Defining Optimal Nutrition Behaviors to Determine Benefit–Cost Ratio of Federal Nutrition Education Programs
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Data Collection Instruments
2.2.1. Demographic Questionnaire
2.2.2. Food and Physical Activity Questionnaire
2.2.3. Dietary Intake Assessment
2.2.4. Assessment of Exposure to Policy, Systems, and Environmental Projects
2.3. Nutrition Education
- Lesson 1—Choosing to Move More Throughout the Day
- Lesson 2—Choosing More Fruits and Vegetables
- Lesson 3—Fix it Safe
- Lesson 4—Plan: Know What’s for Dinner
- Lesson 5—Shop: Get the Best for Less
- Lesson 6—Shop for Value, Check the Facts
2.4. Defining Optimal Nutrition Behaviors
2.4.1. Chronic Diseases and Assessment Variables
2.4.2. Disease Risk Related to Diet or Physical Activity Variables
2.4.3. Setting Criteria for Optimal Nutrition Behavior
2.5. Cost–Benefit and Statistical Analyses
3. Results
3.1. Subjects
3.2. Optimal Nutrition Behaviors
3.3. Policy, Systems, and Environmental Interventions
3.4. Benefit–Cost Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASA24 | Automated Self-Assessment 24-H Dietary Recall |
CC | Colorectal Cancer |
EFNEP | Expanded Food and Nutrition Education Program |
ESI | Eat Smart Idaho |
FBI | Foodborne Illness |
FFY | Federal Fiscal Year |
FPAQ | Food and Physical Activity Questionnaire |
GED | General Equivalency Diploma |
HD | Heart Disease |
HTN | Hypertension |
NIFA | National Institute of Food and Agriculture |
OB | Obesity |
ONB | Optimal Nutrition Behaviors |
OST | Osteoporosis |
PSE | Policy, Systems, and Environmental |
SNAP-Ed | Supplemental Nutrition Assistance Program Education |
STK | Stroke |
T2D | Type 2 Diabetes |
USDA | United States Department of Agriculture |
References
- United States Department of Agriculture, Food and Nutrition Services. Supplemental Nutrition Assistance Program Education (SNAP-Ed). Available online: https://snaped.fns.usda.gov/ (accessed on 19 April 2020).
- National Institute of Food and Agriculture. About EFNEP. Available online: https://www.nifa.usda.gov/grants/programs/about-efnep (accessed on 14 June 2023).
- Lambur, M.T.; Rajgopal, R.; Lewis, E.C.; Cox, R.H.; Ellerbrock, M.J. Applying Cost Benefit Analysis to Nutrition Education Programs: Focus on the Virginia Expanded Food and Nutrition Education Program: Final Report; Virginia Cooperative Extension: Blacksburg, VA, USA, 1999; Available online: http://hdl.handle.net/10919/24691 (accessed on 22 November 2022).
- Rajgopal, R.; Cox, R.H.; Lambur, M.; Lewis, E.C. Cost-benefit analysis indicates the positive economic benefits of the Expanded Food and Nutrition Education Program related to chronic disease prevention. J. Nutr. Educ. Behav. 2002, 34, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Burney, J.; Haughton, B. EFNEP: A nutrition education program that demonstrates cost-benefit. J. Am. Diet. Assoc. 2002, 102, 39–45. [Google Scholar] [CrossRef]
- Schuster, E.; Zimmerman, Z.L.; Engle, M.; Smiley, J.; Syversen, E.; Murray, J. Investing in Oregon’s expanded food and nutrition education program (EFNEP): Documenting costs and benefits. J. Nutr. Educ. Behav. 2003, 35, 200–206. [Google Scholar] [CrossRef]
- Dollahite, J.; Olson, C.; Scott-Pierce, M. The Impact of Nutrition Education on Food Insecurity among Low-Income Participants in EFNEP. Fam. Consum. Sci. Res. J. 2003, 32, 127–139. [Google Scholar] [CrossRef]
- Hradek, C.; Jensen, H.H.; Miller, N.S.; Oh, M. Evaluation of the Cost and Effectiveness of Direct Nutrition Education to Low-Income Audiences in Iowa: EFNEP and SNAP-Ed Graduates Practicing Optimal Nutritional Behaviors (ONB); Iowa State University: Ames, IA, USA, 2017. [Google Scholar]
- Joy, A.; Pradhan, V.; Goldman, G. Cost-benefit analysis conducted for nutrition education in California. Calif. Agric. 2006, 60, 185–191. [Google Scholar] [CrossRef]
- Murray, E.K.; Auld, G.; Baker, S.S.; Barale, K.; Franck, K.; Khan, T.; Palmer-Keenan, D.; Walsh, J. Methodology for Developing a New EFNEP Food and Physical Activity Behaviors Questionnaire. J. Nutr. Educ. Behav. 2017, 49, 777–783.e1. [Google Scholar] [CrossRef]
- Li, C.; Auld, G.; Crouter, S.E.; Palmer-Keenan, D.M. Validation of a Brief Physical Activity Assessment Tool for Adults with Limited Resources. J. Nutr. Educ. Behav. 2025, 57, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Spruance, L.A.; Atoloye, A.; Douglass, D.; Zimmerman, T.P.; Guenther, P.M.; Franck, K.; Henson, T.; Moore, C.J.; Wood, G.; Durward, C.M. Pilot Test of an Online ASA24 Training with EFNEP Educators. SAGE Open 2019, 9, 2158244019844074. [Google Scholar] [CrossRef]
- National Cancer Institute. Automated Self-Administered 24-Hour Dietary Assessment Tool. Available online: https://epi.grants.cancer.gov/asa24 (accessed on 19 September 2022).
- Jones, L.; Families Eating Smart and Moving More (Eds.) NC Division of Public Health: Nutrition Services Branch and Community and Clinical Connections for Prevention and Health Branch; NC State Extension: Raleigh, NC, USA; NC State University: Raleigh, NC, USA, 2016. [Google Scholar]
- Murray, E.K.; Baker, S.S.; Betts, N.M.; Hess, A.; Auld, G. Development of a National Dietary Behaviors Questionnaire for EFNEP Adult Participants. J. Nutr. Educ. Behav. 2020, 52, 1088–1099. [Google Scholar] [CrossRef]
- USDA; United States Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 2020. Available online: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials (accessed on 23 August 2022).
