Metal Transporter Gene SLC39A8 Polymorphism rs13107325 and Dietary Manganese Intake Are Associated with Measures of Cardiovascular Disease Risk in a UK Biobank Population Cohort
Abstract
1. Introduction
2. Methods
2.1. UK Biobank Baseline Characteristics
2.2. SLC39A8 SNP rs13107325 Genotype (Predictor)
2.3. Manganese Intake (Predictor) from 24 h Dietary Recalls
2.4. Primary and Secondary Outcomes
2.5. Phenotype Data (Including Primary Outcomes and Additional Covariates)
2.6. Population Stratification (Covariate) Measures Through Genetic Principal Components
2.7. Statistics
3. Results
3.1. Associations of rs13107325 and Dietary Manganese Intake with Health Measures
3.2. Association of rs13107325 and Dietary Manganese with Overall Adiposity
3.3. Association of rs13107325 and Dietary Manganese with Lipid and Lipoprotein Metabolism
3.4. Association of rs13107325 and Dietary Manganese with Blood Pressure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Adequate Intake |
ApoA | Apolipoprotein A |
ApoB | Apolipoprotein B |
BMI | Body Mass Index |
CRP | C-reactive Protein |
CVD | Cardiovascular Disease |
DEXA | Dual X-ray Absorptiometry |
FDR | False Discovery Rate |
GWAS | Genome-wide Association Studies |
HDL | High Density Lipoprotein |
LDL | Low Density Lipoprotein |
MRI | Magnetic Resonance Imaging |
NMR | Nuclear Magnetic Resonance |
NT-proBNP | N-terminal Prohormone of Brain Natriuretic Peptide |
RAP | Research Access Platform |
SNP | Single Nucleotide Polymorphism |
VWF | von Willebrand factor |
References
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Farmer, R.E.; Mathur, R.; Schmidt, A.F.; Bhaskaran, K.; Fatemifar, G.; Eastwood, S.V.; Finan, C.; Denaxas, S.; Smeeth, L.; Chaturvedi, N. Associations between Measures of Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Cohort Study and Mendelian Randomization Analysis Using the UK Biobank. J. Am. Heart Assoc. 2019, 8, e011638. [Google Scholar] [CrossRef] [PubMed]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated Fat, Carbohydrate, and Cardiovascular Disease. Am. J. Clin. Nutr. 2010, 91, 502–509. [Google Scholar] [CrossRef]
- He, L.; Girijashanker, K.; Dalton, T.P.; Reed, J.; Li, H.; Soleimani, M.; Nebert, D.W. ZIP8, Member of the Solute-Carrier-39 (SLC39) Metal-Transporter Family: Characterization of Transporter Properties. Mol. Pharmacol. 2006, 70, 171–180. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Jenkitkasemwong, S.; Duarte, S.; Sparkman, B.K.; Shawki, A.; Mackenzie, B.; Knutson, M.D. ZIP8 Is an Iron and Zinc Transporter Whose Cell-Surface Expression Is up-Regulated by Cellular Iron Loading. J. Biol. Chem. 2012, 287, 34032–34043. [Google Scholar] [CrossRef]
- Boycott, K.M.; Beaulieu, C.L.; Kernohan, K.D.; Gebril, O.H.; Mhanni, A.; Chudley, A.E.; Redl, D.; Qin, W.; Hampson, S.; Küry, S.; et al. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8. Am. J. Hum. Genet. 2015, 97, 886–893. [Google Scholar] [CrossRef]
- Park, J.H.; Hogrebe, M.; Grüneberg, M.; DuChesne, I.; von der Heiden, A.L.; Reunert, J.; Schlingmann, K.P.; Boycott, K.M.; Beaulieu, C.L.; Mhanni, A.A.; et al. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation. Am. J. Hum. Genet. 2015, 97, 894–903. [Google Scholar] [CrossRef]
