index and Association with Function, Cognition and Sarcopenia in Pre-Frail Older Adults. Front. Endocrinol. 2021, 12, 765415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Yang, R.; Xu, J.; Fang, K.; Abdelrahim, M.; Chang, L. Sarcopenia as a predictor of postoperative risk of complications, mortality and length of stay following gastrointestinal oncological surgery. Ann. R. Coll. Surg. Engl. 2021, 103, 630–637. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bayraktar, E.; Tasar, P.T.; Binici, D.N.; Karasahin, O.; Timur, O.; Sahin, S. Relationship between Sarcopenia and Mortality in Elderly Inpatients. Eurasian J. Med. 2020, 52, 29–33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Navas Moreno, V.; Sebastián-Valles, F.; Carrillo López, E.; Justel Enríquez, A.; Sager La Ganga, C.; Sampedro-Núñez, M.A.; Rodríguez Laval, V.; Sánchez de la Blanca, N.; Montes Muñiz, Á.; Alfonso Manterola, F.; et al. Impact of Sarcopenia on Mortality in Patients Undergoing TAVI: A Follow-Up Study. J. Clin. Med. 2025, 14, 3182. [Google Scholar] [CrossRef] [PubMed]
- Najm, A.; Niculescu, A.G.; Grumezescu, A.M.; Beuran, M. Emerging Therapeutic Strategies in Sarcopenia: An Updated Review on Pathogenesis and Treatment Advances. Int. J. Mol. Sci. 2024, 25, 4300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Najm, A.; Moldoveanu, E.T.; Niculescu, A.G.; Grumezescu, A.M.; Beuran, M.; Gaspar, B.S. Advancements in Drug Delivery Systems for the Treatment of Sarcopenia: An Updated Overview. Int. J. Mol. Sci. 2024, 25, 10766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, Y.; Feng, J.; Yu, Y.; Ling, M.; Wang, X. Advances in sarcopenia: Mechanisms, therapeutic targets, and intervention strategies. Arch. Pharm. Res. 2024, 47, 301–324. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Hu, S.; Wu, Q. Higher prognostic nutritional index is associated with lower incidence of sarcopenia. Geriatr. Nurs. 2025, 63, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Go, J.Y.; Lee, Y.S.; Choi, Y.J.; Kim, M.J.; Kwon, M.S.; Jung, Y.H.; Choi, S.H.; Nam, S.Y. Discrete prognostic implication of sarcopenia according to nutritional status in surgically treated patients with hypopharyngeal cancer. World J. Surg. 2024, 48, 1892–1901. [Google Scholar] [CrossRef] [PubMed]
- Uchibori, A.; Okada, S.; Shimomura, M.; Furuya, T.; Nakazono, C.; Nishimura, T.; Inoue, M. Clinical impact of preoperative sarcopenia and immunonutritional impairment on postoperative outcomes in non-small cell lung cancer surgery. Lung Cancer 2024, 198, 108004. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Liu, P.H.; Chen, H.T.; Chen, J.Y.; Lee, C.W.; Cheng, W.J.; Chen, J.Y.; Hung, K.C. Association of Preoperative Prognostic Nutritional Index with Risk of Postoperative Acute Kidney Injury: A Meta-Analysis of Observational Studies. Nutrients 2023, 15, 2929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, J.C.; Harhay, M.O.; Harhay, M.N. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J. Cachexia Sarcopenia Muscle 2016, 7, 290–298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sääksjärvi, K.; Härkänen, T.; Stenholm, S.; Schaap, L.; Lundqvist, A.; Koskinen, S.; Borodulin, K.; Visser, M. Probable Sarcopenia, Obesity, and Risk of All-Cause Mortality: A Pooled Analysis of 4,612 Participants. Gerontology 2023, 69, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Hirani, V.; Blyth, F.; Naganathan, V.; Le Couteur, D.G.; Seibel, M.J.; Waite, L.M.; Handelsman, D.J.; Cumming, R.G. Sarcopenia Is Associated with Incident Disability, Institutionalization, and Mortality in Community-Dwelling Older Men: The Concord Health and Ageing in Men Project. J. Am. Med. Dir. Assoc. 2015, 16, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Takeuchi, T.; Goto, M.; Ogura, T.; Nakamura, S.; Kakimoto, K.; Miyazaki, T.; Nishiguchi, S.; et al. Screening Tools for Sarcopenia. In Vivo 2021, 35, 3001–3009. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mo, Y.H.; Zhong, J.; Dong, X.; Su, Y.D.; Deng, W.Y.; Yao, X.M.; Liu, B.B.; Wang, X.Q.; Wang, X.H. Comparison of Three Screening Methods for Sarcopenia in Community-Dwelling Older Persons. J. Am. Med. Dir. Assoc. 2021, 22, 746–750.e1. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.C.; Won Won, C.; Kim, M.; Chun, K.J.; Yoo, J.I. SARC-F as a Useful Tool for Screening Sarcopenia in Elderly Patients with Hip Fractures. J. Nutr. Health Aging 2020, 24, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Lee, C.M.; Kang, B.K.; Kim, M.; Choi, J.W. Myosteatosis and aortic calcium score on abdominal CT as prognostic markers in non-dialysis chronic kidney disease patients. Sci. Rep. 2024, 14, 7718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, S.U.; Pickl, C.; Haas, M.; Kaelble, S.; Hartmann, V.; Firsching, M.; Lehmann, L.; Gužvić, M.; van Rhijn, B.W.G.; Breyer, J.; et al. Body Composition of Patients Undergoing Radical Cystectomy for Bladder Cancer: Sarcopenia, Low Psoas Muscle Index, and Myosteatosis Are Independent Risk Factors for Mortality. Cancers 2023, 15, 1778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Author, Year | Country | Participants | Findings |