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Yates, A.A.; Schlicker, S.A.; Suitor, C.W. Dietary Reference Intakes: The new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J. Am. Diet. Assoc. 1998, 98, 699–706. [Google Scholar] [CrossRef]
- Steinberg, D.; Kay, M.; Burroughs, J.; Svetkey, L.P.; Bennett, G.G. The Effect of a Digital Behavioral Weight Loss Intervention on Adherence to the Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern in Medically Vulnerable Primary Care Patients: Results from a Randomized Controlled Trial. J. Acad. Nutr. Diet. 2019, 119, 574–584. [Google Scholar] [CrossRef]
- Mellen, P.B.; Gao, S.K.; Vitolins, M.Z.; Goff, D.C., Jr. Deteriorating dietary habits among adults with hypertension: DASH dietary accordance, NHANES 1988–1994 and 1999–2004. Arch. Intern. Med. 2008, 168, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Leschewski, A.; Aragon, M.C.; Weatherspoon, D.; Barale, K.; Auld, G.; Asquah-Sarpong, R.; Baker, S. Expanded Food and Nutrition Education Program generates value through Body Mass Index improvement: A cost-benefit analysis. J. Ext. 2024, 61, 17. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; et al. Food groups and risk of colorectal cancer. Int. J. Cancer 2018, 142, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Ubago-Guisado, E.; Rodríguez-Barranco, M.; Ching-López, A.; Petrova, D.; Molina-Montes, E.; Amiano, P.; Barricarte-Gurrea, A.; Chirlaque, M.D.; Agudo, A.; Sánchez, M.J. Evidence Update on the Relationship between Diet and the Most Common Cancers from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: A Systematic Review. Nutrients 2021, 13, 3582. [Google Scholar] [CrossRef] [PubMed]
- Borgas, P.; Gonzalez, G.; Veselkov, K.; Mirnezami, R. Phytochemically rich dietary components and the risk of colorectal cancer: A systematic review and meta-analysis of observational studies. World J. Clin. Oncol. 2021, 12, 482–499. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef]
- Angelino, D.; Godos, J.; Ghelfi, F.; Tieri, M.; Titta, L.; Lafranconi, A.; Marventano, S.; Alonzo, E.; Gambera, A.; Sciacca, S.; et al. Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2019, 70, 652–667. [Google Scholar] [CrossRef]
- Zurbau, A.; Au-Yeung, F.; Blanco Mejia, S.; Khan, T.A.; Vuksan, V.; Jovanovski, E.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Sievenpiper, J.L. Relation of Different Fruit and Vegetable Sources with Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2020, 9, e017728. [Google Scholar] [CrossRef]
- Micha, R.; Shulkin, M.L.; Peñalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS ONE 2017, 12, e0175149. [Google Scholar] [CrossRef]
- Wu, L.; Sun, D.; He, Y. Fruit and vegetables consumption and incident hypertension: Dose-response meta-analysis of prospective cohort studies. J. Hum. Hypertens. 2016, 30, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef]
- Li, B.; Li, F.; Wang, L.; Zhang, D. Fruit and Vegetables Consumption and Risk of Hypertension: A Meta-Analysis. J. Clin. Hypertens. 2016, 18, 468–476. [Google Scholar] [CrossRef]
- Arnotti, K.; Bamber, M.D.; Brewer, V. Dietary interventions and blood pressure in overweight or obese individuals: A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1001–1012. [Google Scholar] [CrossRef]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef]
- Guyenet, S.J. Impact of Whole, Fresh Fruit Consumption on Energy Intake and Adiposity: A Systematic Review. Front. Nutr. 2019, 6, 66. [Google Scholar] [CrossRef]
- Hebden, L.; O’Leary, F.; Rangan, A.; Singgih Lie, E.; Hirani, V.; Allman-Farinelli, M. Fruit consumption and adiposity status in adults: A systematic review of current evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 2526–2540. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.; Ard, J.; Bazzano, L.; Heymsfield, S.; Mayer-Davis, E.; Sabaté, J.; Snetselaar, L.; Van Horn, L.; Schneeman, B.; English, L.K.; et al. Dietary Patterns and Growth, Size, Body Composition, and/or Risk of Overweight or Obesity: A Systematic Review; USDA Nutrition Evidence Systematic Review: Alexandria, VA, USA, 2020. [Google Scholar]
- Poulsen, N.B.; Lambert, M.N.T.; Jeppesen, P.B. The Effect of Plant Derived Bioactive Compounds on Inflammation: A Systematic Review and Meta-Analysis. Mol. Nutr. Food Res. 2020, 64, e2000473. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Cao, W.T.; Tian, H.Y.; He, J.; Chen, G.D.; Chen, Y.M. Greater Intake of Fruit and Vegetables Is Associated with Greater Bone Mineral Density and Lower Osteoporosis Risk in Middle-Aged and Elderly Adults. PLoS ONE 2017, 12, e0168906. [Google Scholar] [CrossRef] [PubMed]
- Mangano, K.M.; Noel, S.E.; Lai, C.Q.; Christensen, J.J.; Ordovas, J.M.; Dawson-Hughes, B.; Tucker, K.L.; Parnell, L.D. Diet-derived fruit and vegetable metabolites show sex-specific inverse relationships to osteoporosis status. Bone 2021, 144, 115780. [Google Scholar] [CrossRef]
- Hu, D.; Cheng, L.; Jiang, W. Fruit and vegetable consumption and the risk of postmenopausal osteoporosis: A meta-analysis of observational studies. Food Funct. 2018, 9, 2607–2616. [Google Scholar] [CrossRef]
- Deng, C.; Lu, Q.; Gong, B.; Li, L.; Chang, L.; Fu, L.; Zhao, Y. Stroke and food groups: An overview of systematic reviews and meta-analyses. Public. Health Nutr. 2018, 21, 766–776. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, B.; Lou, M.; Song, B.; Han, X.; Sheng, F.; Xu, W. Identification of Risk Factors for Stroke in China: A Meta-Analysis of Prospective Cohort Studies. Front. Neurol. 2022, 13, 847304. [Google Scholar] [CrossRef]
- Yip, C.S.C.; Chan, W.; Fielding, R. The Associations of Fruit and Vegetable Intakes with Burden of Diseases: A Systematic Review of Meta-Analyses. J. Acad. Nutr. Diet. 2019, 119, 464–481. [Google Scholar] [CrossRef] [PubMed]
- Uusitupa, M.; Khan, T.A.; Viguiliouk, E.; Kahleova, H.; Rivellese, A.A.; Hermansen, K.; Pfeiffer, A.; Thanopoulou, A.; Salas-Salvadó, J.; Schwab, U.; et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2611. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Muraki, I.; Imamura, F.; Manson, J.E.; Hu, F.B.; Willett, W.C.; van Dam, R.M.; Sun, Q. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ 2013, 347, f5001. [Google Scholar] [CrossRef]
- Toi, P.L.; Anothaisintawee, T.; Chaikledkaew, U.; Briones, J.R.; Reutrakul, S.; Thakkinstian, A. Preventive Role of Diet Interventions and Dietary Factors in Type 2 Diabetes Mellitus: An Umbrella Review. Nutrients 2020, 12, 2722. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.; Ard, J.; Bazzano, L.; Heymsfield, S.; Mayer-Davis, E.; Sabaté, J.; Snetselaar, L.; Van Horn, L.; Schneeman, B.; English, L.K.; et al. Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review; USDA Nutrition Evidence Systematic Review: Alexandria, VA, USA, 2020. [Google Scholar]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef]
- Halvorsen, R.E.; Elvestad, M.; Molin, M.; Aune, D. Fruit and vegetable consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective studies. BMJ Nutr. Prev. Health 2021, 4, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Awoke, M.A.; Skouteris, H.; Makama, M.; Harrison, C.L.; Wycherley, T.P.; Moran, L.J. The Relationship of Diet and Physical Activity with Weight Gain and Weight Gain Prevention in Women of Reproductive Age. J. Clin. Med. 2021, 10, 2485. [Google Scholar] [CrossRef]
- Hruby, A.; Manson, J.E.; Qi, L.; Malik, V.S.; Rimm, E.B.; Sun, Q.; Willett, W.C.; Hu, F.B. Determinants and Consequences of Obesity. Am. J. Public. Health 2016, 106, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The Relationship between Vegetable Intake and Weight Outcomes: A Systematic Review of Cohort Studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef]