- Park, J.H.; Hogrebe, M.; Fobker, M.; Brackmann, R.; Fiedler, B.; Reunert, J.; Rust, S.; Tsiakas, K.; Santer, R.; Grüneberg, M.; et al. SLC39A8 Deficiency: Biochemical Correction and Major Clinical Improvement by Manganese Therapy. Genet. Med. 2018, 20, 259–268. [Google Scholar] [CrossRef]
- Choi, E.-K.; Rajendiran, T.M.; Soni, T.; Park, J.-H.; Aring, L.; Muraleedharan, C.K.; Garcia-Hernandez, V.; Kamada, N.; Samuelson, L.C.; Nusrat, A.; et al. The Manganese Transporter SLC39A8 Links Alkaline Ceramidase 1 to Inflammatory Bowel Disease. Nat. Commun. 2024, 15, 4775. [Google Scholar] [CrossRef] [PubMed]
- Nakata, T.; Creasey, E.A.; Kadoki, M.; Lin, H.; Selig, M.K.; Yao, J.; Lefkovith, A.; Daly, M.J.; Graham, D.B.; Xavier, R.J. A Missense Variant in SLC39A8 Confers Risk for Crohn’s Disease by Disrupting Manganese Homeostasis and Intestinal Barrier Integrity. Proc. Natl. Acad. Sci. USA 2020, 117, 28930–28938. [Google Scholar] [CrossRef]
- Lin, W.; Vann, D.R.; Doulias, P.-T.; Wang, T.; Landesberg, G.; Li, X.; Ricciotti, E.; Scalia, R.; He, M.; Hand, N.J.; et al. Hepatic Metal Ion Transporter ZIP8 Regulates Manganese Homeostasis and Manganese-Dependent Enzyme Activity. J. Clin. Investig. 2017, 127, 2407–2417. [Google Scholar] [CrossRef]
- Sunuwar, L.; Frkatović, A.; Sharapov, S.; Wang, Q.; Neu, H.M.; Wu, X.; Haritunians, T.; Wan, F.; Michel, S.; Wu, S.; et al. Pleiotropic ZIP8 A391T Implicates Abnormal Manganese Homeostasis in Complex Human Disease. JCI Insight 2020, 5, e140978. [Google Scholar] [CrossRef]
- Aschner, J.L.; Aschner, M. Nutritional Aspects of Manganese Homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef]
- Haller, G.; McCall, K.; Jenkitkasemwong, S.; Sadler, B.; Antunes, L.; Nikolov, M.; Whittle, J.; Upshaw, Z.; Shin, J.; Baschal, E.; et al. A Missense Variant in SLC39A8 Is Associated with Severe Idiopathic Scoliosis. Nat. Commun. 2018, 9, 4171. [Google Scholar] [CrossRef]
- Fujishiro, H.; Miyamoto, S.; Sumi, D.; Kambe, T.; Himeno, S. Effects of Individual Amino Acid Mutations of Zinc Transporter ZIP8 on Manganese- and Cadmium-Transporting Activity. Biochem. Biophys. Res. Commun. 2022, 616, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.; Lind, P.M.; Lindgren, C.; Ingelsson, E.; Mahajan, A.; Morris, A.; Lind, L. Genome-Wide Association Study of Toxic Metals and Trace Elements Reveals Novel Associations. Hum. Mol. Genet. 2015, 24, 4739–4745. [Google Scholar] [CrossRef]
- Li, M.; Wu, D.-D.; Yao, Y.-G.; Huo, Y.-X.; Liu, J.-W.; Su, B.; Chasman, D.I.; Chu, A.Y.; Huang, T.; Qi, L.; et al. Recent Positive Selection Drives the Expansion of a Schizophrenia Risk Nonsynonymous Variant at SLC39A8 in Europeans. Schizophr. Bull. 2016, 42, 178–190. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic Studies of Body Mass Index Yield New Insights for Obesity Biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.E.; Clarke, S.L.; Wu, K.-H.H.; Kanoni, S.; Zajac, G.J.M.; Ramdas, S.; Surakka, I.; Ntalla, I.; Vedantam, S.; Winkler, T.W.; et al. The Power of Genetic Diversity in Genome-Wide Association Studies of Lipids. Nature 2021, 600, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and Refinement of Loci Associated with Lipid Levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [CrossRef]