---|---|---|---|
Bom J.S. et al., 2025 [25] | Korea | Patients with aortic dissection |
|
Kays J.K. et al., 2019 [26] | USA | Patients with aortic dissection |
|
Ishigaki T. et al., 2023 [27] | Japan | Patients with aortic dissection |
|
Lin X. et al., 2024 [28] | China | Patients with aortic dissection |
|
Lin Y. et al., 2021 [29] | China | Patients with aortic dissection (type A) |
|
Lin L. et al., 2025 [30] | China | Patients with aortic dissection |
|
Factor | Key Findings | References |
---|---|---|
Obesity | According to the literature, both overweight and obese patients can manifest sarcopenia. Sarcopenia combined with obesity increases the risk of mortality by 3.5 times compared to obese patients without sarcopenia. Sarcopenic obesity is more dangerous for patients with aortic dissection compared to obesity alone. | [26,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
Nutritional status | Hospitalization, metabolic stress and dietary restrictions can lead to protein and calorie deficiencies. Malnutrition is one of the main factors in the development of sarcopenia. | [30,68,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95] |
Comorbidities | Hypertension, diabetes, heart failure—common in patients with aortic dissection—further increase the risk of sarcopenia. In addition, other diseases affect the prolongation of recovery in patients with aortic dissection. | [68,69,70,71,72,73,74,75,76] |
Age | With age, the risk of nutritional deficiencies and cardiovascular diseases increases, and as a consequence, sarcopenia develops. Aortic dissection is also more common in patients over 60 years of age. | [25,27,28,30,54,55,56,57,58,59,60,61,62,63,64,65,66,67] |
Feature | Sarcopenia | Myosteatosis |
---|---|---|
Definition | Progressive loss of muscle mass, strength and function mainly associated with age | Pathological fat deposition in muscle tissue |
Main Cause | Aging, physical inactivity, hormonal deficiencies | Metabolic disorders, obesity, insulin resistance |
Clinical signs | Weakness, difficulty moving, increased risk of falls | Reduced muscle quality, reduced strength despite retained muscle mass |
Changes in muscle tissue | Reduction in the number and size of muscle fibers | Accumulation of fat inside and between muscle fibers |
Diagnostics | Muscle mass measurement, strength and fitness tests | Imaging (MRI, CT) showing fat in muscle |
Health effects | Increased risk of disability, osteoporosis, hospitalization | Deterioration of muscle function, risk of insulin resistance and type 2 diabetes |
Treatment | Resistance exercises, protein diet, supplementation, hormone therapy | Weight reduction, physical activity, improved metabolic control |
SMI (Skeletal Muscle Index) | PMI (Psoas Muscle Index) |
---|---|
is an index of skeletal muscle mass, calculated as the muscle surface area (in cm2) at the level of the third lumbar vertebra (L3) divided by height squared (m2) | is a similar indicator, but based solely on the area of the greater lumbar muscle (psoas major) at the L3 level, also divided by the height squared. |
in the context of myosteatosis, SMI is used to assess the quantity of muscle, but not its quality—which is why it is often combined with the measurement of fatty muscle infiltration (e.g., by the value of attenuation in CT). | PMI is sometimes used as a simplified marker of muscle mass, especially in research on osteoporosis and fracture risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semań, T.; Krupa-Nurcek, S.; Szczupak, M.; Kobak, J.; Widenka, K. Impact of Sarcopenia and Nutritional Status on Survival of Patients with Aortic Dissection: A Scoping Review. Nutrients 2025, 17, 3088. https://doi.org/10.3390/nu17193088
Semań T, Krupa-Nurcek S, Szczupak M, Kobak J, Widenka K. Impact of Sarcopenia and Nutritional Status on Survival of Patients with Aortic Dissection: A Scoping Review. Nutrients. 2025; 17(19):3088. https://doi.org/10.3390/nu17193088
Chicago/Turabian StyleSemań, Tomasz, Sabina Krupa-Nurcek, Mateusz Szczupak, Jacek Kobak, and Kazimierz Widenka. 2025. "Impact of Sarcopenia and Nutritional Status on Survival of Patients with Aortic Dissection: A Scoping Review" Nutrients 17, no. 19: 3088. https://doi.org/10.3390/nu17193088
APA StyleSemań, T., Krupa-Nurcek, S., Szczupak, M., Kobak, J., & Widenka, K. (2025). Impact of Sarcopenia and Nutritional Status on Survival of Patients with Aortic Dissection: A Scoping Review. Nutrients, 17(19), 3088. https://doi.org/10.3390/nu17193088