- Zeng, L.F.; Yang, W.Y.; Liang, G.H.; Luo, M.H.; Cao, Y.; Chen, H.Y.; Pan, J.K.; Huang, H.T.; Han, Y.H.; Zhao, D.; et al. Can increasing the prevalence of vegetable-based diets lower the risk of osteoporosis in postmenopausal subjects? A systematic review with meta-analysis of the literature. Complement. Ther. Med. 2019, 42, 302–311. [Google Scholar] [CrossRef]
- Han, X.; Zhao, R.; Zhang, G.; Jiao, Y.; Wang, Y.; Wang, D.; Cai, H. Association of Retinol and Carotenoids Content in Diet and Serum with Risk for Colorectal Cancer: A Meta-Analysis. Front. Nutr. 2022, 9, 918777. [Google Scholar] [CrossRef]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.W.; Siervo, M.; Lara, J. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Crit. Rev. Food Sci. Nutr. 2019, 59, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Bahonar, A.; Saadatnia, M.; Khorvash, F.; Maracy, M.; Khosravi, A. Carotenoids as Potential Antioxidant Agents in Stroke Prevention: A Systematic Review. Int. J. Prev. Med. 2017, 8, 70. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Sun, Z.H.; Tong, W.W.; Yang, K.; Guo, K.Q.; Liu, G.; Pan, A. Dietary Intake and Circulating Concentrations of Carotenoids and Risk of Type 2 Diabetes: A Dose-Response Meta-Analysis of Prospective Observational Studies. Adv. Nutr. 2021, 12, 1723–1733. [Google Scholar] [CrossRef]
- Lee, J.; Shin, A.; Oh, J.H.; Kim, J. Colors of vegetables and fruits and the risks of colorectal cancer. World J. Gastroenterol. 2017, 23, 2527–2538. [Google Scholar] [CrossRef]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wang, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021, 360, 130145. [Google Scholar] [CrossRef]
- Ojagbemi, A.; Okekunle, A.P.; Olowoyo, P.; Akpa, O.M.; Akinyemi, R.; Ovbiagele, B.; Owolabi, M. Dietary intakes of green leafy vegetables and incidence of cardiovascular diseases. Cardiovasc. J. Afr. 2021, 32, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Chen, C.; Yang, K.; Zhu, J.; Xun, P.; Shikany, J.M.; He, K. Magnesium intake is inversely associated with risk of obesity in a 30-year prospective follow-up study among American young adults. Eur. J. Nutr. 2020, 59, 3745–3753. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014, 4, e005497. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Koh, W.P.; Yuan, J.M.; Qin, L.Q.; van Dam, R.M. Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: Results from the Singapore Chinese Health Study and meta-analysis. Br. J. Nutr. 2018, 119, 1057–1067. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Zhang, Y.B.; Pan, A. Consumption of sugar-sweetened beverages and artificially sweetened beverages and risk of cardiovascular disease: A meta-analysis. Zhonghua Yu Fang Yi Xue Za Zhi 2021, 55, 1159–1167. [Google Scholar] [CrossRef]
- Ruanpeng, D.; Thongprayoon, C.; Cheungpasitporn, W.; Harindhanavudhi, T. Sugar and artificially sweetened beverages linked to obesity: A systematic review and meta-analysis. Qjm 2017, 110, 513–520. [Google Scholar] [CrossRef]
- Qin, P.; Li, Q.; Zhao, Y.; Chen, Q.; Sun, X.; Liu, Y.; Li, H.; Wang, T.; Chen, X.; Zhou, Q.; et al. Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: A dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2020, 35, 655–671. [Google Scholar] [CrossRef]
- Meng, Y.; Li, S.; Khan, J.; Dai, Z.; Li, C.; Hu, X.; Shen, Q.; Xue, Y. Sugar- and Artificially Sweetened Beverages Consumption Linked to Type 2 Diabetes, Cardiovascular Diseases, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 2636. [Google Scholar] [CrossRef]
- Neelakantan, N.; Park, S.H.; Chen, G.C.; van Dam, R.M. Sugar-sweetened beverage consumption, weight gain, and risk of type 2 diabetes and cardiovascular diseases in Asia: A systematic review. Nutr. Rev. 2021, 80, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, L.; He, K.; Huang, C.; Tang, S. Consumption of sugar-sweetened beverages and fruit juice and human cancer: A systematic review and dose-response meta-analysis of observational studies. J. Cancer 2021, 12, 3077–3088. [Google Scholar] [CrossRef]
- Mayer-Davis, E.; Leidy, H.; Mattes, R.; Naimi, T.; Novotny, R.; Schneeman, B.; Kingshipp, B.J.; Spill, M.; Cole, N.C.; Bahnfleth, C.L.; et al. Beverage Consumption and Growth, Size, Body Composition, and Risk of Overweight and Obesity: A Systematic Review; USDA Nutrition Evidence Systematic Review: Alexandria, VA, USA, 2020. [Google Scholar]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef]
- Xie, F.; You, Y.; Huang, J.; Guan, C.; Chen, Z.; Fang, M.; Yao, F.; Han, J. Association between physical activity and digestive-system cancer: An updated systematic review and meta-analysis. J. Sport. Health Sci. 2021, 10, 4–13. [Google Scholar] [CrossRef]
- Shaw, E.; Farris, M.S.; Stone, C.R.; Derksen, J.W.G.; Johnson, R.; Hilsden, R.J.; Friedenreich, C.M.; Brenner, D.R. Effects of physical activity on colorectal cancer risk among family history and body mass index subgroups: A systematic review and meta-analysis. BMC Cancer 2018, 18, 71. [Google Scholar] [CrossRef]
- Rezende, L.F.M.; Sá, T.H.; Markozannes, G.; Rey-López, J.P.; Lee, I.M.; Tsilidis, K.K.; Ioannidis, J.P.A.; Eluf-Neto, J. Physical activity and cancer: An umbrella review of the literature including 22 major anatomical sites and 770,000 cancer cases. Br. J. Sports Med. 2018, 52, 826–833. [Google Scholar] [CrossRef]
- Hidayat, K.; Zhou, H.J.; Shi, B.M. Influence of physical activity at a young age and lifetime physical activity on the risks of 3 obesity-related cancers: Systematic review and meta-analysis of observational studies. Nutr. Rev. 2020, 78, 1–18. [Google Scholar] [CrossRef]
- Mahmood, S.; MacInnis, R.J.; English, D.R.; Karahalios, A.; Lynch, B.M. Domain-specific physical activity and sedentary behaviour in relation to colon and rectal cancer risk: A systematic review and meta-analysis. Int. J. Epidemiol. 2017, 46, 1797–1813. [Google Scholar] [CrossRef]
- Lee, J.; Ahn, J.; Lee, D.W.; Kim, H.R.; Kang, M.Y. Association of sedentary work with colon and rectal cancer: Systematic review and meta-analysis. Occup. Environ. Med. 2022, 79, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Manek, N.; Nichols, M.; Kelly, P.; Foster, C.; Webster, P.; Kaur, A.; Friedemann Smith, C.; Wilkins, E.; Rayner, M.; et al. Quantifying the Association Between Physical Activity and Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L. Physical Activity, All-Cause and Cardiovascular Mortality, and Cardiovascular Disease. Med. Sci. Sports Exerc. 2019, 51, 1270–1281. [Google Scholar] [CrossRef]
- Cleven, L.; Krell-Roesch, J.; Nigg, C.R.; Woll, A. The association between physical activity with incident obesity, coronary heart disease, diabetes and hypertension in adults: A systematic review of longitudinal studies published after 2012. BMC Public Health 2020, 20, 726. [Google Scholar] [CrossRef]
- Williamson, W.; Foster, C.; Reid, H.; Kelly, P.; Lewandowski, A.J.; Boardman, H.; Roberts, N.; McCartney, D.; Huckstep, O.; Newton, J.; et al. Will Exercise Advice Be Sufficient for Treatment of Young Adults with Prehypertension and Hypertension? A Systematic Review and Meta-Analysis. Hypertension 2016, 68, 78–87. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Liu, Y.; Sun, X.; Han, C.; Wang, B.; Ren, Y.; Zhou, J.; Zhao, Y.; Shi, Y.; et al. Dose-Response Association Between Physical Activity and Incident Hypertension: A Systematic Review and Meta-Analysis of Cohort Studies. Hypertension 2017, 69, 813–820. [Google Scholar] [CrossRef]