- International Consortium for Blood Pressure Genome-Wide Association Studies; Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.; Verwoert, G.C.; et al. Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk. Nature 2011, 478, 103–109. [Google Scholar] [CrossRef]
- Johansson, Å.; Eriksson, N.; Lindholm, D.; Varenhorst, C.; James, S.; Syvänen, A.-C.; Axelsson, T.; Siegbahn, A.; Barratt, B.J.; Becker, R.C.; et al. Genome-Wide Association and Mendelian Randomization Study of NT-proBNP in Patients with Acute Coronary Syndrome. Hum. Mol. Genet. 2016, 25, 1447–1456. [Google Scholar] [CrossRef]
- Xiao, S.; Zhou, Y.; Liu, T.; Hu, Y.; Wu, Q.; Pan, Q.; Wang, X.; Liu, A.; Liu, J.; Zhu, H.; et al. The Association between Manganese Exposure with Cardiovascular Disease in Older Adults: NHANES 2011-2018. J. Environ. Sci. Health 2021, 56, 1221–1227. [Google Scholar] [CrossRef]
- Meishuo, O.; Eshak, E.S.; Muraki, I.; Cui, R.; Shirai, K.; Iso, H.; Tamakoshi, A. Association between Dietary Manganese Intake and Mortality from Cardiovascular Disease in Japanese Population: The Japan Collaborative Cohort Study. J. Atheroscler. Thromb. 2022, 29, 1432–1447. [Google Scholar] [CrossRef]
- Watts, G. UK Biobank Opens It Data Vaults to Researchers. BMJ 2012, 344, e2459. [Google Scholar] [CrossRef] [PubMed]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank Resource with Deep Phenotyping and Genomic Data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef]
- Perez-Cornago, A.; Pollard, Z.; Young, H.; van Uden, M.; Andrews, C.; Piernas, C.; Key, T.J.; Mulligan, A.; Lentjes, M. Description of the Updated Nutrition Calculation of the Oxford WebQ Questionnaire and Comparison with the Previous Version among 207,144 Participants in UK Biobank. Eur. J. Nutr. 2021, 60, 4019–4030. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Feero, W.G.; Steiner, R.D.; Slavotinek, A.; Faial, T.; Bamshad, M.J.; Austin, J.; Korf, B.R.; Flanagin, A.; Bibbins-Domingo, K. Guidance on Use of Race, Ethnicity, and Geographic Origin as Proxies for Genetic Ancestry Groups in Biomedical Publications. JAMA 2024, 331, 1276–1278. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron Bioavailability and Dietary Reference Values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Peakman, T.C.; UK Biobank. The UK Biobank Sample Handling and Storage Protocol for the Collection, Processing and Archiving of Human Blood and Urine. Int. J. Epidemiol. 2008, 37, 234–244. [Google Scholar] [CrossRef]
- Julkunen, H.; Cichońska, A.; Tiainen, M.; Koskela, H.; Nybo, K.; Mäkelä, V.; Nokso-Koivisto, J.; Kristiansson, K.; Perola, M.; Salomaa, V.; et al. Atlas of Plasma NMR Biomarkers for Health and Disease in 118,461 Individuals from the UK Biobank. Nat. Commun. 2023, 14, 604. [Google Scholar] [CrossRef]
- Littlejohns, T.J.; Holliday, J.; Gibson, L.M.; Garratt, S.; Oesingmann, N.; Alfaro-Almagro, F.; Bell, J.D.; Boultwood, C.; Collins, R.; Conroy, M.C.; et al. The UK Biobank Imaging Enhancement of 100,000 Participants: Rationale, Data Collection, Management and Future Directions. Nat. Commun. 2020, 11, 2624. [Google Scholar] [CrossRef]