- Carpio-Rivera, E.; Moncada-Jiménez, J.; Salazar-Rojas, W.; Solera-Herrera, A. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation. Arq. Bras. Cardiol. 2016, 106, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Esmailiyan, M.; Amerizadeh, A.; Vahdat, S.; Ghodsi, M.; Doewes, R.I.; Sundram, Y. Effect of Different Types of Aerobic Exercise on Individuals with and Without Hypertension: An Updated Systematic Review. Curr. Probl. Cardiol. 2023, 48, 101034. [Google Scholar] [CrossRef] [PubMed]
- Battista, F.; Ermolao, A.; van Baak, M.A.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; Carraça, E.V.; Encantado, J.; Dicker, D.; Farpour-Lambert, N.; et al. Effect of exercise on cardiometabolic health of adults with overweight or obesity: Focus on blood pressure, insulin resistance, and intrahepatic fat-A systematic review and meta-analysis. Obes. Rev. 2021, 22 (Suppl. S4), e13269. [Google Scholar] [CrossRef] [PubMed]
- Bersaoui, M.; Baldew, S.M.; Cornelis, N.; Toelsie, J.; Cornelissen, V.A. The effect of exercise training on blood pressure in African and Asian populations: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Prev. Cardiol. 2020, 27, 457–472. [Google Scholar] [CrossRef]
- Igarashi, Y.; Nogami, Y. Running to Lower Resting Blood Pressure: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 531–541. [Google Scholar] [CrossRef]
- Jakicic, J.M.; Powell, K.E.; Campbell, W.W.; Dipietro, L.; Pate, R.R.; Pescatello, L.S.; Collins, K.A.; Bloodgood, B.; Piercy, K.L. Physical Activity and the Prevention of Weight Gain in Adults: A Systematic Review. Med. Sci. Sports Exerc. 2019, 51, 1262–1269. [Google Scholar] [CrossRef]
- Grgic, J.; Dumuid, D.; Bengoechea, E.G.; Shrestha, N.; Bauman, A.; Olds, T.; Pedisic, Z. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 69. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, C.G. What Types of Exercise Are More Effective in Reducing Obesity and Blood Pressure for Middle-Aged Women? A Systematic Review with Meta-Analysis. Biol. Res. Nurs. 2021, 23, 658–675. [Google Scholar] [CrossRef]
- Elhakeem, A.; Hannam, K.; Deere, K.C.; Hartley, A.; Clark, E.M.; Moss, C.; Edwards, M.H.; Dennison, E.; Gaysin, T.; Kuh, D.; et al. Physical Activity Producing Low, but Not Medium or Higher, Vertical Impacts Is Inversely Related to BMI in Older Adults: Findings from a Multicohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Jungbluth Rodriguez, K.; Sabag, A.; Mavros, Y.; Parker, H.M.; Keating, S.E.; Johnson, N.A. Effect of aerobic exercise on waist circumference in adults with overweight or obesity: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13446. [Google Scholar] [CrossRef]
- Pinheiro, M.B.; Oliveira, J.; Bauman, A.; Fairhall, N.; Kwok, W.; Sherrington, C. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: A systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 150. [Google Scholar] [CrossRef]
- Marín-Cascales, E.; Alcaraz, P.E.; Ramos-Campo, D.J.; Rubio-Arias, J.A. Effects of multicomponent training on lean and bone mass in postmenopausal and older women: A systematic review. Menopause 2018, 25, 346–356. [Google Scholar] [CrossRef]
- Colpani, V.; Baena, C.P.; Jaspers, L.; van Dijk, G.M.; Farajzadegan, Z.; Dhana, K.; Tielemans, M.J.; Voortman, T.; Freak-Poli, R.; Veloso, G.G.V.; et al. Lifestyle factors, cardiovascular disease and all-cause mortality in middle-aged and elderly women: A systematic review and meta-analysis. Eur. J. Epidemiol. 2018, 33, 831–845. [Google Scholar] [CrossRef]
- Madsen, T.E.; Samaei, M.; Pikula, A.; Yu, A.Y.X.; Carcel, C.; Millsaps, E.; Yalamanchili, R.S.; Bencie, N.; Dula, A.N.; Leppert, M.; et al. Sex Differences in Physical Activity and Incident Stroke: A Systematic Review. Clin. Ther. 2022, 44, 586–611. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Leitzmann, M.; Tonstad, S.; Vatten, L.J. Physical activity and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis. Eur. J. Epidemiol. 2015, 30, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, E.; Bonifazi, A.; Monami, M. Comparison between different types of exercise training in patients with type 2 diabetes mellitus: A systematic review and network metanalysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Shawahna, R.; Batta, A.; Asa’ad, M.; Jomaah, M.; Abdelhaq, I. Exercise as a complementary medicine intervention in type 2 diabetes mellitus: A systematic review with narrative and qualitative synthesis of evidence. Diabetes Metab. Syndr. 2021, 15, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Tarp, J.; Støle, A.P.; Blond, K.; Grøntved, A. Cardiorespiratory fitness, muscular strength and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetologia 2019, 62, 1129–1142. [Google Scholar] [CrossRef]
- Jadhav, R.A.; Hazari, A.; Monterio, A.; Kumar, S.; Maiya, A.G. Effect of Physical Activity Intervention in Prediabetes: A Systematic Review with Meta-analysis. J. Phys. Act. Health 2017, 14, 745–755. [Google Scholar] [CrossRef]
- Momma, H.; Kawakami, R.; Honda, T.; Sawada, S.S. Muscle-strengthening activities are associated with lower risk and mortality in major non-communicable diseases: A systematic review and meta-analysis of cohort studies. Br. J. Sports Med. 2022, 56, 755–763. [Google Scholar] [CrossRef]
- MacDonald, H.V.; Johnson, B.T.; Huedo-Medina, T.B.; Livingston, J.; Forsyth, K.C.; Kraemer, W.J.; Farinatti, P.T.; Pescatello, L.S. Dynamic Resistance Training as Stand-Alone Antihypertensive Lifestyle Therapy: A Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e003231. [Google Scholar] [CrossRef]
- Loaiza-Betancur, A.F.; Pérez Bedoya, E.; Montoya Dávila, J.; Chulvi-Medrano, I. Effect of Isometric Resistance Training on Blood Pressure Values in a Group of Normotensive Participants: A Systematic Review and Meta-analysis. Sports Health 2020, 12, 256–262. [Google Scholar] [CrossRef]
- de Sousa, E.C.; Abrahin, O.; Ferreira, A.L.L.; Rodrigues, R.P.; Alves, E.A.C.; Vieira, R.P. Resistance training alone reduces systolic and diastolic blood pressure in prehypertensive and hypertensive individuals: Meta-analysis. Hypertens. Res. 2017, 40, 927–931. [Google Scholar] [CrossRef]
- Loaiza-Betancur, A.F.; Chulvi-Medrano, I. Is Low-Intensity Isometric Handgrip Exercise an Efficient Alternative in Lifestyle Blood Pressure Management? A Systematic Review. Sports Health 2020, 12, 470–477. [Google Scholar] [CrossRef]
- Bennie, J.A.; De Cocker, K.; Pavey, T.; Stamatakis, E.; Biddle, S.J.H.; Ding, D. Muscle Strengthening, Aerobic Exercise, and Obesity: A Pooled Analysis of 1.7 Million US Adults. Obesity 2020, 28, 371–378. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, G.; Blake, C.; Cunningham, C.; Lennon, O.; Perrotta, C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obes. Rev. 2021, 22, e13137. [Google Scholar] [CrossRef]
- Kistler-Fischbacher, M.; Weeks, B.K.; Beck, B.R. The effect of exercise intensity on bone in postmenopausal women (part 2): A meta-analysis. Bone 2021, 143, 115697. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, W.; Chen, Q.; Zhang, Y.; Kuo, C.H.; Korivi, M. Resistance Exercise Intensity is Correlated with Attenuation of HbA1c and Insulin in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2019, 16, 140. [Google Scholar] [CrossRef]
- Qadir, R.; Sculthorpe, N.F.; Todd, T.; Brown, E.C. Effectiveness of Resistance Training and Associated Program Characteristics in Patients at Risk for Type 2 Diabetes: A Systematic Review and Meta-analysis. Sports Med. Open 2021, 7, 38. [Google Scholar] [CrossRef]
- Ma, P.; Yao, Y.; Sun, W.; Dai, S.; Zhou, C. Daily sedentary time and its association with risk for colorectal cancer in adults: A dose-response meta-analysis of prospective cohort studies. Medicine 2017, 96, e7049. [Google Scholar] [CrossRef] [PubMed]
- Hermelink, R.; Leitzmann, M.F.; Markozannes, G.; Tsilidis, K.; Pukrop, T.; Berger, F.; Baurecht, H.; Jochem, C. Sedentary behavior and cancer-an umbrella review and meta-analysis. Eur. J. Epidemiol. 2022, 37, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Bu, W.; Chen, Y.; Chen, X. The Dose-Response Associations of Sedentary Time with Chronic Diseases and the Risk for All-Cause Mortality Affected by Different Health Status: A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2020, 24, 63–70. [Google Scholar] [CrossRef]
- Patterson, R.; McNamara, E.; Tainio, M.; de Sá, T.H.; Smith, A.D.; Sharp, S.J.; Edwards, P.; Woodcock, J.; Brage, S.; Wijndaele, K. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. Eur. J. Epidemiol. 2018, 33, 811–829. [Google Scholar] [CrossRef]
- Chandrasekaran, B.; Ganesan, T.B. Sedentarism and chronic disease risk in COVID 19 lockdown—A scoping review. Scott. Med. J. 2021, 66, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Powell, K.E.; Jakicic, J.M.; Troiano, R.P.; Piercy, K.; Tennant, B. Sedentary Behavior and Health: Update from the 2018 Physical Activity Guidelines Advisory Committee. Med. Sci. Sports Exerc. 2019, 51, 1227–1241. [Google Scholar] [CrossRef]
- Bailey, D.P.; Hewson, D.J.; Champion, R.B.; Sayegh, S.M. Sitting Time and Risk of Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2019, 57, 408–416. [Google Scholar] [CrossRef]
- Paudel, S.; Owen, A.J.; Owusu-Addo, E.; Smith, B.J. Physical activity participation and the risk of chronic diseases among South Asian adults: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 9771. [Google Scholar] [CrossRef]
- Magro-Malosso, E.R.; Saccone, G.; Di Tommaso, M.; Roman, A.; Berghella, V. Exercise during pregnancy and risk of gestational hypertensive disorders: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2017, 96, 921–931. [Google Scholar] [CrossRef]
- Lee, P.H.; Wong, F.K. The association between time spent in sedentary behaviors and blood pressure: A systematic review and meta-analysis. Sports Med. 2015, 45, 867–880. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, Q.; Zhang, D.; Qin, P.; Li, Q.; Tian, G.; Liu, D.; Chen, X.; Liu, L.; Liu, F.; et al. Association of total sedentary behaviour and television viewing with risk of overweight/obesity, type 2 diabetes and hypertension: A dose-response meta-analysis. Diabetes Obes. Metab. 2020, 22, 79–90. [Google Scholar] [CrossRef]
- Rollo, S.; Antsygina, O.; Tremblay, M.S. The whole day matters: Understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J. Sport. Health Sci. 2020, 9, 493–510. [Google Scholar] [CrossRef]
- Janssen, I.; Clarke, A.E.; Carson, V.; Chaput, J.P.; Giangregorio, L.M.; Kho, M.E.; Poitras, V.J.; Ross, R.; Saunders, T.J.; Ross-White, A.; et al. A systematic review of compositional data analysis studies examining associations between sleep, sedentary behaviour, and physical activity with health outcomes in adults. Appl. Physiol. Nutr. Metab. 2020, 45, S248–S257. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Singh-Manoux, A.; Pentti, J.; Sabia, S.; Nyberg, S.T.; Alfredsson, L.; Goldberg, M.; Knutsson, A.; Koskenvuo, M.; Koskinen, A.; et al. Physical inactivity, cardiometabolic disease, and risk of dementia: An individual-participant meta-analysis. BMJ 2019, 365, l1495. [Google Scholar] [CrossRef] [PubMed]
- Levy, N.; Cravo Oliveira Hashiguchi, T.; Cecchini, M. Food safety policies and their effectiveness to prevent foodborne diseases in catering establishments: A systematic review and meta-analysis. Food Res. Int. 2022, 156, 111076. [Google Scholar] [CrossRef]
- Aiello, A.E.; Coulborn, R.M.; Perez, V.; Larson, E.L. Effect of hand hygiene on infectious disease risk in the community setting: A meta-analysis. Am. J. Public. Health 2008, 98, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.C.; Stocks, M.E.; Cumming, O.; Jeandron, A.; Higgins, J.P.; Wolf, J.; Prüss-Ustün, A.; Bonjour, S.; Hunter, P.R.; Fewtrell, L.; et al. Hygiene and health: Systematic review of handwashing practices worldwide and update of health effects. Trop. Med. Int. Health 2014, 19, 906–916. [Google Scholar] [CrossRef]
- Gaesser, G.A. Whole Grains, Refined Grains, and Cancer Risk: A Systematic Review of Meta-Analyses of Observational Studies. Nutrients 2020, 12, 3756. [Google Scholar] [CrossRef]
- Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and beverages and colorectal cancer risk: A systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 2017, 28, 1788–1802. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Wang, X.K.; Tang, Y.J.; Guan, X.X.; Guo, Y.; Fan, J.M.; Cui, L.L. Association of whole grains intake and the risk of digestive tract cancer: A systematic review and meta-analysis. Nutr. J. 2020, 19, 52. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, N.; Markozannes, G.; Kanellopoulou, A.; Critselis, E.; Alhardan, S.; Karafousia, V.; Kasimis, J.C.; Katsaraki, C.; Papadopoulou, A.; Zografou, M.; et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 2021, 12, 4579. [Google Scholar] [CrossRef]
- Tieri, M.; Ghelfi, F.; Vitale, M.; Vetrani, C.; Marventano, S.; Lafranconi, A.; Godos, J.; Titta, L.; Gambera, A.; Alonzo, E.; et al. Whole grain consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2020, 71, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Palacios, O.M.; Koecher, K.; Sawicki, C.M.; Livingston, K.A.; Bell, M.; Nelson Cortes, H.; McKeown, N.M. The Relationship between Whole Grain Intake and Body Weight: Results of Meta-Analyses of Observational Studies and Randomized Controlled Trials. Nutrients 2019, 11, 1245. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Chen, X.; Yu, M.; Pan, Q.; Guo, L. Whole grain food diet slightly reduces cardiovascular risks in obese/overweight adults: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2020, 20, 82. [Google Scholar] [CrossRef]
- Sanders, L.M.; Zhu, Y.; Wilcox, M.L.; Koecher, K.; Maki, K.C. Effects of Whole Grain Intake, Compared with Refined Grain, on Appetite and Energy Intake: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 1177–1195. [Google Scholar] [CrossRef]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef]
- Ghanbari-Gohari, F.; Mousavi, S.M.; Esmaillzadeh, A. Consumption of whole grains and risk of type 2 diabetes: A comprehensive systematic review and dose-response meta-analysis of prospective cohort studies. Food Sci. Nutr. 2022, 10, 1950–1960. [Google Scholar] [CrossRef]
- Chapelle, N.; Martel, M.; Toes-Zoutendijk, E.; Barkun, A.N.; Bardou, M. Recent advances in clinical practice: Colorectal cancer chemoprevention in the average-risk population. Gut 2020, 69, 2244–2255. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ahmed, M.; Ha, V.; Jefferson, K.; Malik, V.; Ribeiro, P.A.B.; Zuchinali, P.; Drouin-Chartier, J.P. Dairy Product Consumption and Cardiovascular Health: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2021, 13, 439–454. [Google Scholar] [CrossRef]
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef] [PubMed]
- Heidari, Z.; Rashidi Pour Fard, N.; Clark, C.C.T.; Haghighatdoost, F. Dairy products consumption and the risk of hypertension in adults: An updated systematic review and dose-response meta-analysis of prospective cohort studies. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1962–1975. [Google Scholar] [CrossRef]
- Hong, J.Y.; Lee, J.S.; Woo, H.W.; Om, A.S.; Kwock, C.K.; Kim, M.K. Meta-analysis of randomized controlled trials on calcium supplements and dairy products for changes in body weight and obesity indices. Int. J. Food Sci. Nutr. 2021, 72, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lee, H.; Kim, J. Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: A systematic review and meta-analysis. Br. J. Nutr. 2018, 120, 373–384. [Google Scholar] [CrossRef]
- Shi, Y.; Zhan, Y.; Chen, Y.; Jiang, Y. Effects of dairy products on bone mineral density in healthy postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Arch. Osteoporos. 2020, 15, 48. [Google Scholar] [CrossRef]