- Okbay, A.; Beauchamp, J.P.; Fontana, M.A.; Lee, J.J.; Pers, T.H.; Rietveld, C.A.; Turley, P.; Chen, G.-B.; Emilsson, V.; Meddens, S.F.W.; et al. Genome-Wide Association Study Identifies 74 Loci Associated with Educational Attainment. Nature 2016, 533, 539–542. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal Components Analysis Corrects for Stratification in Genome-Wide Association Studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Rader, D.J. Molecular Regulation of HDL Metabolism and Function: Implications for Novel Therapies. J. Clin. Investig. 2006, 116, 3090–3100. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, S.; Miida, T. Small Dense LDL: An Emerging Risk Factor for Cardiovascular Disease. Clin. Chim. Acta 2012, 414, 215–224. [Google Scholar] [CrossRef]
- Koba, S.; Hirano, T.; Murayama, S.; Kotani, T.; Tsunoda, F.; Iso, Y.; Ban, Y.; Kondo, T.; Suzuki, H.; Katagiri, T. Small Dense LDL Phenotype Is Associated with Postprandial Increases of Large VLDL and Remnant-like Particles in Patients with Acute Myocardial Infarction. Atherosclerosis 2003, 170, 131–140. [Google Scholar] [CrossRef]
- Kontush, A.; Chapman, M.J. Functionally Defective High-Density Lipoprotein: A New Therapeutic Target at the Crossroads of Dyslipidemia, Inflammation, and Atherosclerosis. Pharmacol. Rev. 2006, 58, 342–374. [Google Scholar] [CrossRef]
- Berneis, K.K.; Krauss, R.M. Metabolic Origins and Clinical Significance of LDL Heterogeneity. J. Lipid. Res. 2002, 43, 1363–1379. [Google Scholar] [CrossRef]
- Ou, J.; Sun, Y.; Tong, J.; Tang, W.; Ma, G. The Relationship between Serum Manganese Concentration with All-Cause and Cause-Specific Mortality: A Retrospective and Population-Based Cross-Sectional Study. BMC Cardiovasc. Disord. 2024, 24, 229. [Google Scholar] [CrossRef]
- Pu, B. Association between Blood Manganese and Cardiovascular Diseases among U.S. Adult Population. Sci. Rep. 2024, 14, 31260. [Google Scholar] [CrossRef] [PubMed]
- Di Castelnuovo, A.; Veronesi, G.; Costanzo, S.; Zeller, T.; Schnabel, R.B.; de Curtis, A.; Salomaa, V.; Borchini, R.; Ferrario, M.; Giampaoli, S.; et al. NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) and the Risk of Stroke. Stroke 2019, 50, 610–617. [Google Scholar] [CrossRef]
- Bai, W.; Suzuki, H.; Huang, J.; Francis, C.; Wang, S.; Tarroni, G.; Guitton, F.; Aung, N.; Fung, K.; Petersen, S.E.; et al. A Population-Based Phenome-Wide Association Study of Cardiac and Aortic Structure and Function. Nat. Med. 2020, 26, 1654–1662. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhao, M.; Chernikova, D.; Arias-Jayo, N.; Zhou, Y.; Situ, J.; Gutta, A.; Chang, C.; Liang, F.; Lagishetty, V.; et al. ZIP8 A391T Crohn’s Disease-Linked Risk Variant Induces Colonic Metal Ion Dyshomeostasis, Microbiome Compositional Shifts, and Inflammation. Dig. Dis. Sci. 2024, 69, 3760–3772. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Achkar, J.-P.; Haritunians, T.; Jacobs, J.P.; Hui, K.Y.; D’Amato, M.; Brand, S.; Radford-Smith, G.; Halfvarson, J.; Niess, J.-H.; et al. A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn’s Disease and Human Gut Microbiome Composition. Gastroenterology 2016, 151, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Collij, V.; Imhann, F.; Vich Vila, A.; Fu, J.; Dijkstra, G.; Festen, E.A.M.; Voskuil, M.D.; Daly, M.J.; Xavier, R.J.; Wijmenga, C.; et al. SLC39A8 Missense Variant Is Associated with Crohn’s Disease but Does Not Have a Major Impact on Gut Microbiome Composition in Healthy Subjects. PLoS ONE 2019, 14, e0211328. [Google Scholar] [CrossRef] [PubMed]
- Melia, J.M.P.; Lin, R.; Xavier, R.J.; Thompson, R.B.; Fu, D.; Wan, F.; Sears, C.L.; Donowitz, M. Induction of the Metal Transporter ZIP8 by Interferon Gamma in Intestinal Epithelial Cells: Potential Role of Metal Dyshomeostasis in Crohn’s Disease. Biochem. Biophys. Res. Commun. 2019, 515, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-J.; Bao, S.; Gálvez-Peralta, M.; Pyle, C.J.; Rudawsky, A.C.; Pavlovicz, R.E.; Killilea, D.W.; Li, C.; Nebert, D.W.; Wewers, M.D.; et al. ZIP8 Regulates Host Defense through Zinc-Mediated Inhibition of NF-κB. Cell Rep. 2013, 3, 386–400. [Google Scholar] [CrossRef]
- Verdugo, R.A.; Zeller, T.; Rotival, M.; Wild, P.S.; Münzel, T.; Lackner, K.J.; Weidmann, H.; Ninio, E.; Trégouët, D.-A.; Cambien, F.; et al. Graphical Modeling of Gene Expression in Monocytes Suggests Molecular Mechanisms Explaining Increased Atherosclerosis in Smokers. PLoS ONE 2013, 8, e50888. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, Y.; Wu, D.; Yu, F.; Yang, L.; Yao, Y.; Liang, Z.; Lau, A.T.Y. Progressive Silencing of the Zinc Transporter Zip8 (Slc39a8) in Chronic Cadmium-Exposed Lung Epithelial Cells. Acta Biochim. Biophys. Sin. 2017, 49, 444–449. [Google Scholar] [CrossRef]
- Rizza, S.; Rossini, V.; Cardellini, M.; Luzi, A.; Longo, S.; Piciucchi, G.; Coppeta, L.; Federici, M. Diabetes Influences Cancer Risk in Patients with Increased Carotid Atherosclerosis Burden. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 652–655. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Females | Males |
---|---|---|
Number of subjects (N) | 147,348 | 129,088 |
SNP rs13107325 risk alleles (percent of sex-specific cohort) | 0: 126,378 (85.8%) | 0: 110,204 (85.4%) |
1: 20,191 (13.7%) | 1: 18,189 (14.1%) | |
2: 779 (0.529%) | 2: 695 (0.539%) | |
Age at recruitment (years) | 58 (50, 63) | 59 (51, 64) |
Height (cm) | 163 (159, 167) | 176 (171.8, 180.7) |
Weight (kg) | 69.1 (61.8, 78.6) | 84.6 (76.5, 94) |
Dietary manganese intake (mg/day) | 4.00 (3.15, 4.91) | 4.23 (3.30, 5.30) |
N = 65,466 | N = 56,133 | |
Dietary energy intake (kJ/day) | 7863 (6649, 9192) | 9157 (7703, 10785) |
N = 65,466 | N = 56,133 | |
Townsend deprivation index | −2.38 (−3.76, −0.03) | −2.37 (−3.78, 0.11) |
Household income (GBP): | Percentage (N): | Percentage (N): |
Less than 18,000 | 23.1% (28,307) | 18.9% (21,990) |
18,000–30,999 | 26.5% (32,463) | 24.4% (28,400) |
31,000–51,999 | 25.8% (31,644) | 27.3% (31,737) |
52,000–100,000 | 19.5% (23,913) | 23.1% (26,786) |
Greater than 100,000 | 5.03% (6163) | 6.27% (7285) |
Qualifications (education): | Percentage (N): | Percentage (N): |
None of the listed options (lowest) | 16.3% (23,838) | 16.3% (20,874) |
CES or equivalent, O levels and GCSEs or equivalent | 20.0% (29,171) | 13.7% (17,479) |
A levels/AS levels or equivalent | 5.88% (8595) | 5.1% (6551) |
Other professional qualifications (such as nursing or teaching) | 13.9% (20,319) | 10.9% (13,989) |
College/university degree, NVQ/HND/HNC or equivalent (highest) | 43.9% (64,208) | 54.0% (69,052) |
Smoking: | Percentage (N): | Percentage (N): |
Never smoked | 59.7% (87,651) | 49.4% (63,513) |