- Malmir, H.; Larijani, B.; Esmaillzadeh, A. Consumption of milk and dairy products and risk of osteoporosis and hip fracture: A systematic review and Meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 1722–1737. [Google Scholar] [CrossRef]
- Soedamah-Muthu, S.S.; de Goede, J. Dairy Consumption and Cardiometabolic Diseases: Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. Curr. Nutr. Rep. 2018, 7, 171–182. [Google Scholar] [CrossRef]
- Oh, H.; Kim, H.; Lee, D.H.; Lee, A.; Giovannucci, E.L.; Kang, S.S.; Keum, N. Different dietary fibre sources and risks of colorectal cancer and adenoma: A dose-response meta-analysis of prospective studies. Br. J. Nutr. 2019, 122, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Gianfredi, V.; Salvatori, T.; Villarini, M.; Moretti, M.; Nucci, D.; Realdon, S. Is dietary fibre truly protective against colon cancer? A systematic review and meta-analysis. Int. J. Food Sci. Nutr. 2018, 69, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Gianfredi, V.; Nucci, D.; Salvatori, T.; Dallagiacoma, G.; Fatigoni, C.; Moretti, M.; Realdon, S. Rectal Cancer: 20% Risk Reduction Thanks to Dietary Fibre Intake. Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1579. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hu, M.; Zhou, L.; Ling, S.; Li, Y.; Kong, B.; Huang, P. Dietary fiber intake and risks of proximal and distal colon cancers: A meta-analysis. Medicine 2018, 97, e11678. [Google Scholar] [CrossRef]
- Arayici, M.E.; Mert-Ozupek, N.; Yalcin, F.; Basbinar, Y.; Ellidokuz, H. Soluble and Insoluble Dietary Fiber Consumption and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis. Nutr. Cancer 2022, 74, 2412–2425. [Google Scholar] [CrossRef]
- Newberry, S.J.; Chung, M.; Anderson, C.A.M.; Chen, C.; Fu, Z.; Tang, A.; Zhao, N.; Booth, M.; Marks, J.; Hollands, S.; et al. Sodium and Potassium Intake: Effects on Chronic Disease Outcomes and Risks; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2018. [Google Scholar]
- Gonçalves, C.; Abreu, S. Sodium and Potassium Intake and Cardiovascular Disease in Older People: A Systematic Review. Nutrients 2020, 12, 3447. [Google Scholar] [CrossRef]
- Leyvraz, M.; Chatelan, A.; da Costa, B.R.; Taffé, P.; Paradis, G.; Bovet, P.; Bochud, M.; Chiolero, A. Sodium intake and blood pressure in children and adolescents: A systematic review and meta-analysis of experimental and observational studies. Int. J. Epidemiol. 2018, 47, 1796–1810. [Google Scholar] [CrossRef]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst. Rev. 2017, 4, Cd004022. [Google Scholar] [CrossRef]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef]
- Filippini, T.; Malavolti, M.; Whelton, P.K.; Vinceti, M. Sodium Intake and Risk of Hypertension: A Systematic Review and Dose-Response Meta-analysis of Observational Cohort Studies. Curr. Hypertens. Rep. 2022, 24, 133–144. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef]
- Fatahi, S.; Namazi, N.; Larijani, B.; Azadbakht, L. The Association of Dietary and Urinary Sodium with Bone Mineral Density and Risk of Osteoporosis: A Systematic Review and Meta-Analysis. J. Am. Coll. Nutr. 2018, 37, 522–532. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Li, Z.; Liu, Y.; Fan, X.; Zhang, Y. Association of sodium intake and major cardiovascular outcomes: A dose-response meta-analysis of prospective cohort studies. BMC Cardiovasc. Disord. 2018, 18, 192. [Google Scholar] [CrossRef]
- Filippini, T.; Naska, A.; Kasdagli, M.I.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K.; et al. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef]
- Wu, J.; Xu, L.; Lv, Y.; Dong, L.; Zheng, Q.; Li, L. Quantitative analysis of efficacy and associated factors of calcium intake on bone mineral density in postmenopausal women. Osteoporos. Int. 2017, 28, 2003–2010. [Google Scholar] [CrossRef]
- Tangestani, H.; Djafarian, K.; Emamat, H.; Arabzadegan, N.; Shab-Bidar, S. Efficacy of vitamin D fortified foods on bone mineral density and serum bone biomarkers: A systematic review and meta-analysis of interventional studies. Crit. Rev. Food Sci. Nutr. 2020, 60, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.F.; Luo, M.H.; Liang, G.H.; Yang, W.Y.; Xiao, X.; Wei, X.; Yu, J.; Guo, D.; Chen, H.Y.; Pan, J.K.; et al. Can Dietary Intake of Vitamin C-Oriented Foods Reduce the Risk of Osteoporosis, Fracture, and BMD Loss? Systematic Review with Meta-Analyses of Recent Studies. Front. Endocrinol. 2019, 10, 844. [Google Scholar] [CrossRef] [PubMed]
- Malmir, H.; Shab-Bidar, S.; Djafarian, K. Vitamin C intake in relation to bone mineral density and risk of hip fracture and osteoporosis: A systematic review and meta-analysis of observational studies. Br. J. Nutr. 2018, 119, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Boushey, C.J.; Wilkens, L.R.; Haiman, C.A.; Le Marchand, L. High-Quality Diets Associate with Reduced Risk of Colorectal Cancer: Analyses of Diet Quality Indexes in the Multiethnic Cohort. Gastroenterology 2017, 153, 386–394.e382. [Google Scholar] [CrossRef]
- Panizza, C.E.; Shvetsov, Y.B.; Harmon, B.E.; Wilkens, L.R.; Le Marchand, L.; Haiman, C.; Reedy, J.; Boushey, C.J. Testing the Predictive Validity of the Healthy Eating Index-2015 in the Multiethnic Cohort: Is the Score Associated with a Reduced Risk of All-Cause and Cause-Specific Mortality? Nutrients 2018, 10, 452. [Google Scholar] [CrossRef]
- Asghari, G.; Mirmiran, P.; Yuzbashian, E.; Azizi, F. A systematic review of diet quality indices in relation to obesity. Br. J. Nutr. 2017, 117, 1055–1065. [Google Scholar] [CrossRef]
- Dollahite, J.; Kenkel, D.; Thompson, C.S. An economic evaluation of the expanded food and nutrition education program. J. Nutr. Educ. Behav. 2008, 40, 134–143. [Google Scholar] [CrossRef]
- Baranowski, B.J.; Marko, D.M.; Fenech, R.K.; Yang, A.J.T.; MacPherson, R.E.K. Healthy brain, healthy life: A review of diet and exercise interventions to promote brain health and reduce Alzheimer’s disease risk. Appl. Physiol. Nutr. Metab. 2020, 45, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.V.F.; Loures, C.d.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M.d.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019, 26, 33. [Google Scholar] [CrossRef]
- Khemka, S.; Reddy, A.; Garcia, R.I.; Jacobs, M.; Reddy, R.P.; Roghani, A.K.; Pattoor, V.; Basu, T.; Sehar, U.; Reddy, P.H. Role of diet and exercise in aging, Alzheimer’s disease, and other chronic diseases. Ageing Res. Rev. 2023, 91, 102091. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, M.J.; Waterhouse, B.; Aggarwal, V.R.; Bloor, K.; Doran, T. Effect of sugar-sweetened beverages on oral health: A systematic review and meta-analysis. Eur. J. Public. Health 2021, 31, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.P.; Gleason, S.; Singh, A.; Wilkin, M.K. Policy, Systems, and Environmental Change Strategies in the Supplemental Nutrition Assistance Program-Education (SNAP-Ed). J. Nutr. Educ. Behav. 2022, 54, 320–326. [Google Scholar] [CrossRef]
- Molitor, F.; Doerr, C. SNAP-Ed Policy, Systems, and Environmental Interventions and Caregivers’ Dietary Behaviors. J. Nutr. Educ. Behav. 2020, 52, 1052–1057. [Google Scholar] [CrossRef]
- Coombs, C.; Savoie-Roskos, M.R.; Farnsworth, A.; Jimenez, L.; LeBlanc, H. Assessing the Impact of Multilevel Comprehensive Programming on SNAP-Ed Participant Behaviors. Health Promot. Pract. 2023, 26, 287–295. [Google Scholar] [CrossRef]
- National Institute of Food and Agriculture. Impacts and Reporting: National EFNEP Reports. 2019. Available online: https://www.nifa.usda.gov/grants/programs/capacity-grants/efnep/impacts-reporting-national-efnep-reports (accessed on 19 April 2024).