Previous smoker | 31.8% (46,735) | 38.9% (50,006) |
Current smoker | 8.5% (12,477) | 11.8% (15,113) |
Alcohol intake: | Percentage (N): | Percentage (N): |
Never | 7.8% (11,442) | 4.9% (6290) |
Special occasions only | 13.7% (20,221) | 6.5% (8404) |
One to three times a month | 13.0% (19,095) | 8.8% (11,293) |
Once or twice a week | 26.2% (38,554) | 25.9% (33,427) |
Three or four times a week | 21.9% (32,210) | 27.0% (34,880) |
Daily or almost daily | 17.5% (25,720) | 26.9% (34,704) |
Medication use (antihypertensive medications, cholesterol-lowering medications, aspirin, and insulin): | Percentage (N): | Percentage (N): |
No medication use | 73.9% (108,785) | 62.9% (81,062) |
One of four medications | 15.9% (23,412) | 16.8% (21,655) |
Two of four medications | 6.8% (10,068) | 11.2% (14,443) |
Three of four medications | 3.1% (4571) | 8.6% (11,104) |
All four medications | 0.3% (368) | 0.5% (697) |
Summed Metabolic Equivalent Task (MET) minutes per week for all activities: | Percentage (N): | Percentage (N): |
Less than 1000 min per week | 22.7% (33,504) | 24.7% (31,931) |
1000 to 1999 min per week | 18.2% (26,747) | 19.1% (24,616) |
2000 to 3999 min per week | 18.5% (27,224) | 19.9% (25,645) |
Greater or equal to 4000 min per week | 40.6% (59,873) | 36.3% (46,896) |
Model | Both Sexes | Female Only | Male Only | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | rs13107325 (Beta ± SE) | FDR rs13107325 | N | rs13107325 (Beta ± SE) | FDR rs13107325 | N | rs13107325 (Beta ± SE) | FDR rs13107325 | ||
BMI | Model 1 | 121,236 | 0.297 ± 0.0376 | <10−10 | 65,275 | 0.291 ± 0.0563 | <10−5 | 55,961 | 0.266 ± 0.0504 | <10−5 |
Model 2 | 108,691 | 0.283 ± 0.0392 | <10−10 | 56,777 | 0.242 ± 0.0586 | <10−3 | 51,914 | 0.292 ± 0.0494 | <10−5 | |
Model 3 | 108,691 | 0.271 ± 0.0384 | <10−10 | 56,777 | 0.258 ± 0.0591 | <10−3 | 51,914 | 0.293 ± 0.0503 | <10−5 | |
HDL (mmol/L) | Model 1 | 105,853 | −0.0319 ± 0.00354 | <10−15 | 56,519 | −0.0400 ± 0.00545 | <10−10 | 49,334 | −0.0262 ± 0.00448 | <10−5 |
Model 2 | 94,896 | −0.0298 ± 0.00343 | <10−15 | 49,134 | −0.0382 ± 0.00515 | <10−10 | 45,762 | −0.0242 ± 0.00429 | <10−5 | |
Model 3 | 94,896 | −0.0300 ± 0.00345 | <10−15 | 49,134 | −0.0364 ± 0.00513 | <10−10 | 45,762 | −0.0231 ± 0.00436 | <10−5 | |
Triglycerides (mmol/L) | Model 1 | 115,691 | 0.0326 ± 0.00763 | <10−5 | 62,282 | 0.0366 ± 0.00814 | <10−5 | 53,409 | 0.0390 ± 0.0131 | 0.00293 |
Model 2 | 103,704 | 0.0308 ± 0.00761 | <10−3 | 54,171 | 0.0314 ± 0.00855 | <10−3 | 49,533 | 0.0300 ± 0.0133 | 0.0236 | |
Model 3 | 103,704 | 0.0289 ± 0.00748 | <10−3 | 54,171 | 0.0304 ± 0.00862 | <10−3 | 49,533 | 0.0256 ± 0.0133 | 0.0542 |
Model | Both Sexes | Female Only | Male Only | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Dietary Mn (Beta ± SE) | FDR Dietary Mn | N | Dietary Mn (Beta ± SE) | FDR Dietary Mn | N | Dietary Mn (Beta ± SE) | FDR Dietary Mn | ||
BMI | Model 1 | 121,316 | −0.566 ± 0.0112 | <10−300 | 65,275 | −0.613 ± 0.0182 | <10−200 | 55,995 | −0.525 ± 0.0140 | <10−300 |
Model 2 | 108,691 | −0.531 ± 0.0118 | <10−300 | 56,777 | −0.597 ± 0.0190 | <10−200 | 51,914 | −0.458 ± 0.0140 | <10−200 | |
Model 3 | 108,691 | −0.524 ± 0.0116 | <10−300 | 56,777 | −0.595 ± 0.0192 | <10−200 | 51,914 | −0.471 ± 0.0142 | <10−200 | |
HDL (mmol/L) | Model 1 | 105,853 | 0.00887 ± 0.00106 | <10−15 | 56,519 | 0.0137 ± 0.00176 | <10−10 | 49,334 | 0.00652 ± 0.00124 | <10−5 |
Model 2 | 94,896 | 0.00958 ± 0.00103 | <10−15 | 49,134 | 0.0138 ± 0.00167 | <10−15 | 45,762 | 0.00763 ± 0.00121 | <10−5 | |
Model 3 | 94,896 | 0.00973 ± 0.00104 | <10−15 | 49,134 | 0.0146 ± 0.00166 | <10−15 | 45,762 | 0.00744 ± 0.00123 | <10−5 | |
Triglycerides (mmol/L) | Model 1 | 115,768 | −0.482 ± 0.00220 | <10−106 | 62,282 | −0.0396 ± 0.00262 | <10−50 | 53,409 | −0.0569 ± 0.00364 | <10−50 |
Model 2 | 103,763 | −0.0451 ± 0.00229 | <10−50 | 54,171 | −0.0349 ± 0.00277 | <10−30 | 49,533 | −0.0517 ± 0.00375 | <10−30 | |
Model 3 | 103,763 | −0.0456 ± 0.00225 | <10−50 | 54,171 | −0.0344 ± 0.00279 | <10−30 | 49,533 | −0.0536 ± 0.00374 | <10−30 |
Anthropometric and Body Composition Measures | Both Sexes | Female Only | Male Only | ||||||
---|---|---|---|---|---|---|---|---|---|
N | rs13107325 (Beta ± SE) | p-Values/FDR rs13107325 | N Female | rs13107325 (Beta ± SE) | p-Values/FDR rs13107325 | N Male | rs13107325 (Beta ± SE) | p-Values/FDR rs13107325 | |
Basal metabolic rate (kJ) | 107,320 | 20.04 ± 7.36 | 0.00646 | 56,110 | 27.0 ± 8.24 | 0.00105 | 51,247 | 18.9 ± 13.4 | 0.159 |
Waist circumference (cm) | 108,804 | 0.351 ± 0.106 | <10−3 | 56,865 | 0.266 ± 0.161 | 0.0975 | 51,976 | 0.370 ± 0.139 | 0.00782 |
Body fat percent | 107,247 | 0.39 ± 0.0611 | <10−5 | 56,111 | 0.350 ± 0.0950 | <10−3 | 51,173 | 0.418 ± 0.0765 | <10−5 |
Whole body fat mass | 107,123 | 0.467 ± 0.0771 | <10−5 | 56,097 | 0.495 ± 0.121 | <10−3 | 51,063 | 0.476 ± 0.100 | <10−5 |
Whole body fat-free mass | 107,314 | 0.139 ± 0.0587 | 0.0193 | 56,111 | 0.223 ± 0.0607 | <10−3 | 51,240 | 0.106 ± 0.107 | 0.387 |
Trunk fat percentage | 107,251 | 0.471 ± 0.0676 | <10−10 | 56,076 | 0.443 ± 0.106 | <10−3 | 51,212 | 0.460 ± 0.0875 | <10−5 |
Trunk fat mass | 107,246 | 0.258 ± 0.0465 | <10−5 | 56,074 | 0.230 ± 0.067 | <10−3 | 51,209 | 0.280 ± 0.0642 | <10−3 |
Trunk fat-free mass | 107,230 | 0.0545 ± 0.0305 | 0.0741 | 56,063 | 0.0830 ± 0.033 | 0.0119 | 51,204 | 0.00779 ± 0.0572 | 0.892 |
Arm fat percentage (left) | 107,281 | 0.456 ± 0.0691 | <10−5 | 56,089 | 0.609 ± 0.117 | <10−5 | 51,229 | 0.375 ± 0.0717 | <10−5 |
Arm fat percentage (right) | 107,295 | 0.434 ± 0.0679 | <10−5 | 56,097 | 0.560 ± 0.122 | <10−3 | 51,235 | 0.326 ± 0.0618 | <10−5 |
Arm fat mass (left) | 107,268 | 0.0288 ± 0.00482 | <10−5 | 56,082 | 0.0351 ± 0.00781 | <10−3 | 51,223 | 0.0246 ± 0.00521 | <10−5 |
Arm fat mass (right) | 107,287 | 0.0244 ± 0.00444 | <10−5 | 56,089 | 0.0308 ± 0.00741 | <10−3 | 51,235 | 0.0210 ± 0.00470 | <10−3 |
Arm fat-free mass (left) | 107,268 | 0.0110 ± 0.00444 | 0.0148 | 56,085 | 0.0133 ± 0.00448 | 0.00339 | 51,220 | 0.00373 ± 0.00786 | 0.673 |
Arm fat-free mass (right) | 107,285 | 0.0106 ± 0.00404 | 0.0108 | 56,091 | 0.0108 ± 0.00404 | 0.00790 | 51,231 | 0.00703 ± 0.00793 | 0.422 |
Leg fat percentage (left) | 107,305 | 0.252 ± 0.0500 | <10−5 | 56,104 | 0.227 ± 0.0730 | 0.00229 | 51,238 | 0.268 ± 0.0644 | <10−3 |
Leg fat percentage (right) | 107,316 | 0.238 ± 0.051 | <10−5 | 56,107 | 0.272 ± 0.0748 | <10−3 | 51,246 | 0.259 ± 0.0711 | <10−3 |
Leg fat mass (left) | 107,304 | 0.0541 ± 0.0117 | <10−5 | 56,104 | 0.0618 ± 0.0189 | 0.00136 | 51,237 | 0.0512 ± 0.014 | <10−3 |