- Yetter, D.; Tripp, S. SNAP-Ed FY2019: A Retrospective Review of Land-Grant University SNAP-Ed Programs and Impacts; US Department of Agriculture: Alexandria, VA, USA, 2020; Available online: https://snap-ed.extension.org/wp-content/uploads/2023/03/LGU-SNAP-Ed-FY2019-Impacts-Report-12-16-2020_508.pdf (accessed on 19 April 2024).
Control | Intervention | |||||
---|---|---|---|---|---|---|
Variable | n | Mean ± SD or% | n | Mean ± SD or% | p-Value | |
Age (years) | 78 | 43.0 ± 14.6 | 78 | 48.2 ± 14.8 | 0.03 | |
Monthly income (US dollars) | 66 | 1486 ± 1082 | 63 | 1685 ± 1518 | 0.39 | |
Number of children in the household | 78 | 0.9 ± 1.4 | 78 | 1.2 ± 1.5 | 0.32 | |
Number of people in the household | 78 | 2.9 ± 1.7 | 78 | 3.2 ± 1.8 | 0.37 | |
Sex | Female | 57 | 73 | 68 | 87 | 0.03 |
Male | 21 | 27 | 10 | 13 | ||
Race | White | 72 | 92 | 72 | 92 | 0.34 |
American Indian or Alaska Native | 5 | 7 | 3 | 4 | ||
Asian | 0 | 0 | 1 | 1 | ||
Two or more races | 1 | 1 | 0 | 0 | ||
Not provided | 0 | 0 | 2 | 3 | ||
Ethnicity | Hispanic/Latino | 20 | 26 | 16 | 21 | 0.47 |
Non-Hispanic/Non-Latino | 58 | 74 | 61 | 78 | ||
Not Reported | 0 | 0 | 1 | 1 | ||
Highest level of education | Some high school | 4 | 5 | 5 | 6 | 0.83 |
High school or GED | 29 | 37 | 30 | 38 | ||
Some college | 26 | 33 | 24 | 31 | ||
Graduated 2-year college | 4 | 5 | 6 | 8 | ||
College graduate | 9 | 12 | 8 | 10 | ||
Postgraduate | 1 | 1 | 3 | 4 | ||
No response | 2 | 3 | 0 | 0 | ||
Residence location | Farm | 6 | 8 | 4 | 5 | 0.91 |
Town under 10,000/rural non-farm | 15 | 19 | 15 | 19 | ||
Town/city 10,000–50,000 | 39 | 50 | 37 | 48 | ||
Suburbs of cities over 50,000 | 5 | 6 | 5 | 6 | ||
Central cities over 50,000 | 13 | 17 | 17 | 22 |
Food and Physical Activity Questionnaire | ONB Criteria | CC | FBI | HD | HTN | OB | OST | STK | T2D |
---|---|---|---|---|---|---|---|---|---|
How many times a day do you eat fruit? | ≥2 times/day | [23,24,25] | [26,27,28,29,30] | [31,32,33,34] | [35,36,37,38,39] | [40,41,42] | [26,27,30,43,44,45] | [46,47,48,49,50,51,52] | |
How many times a day do you eat vegetables? | ≥3 times/day | [23,25] | [26,27,28,29,30,45] | [31,32,33,34] | [38,39,53,54,55] | [40,41,56] | [26,27,28,30,43] | [46,47,48,49,50,51,52] | |
Over the last week, how many days did you eat red and orange vegetables? | ≥4 days/week | [57] | [26,58] | [30,58,59] | [60] | ||||
Over the last week, how many days did you eat dark green vegetables? | ≥2 days/week | [61] | [26,29,62,63] | [64] | [30,62] | [65,66] | |||
How often do you drink regular sodas (not diet)? | ≤1–3 times/week | [67] | [68] | [27,67] | [30,47,49,50,69,70,71] | ||||
How often do you drink fruit punch, fruit drinks, sweet tea, or sports drinks? | ≤1–3 times/week | [72] | [27,30,67] | [54,69,71,73] | [27,67] | [30,47,49,50,69,70,71] | |||
In the past week, how many days did you exercise for at least 30 m? | ≥4 days/week | [74,75,76,77,78,79,80] | [81,82,83] | [84,85,86,87,88,89,90] | [83,91,92,93,94,95] | [96,97] | [82,98,99] | [46,100,101,102,103,104,105] | |
In the past week, how many days did you do workouts to build and strengthen your muscles? | ≥2 days/week | [106] | [107,108,109,110] | [111,112] | [96,97,113] | [100,102,104,106,114,115] | |||
How often do you make small changes on purpose to be more active? | ≥60% of time | [79,80,116,117] | [118,119,120,121,122] | [123,124,125,126] | [54,92,127,128] | [129] | [100,101,119,122] | ||
How often do you wash your hands with soap and running water before preparing food? | ≥80% of the time | [130,131,132] | |||||||
After cutting raw meat or seafood, how often do you wash all items and surfaces that come in contact with these foods? | Always | [130] | |||||||
How often do you thaw frozen food on the counter or in the sink at room temperature? | ≤20% of the time | [130] | |||||||
How often do you use a meat thermometer to see if meat is cooked to a safe temperature? | ≥80% of the time | [130] | |||||||
24-H Dietary Recall | |||||||||
Whole grains | 3 oz/day | [23,133,134,135,136,137,138] | [27,30] | [32] | [35,38,64,139,140,141] | [30,46,47,49,50,101,142,143] | |||
Dairy | 3 cups/day | [23,137,144] | [145,146] | [32,147] | [148,149] | [150,151] | [43,152] | [47,152] | |
Seafood | ≥8 oz/week | [27,30] | [38] | [27,43] | [51] | ||||
Fiber | ≥25 g/day | [135,144,153,154,155,156,157] | [30] | ||||||
Sodium | ≤2300 mg/day | [30,158,159] | [160,161,162,163,164] | [165] | [166] | ||||
Potassium | ≥4700 mg/day | [30,159] | [167] | ||||||
Calcium | ≥1200 mg/day | [137] | [168] | ||||||
Vitamin D | ≥25 mcg/day | [169] | |||||||
Folate | ≥400 mg/day | [144] | |||||||
Vitamin C | ≥90 mg/day | [170,171] | |||||||
Healthy Eating Index | ≥74.1 | [172] | [173] | [174] |
Disease or Condition | #ONB Possible Maximum Score | Control | Intervention | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | ||||||||||||||
Mean ± SD | Q1 | Mdn | Q4 | Mean ± SD | Q1 | Mdn | Q4 | Mean ± SD | Q1 | Mdn | Q4 | Mean ± SD | Q1 | Mdn | Q4 | ||
CC | 13 | 3.1 ± 1.9 | 2 | 3 | 4 | 3.6 ± 2.3 | 2 | 3 | 5 | 3.4 ± 2.0 | 2 | 3 | 5 | 4.7 ± 2.4 *,† | 3 | 4.5 | 7 |
FBI | 4 | 2.2 ± 0.9 | 2 | 2 | 3 | 2.2 ± 1.02 | 2 | 2 | 3 | 2.2 ± 1.0 | 2 | 2 | 3 | 2.8 ± 1.1 *,† | 2 | 3 | 4 |
HD | 16 | 4.4 ± 2.0 | 3 | 4 | 6 | 4.9 ± 2.2 | 3 | 4 | 6 | 4.5 ± 1.9 | 3 | 4 | 6 | 6.2 ± 2.3 *,† | 5 | 6 | 8 |
HTN | 9 | 1.9 ± 1.4 | 1 | 2 | 3 | 2.2 ± 1.5 | 1 | 2 | 3 | 1.7 ± 1.3 | 1 | 2 | 3 | 3.0 ± 1.6 *,† | 2 | 3 | 4 |
Obesity | 12 | 3.6 ± 1.8 | 2 | 3 | 4 | 4.0 ± 2.0 | 3 | 3 | 5 | 3.8 ± 1.7 | 3 | 4 | 5 | 5.2 ± 2.0 *,† | 4 | 5 | 7 |
OSTEO | 9 | 1.9 ± 1.4 | 1 | 2 | 3 | 2.2 ± 1.4 | 1 | 2 | 3 | 1.9 ± 1.4 | 1 | 1 | 3 | 2.8 ± 1.6 *,† | 2 | 3 | 4 |
Stroke | 11 | 3.9 ± 1.7 | 3 | 3.5 | 5 | 4.2 ± 1.7 | 3 | 4 | 5 | 4.0 ± 1.6 | 3 | 4 | 5 | 5.2 ± 1.9 *,† | 4 | 5 | 7 |
T2D | 12 | 3.7 ± 1.9 | 2 | 3 | 5 | 4.1 ± 2.0 | 3 | 4 | 6 | 4.0 ± 1.7 | 3 | 4 | 5 | 5.4 ± 2.1 *,† | 4 | 5 | 7 |
Overall | 86 | 24.5 ± 11.2 | 16 | 22.5 | 30 | 27.4 ± 12.3 | 17 | 24 | 35 | 25.5 ± 10.8 | 17 | 24 | 32 | 35.3 ± 13.4 *,† | 25 | 34 | 44 |
Disease or Condition | Control, n (%) | Intervention, n (%) | ||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Colorectal Cancer | 4 (5) | 12 (15) † | 5 (6) | 20 (26) † |
Foodborne Illness | 25 (32) | 27 (35) | 32 (41) | 50 (64) *,† |
Heart Disease | 3 (4) | 5 (6) | 2 (3) | 17 (22) *,† |
Hypertension | 4 (5) | 6 (8) | 1 (1) | 15 (19) *,† |
Obesity | 5 (6) | 9 (12) † | 6 (8) | 25 (32) *,† |
Osteoporosis | 3 (4) | 3 (4) | 4 (5) | 14 (18) *,† |
Stroke | 15 (19) | 19 (24) | 14 (18) | 34 (44) *,† |
Type 2 Diabetes | 6 (8) | 12 (15) † | 9 (12) | 26 (33) *,† |
PSE Variable | Control, n (%) | Intervention, n (%) | ||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Visit Pantry with PSE Interventions | 36 (46) | 32 (41) | 34 (44) | 28 (36) † |
Viewed MyPlate Signs | 16 (21) | 23 (29) † | 12 (15) | 18 (23) † |
Viewed Healthy Food Drive Flyer | 21 (27) | 20 (26) | 25 (32) | 18 (23) |
Involved in Smarter Lunchrooms Movement School | 16 (21) | 13 (17) | 6 (8) * | 7 (9) |
Recalled Long Live Idaho Water Poster | 11 (14) | 23 (29) † | 16 (21) | 25 (32) † |
Recalled Long Live Idaho Play Time Poster | 11 (14) | 13 (17) | 18 (23) | 19 (24) |
Recalled Long Live Idaho Motion Poster | 10 (13) | 18 (23) † | 10 (13) | 17 (22) |
Recalled Long Live Idaho Rainbow Poster | 15 (19) | 22 (28) | 16 (21) | 18 (23) |
Direct Benefits Per Graduate | USD 8621.12 |
---|---|
Colorectal Cancer a | USD 0 |
Foodborne Illness | USD 139.43 |
Heart Disease | USD 90.41 |
Hypertension | USD 548.22 |
Obesity | USD 1965.89 |
Osteoporosis | USD 313.77 |
Stroke | USD 399.12 |
Type 2 Diabetes | USD 5164.27 |
Indirect Benefits per Graduate | USD 423.46 |
Colorectal Cancer a | USD 0 |
Foodborne Illness | USD 5.07 |
Heart Disease | USD 19.80 |
Hypertension | USD 77.68 |
Obesity | USD 164.38 |
Osteoporosis | USD 19.43 |
Stroke b | USD 0.00 |
Type 2 Diabetes | USD 137.10 |
Total Benefits per Graduate | USD 9044.58 |
Costs per Graduate | USD 778.24 |
Benefit–Cost Ratio | 11.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roe, A.J.; Leschewski, A.; Johnson, S.; Peutz, J.; Hansen, K.; Lee, S.G.; Elvira, J.; Fitzgerald, N. Defining Optimal Nutrition Behaviors to Determine Benefit–Cost Ratio of Federal Nutrition Education Programs. Nutrients 2025, 17, 3076. https://doi.org/10.3390/nu17193076
Roe AJ, Leschewski A, Johnson S, Peutz J, Hansen K, Lee SG, Elvira J, Fitzgerald N. Defining Optimal Nutrition Behaviors to Determine Benefit–Cost Ratio of Federal Nutrition Education Programs. Nutrients. 2025; 17(19):3076. https://doi.org/10.3390/nu17193076
Chicago/Turabian StyleRoe, Annie J., Andrea Leschewski, Shelly Johnson, Joey Peutz, Kristin Hansen, Siew Guan Lee, Jocelyn Elvira, and Nurgul Fitzgerald. 2025. "Defining Optimal Nutrition Behaviors to Determine Benefit–Cost Ratio of Federal Nutrition Education Programs" Nutrients 17, no. 19: 3076. https://doi.org/10.3390/nu17193076
APA StyleRoe, A. J., Leschewski, A., Johnson, S., Peutz, J., Hansen, K., Lee, S. G., Elvira, J., & Fitzgerald, N. (2025). Defining Optimal Nutrition Behaviors to Determine Benefit–Cost Ratio of Federal Nutrition Education Programs. Nutrients, 17(19), 3076. https://doi.org/10.3390/nu17193076