Leg fat mass (right) | 107,315 | 0.0589 ± 0.0119 | <10−5 | 56,107 | 0.0688 ± 0.0194 | <10−3 | 51,245 | 0.0490 ± 0.0143 | <10−3 |
Leg fat-free mass (left) | 107,299 | 0.0359 ± 0.011 | 0.00137 | 56,100 | 0.0402 ± 0.0115 | <10−3 | 51,236 | 0.0295 ± 0.0184 | 0.152 |
Leg fat-free mass (right) | 107,308 | 0.0470 ± 0.0107 | <10−3 | 56,106 | 0.0521 ± 0.0114 | <10−3 | 51,239 | 0.0270 ± 0.0194 | 0.211 |
Anthropometric and Body Composition Measures | Both Sexes | Female Only | Male Only | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Dietary Mn (Beta ± SE) | p-Values/FDR Dietary Mn | N Female | Dietary Mn (Beta ± SE) | p-Values/FDR Dietary Mn | N Male | Dietary Mn (Beta ± SE) | p-Values/FDR Dietary Mn | |
Basal metabolic rate (kJ) | 107,320 | −53.2 ± 2.22 | <10−100 | 56,073 | −50.05 ± 2.67 | <10−50 | 51,247 | −52.7 ± 3.78 | <10−30 |
Waist circumference (cm) | 108,804 | −1.43 ± 0.0319 | <10−300 | 56,828 | −1.58 ± 0.0521 | <10−150 | 51,976 | −1.31 ± 0.0392 | <10−200 |
Body fat percent | 107,247 | −0.839 ± 0.0184 | <10−300 | 56,074 | −0.950 ± 0.0307 | <10−200 | 51,173 | −0.764 ± 0.0216 | <10−250 |
Whole body fat mass | 107,123 | −1.044 ± 0.0233 | <10−300 | 56,060 | −1.15 ± 0.0392 | <10−150 | 51,063 | −0.929 ± 0.0284 | <10−200 |
Whole body fat-free mass | 107,314 | −0.314 ± 0.0177 | <10−50 | 56,074 | −0.297 ± 0.0197 | <10−50 | 51,240 | −0.311 ± 0.0302 | <10−20 |
Trunk fat percentage | 107,251 | −0.897 ± 0.0204 | <10−300 | 56,039 | −0.969 ± 0.0344 | <10−150 | 51,212 | −0.838 ± 0.0247 | <10−200 |
Trunk fat mass | 107,246 | −0.605 ± 0.014 | <10−300 | 56,037 | −0.610 ± 0.0217 | <10−150 | 51,209 | −0.594 ± 0.0181 | <10−200 |
Trunk fat-free mass | 107,230 | −0.111 ± 0.0092 | <10−30 | 56,026 | −0.121 ± 0.0107 | <10−20 | 51,204 | −0.0936 ± 0.0161 | <10−5 |
Arm fat percentage (left) | 107,281 | −0.821 ± 0.0208 | <10−300 | 56,052 | −1.21 ± 0.0379 | <10−200 | 51,229 | −0.639 ± 0.0202 | <10−200 |
Arm fat percentage (right) | 107,295 | −0.750 ± 0.0205 | <10−250 | 56,060 | −1.21 ± 0.0397 | <10−200 | 51,235 | −0.554 ± 0.0174 | <10−200 |
Arm fat mass (left) | 107,268 | −0.058 ± 0.00145 | <10−300 | 56,045 | −0.0772 ± 0.00253 | <10−200 | 51,223 | −0.0457 ± 0.00147 | <10−200 |
Arm fat mass (right) | 107,287 | −0.0524 ± 0.00134 | <10−300 | 56,052 | −0.0711 ± 0.0024 | <10−150 | 51,235 | −0.0404 ± 0.00133 | <10−200 |
Arm fat-free mass (left) | 107,268 | −0.0284 ± 0.00134 | <10−50 | 56,048 | −0.0263 ± 0.00145 | <10−50 | 51,220 | −0.0298 ± 0.00222 | <10−30 |
Arm fat-free mass (right) | 107,285 | −0.0257 ± 0.00122 | <10−50 | 56,054 | −0.0197 ± 0.00131 | <10−50 | 51,231 | −0.0331 ± 0.00224 | <10−30 |
Leg fat percentage (left) | 107,305 | −0.707 ± 0.0151 | <10−300 | 56,067 | −0.801 ± 0.0237 | <10−200 | 51,238 | −0.625 ± 0.0182 | <10−250 |
Leg fat percentage (right) | 107,316 | −0.756 ± 0.01538 | <10−300 | 56,070 | −0.817 ± 0.0242 | <10−200 | 51,246 | −0.697 ± 0.0201 | <10−250 |
Leg fat mass (left) | 107,304 | −0.152 ± 0.00353 | <10−300 | 56,067 | −0.191 ± 0.00612 | <10−200 | 51,237 | −0.124 ± 0.00396 | <10−200 |
Leg fat mass (right) | 107,315 | −0.159 ± 0.00359 | <10−300 | 56,070 | −0.195 ± 0.0063 | <10−200 | 51,245 | −0.131 ± 0.00405 | <10−200 |
Leg fat-free mass (left) | 107,299 | −0.0766 ± 0.00331 | <10−100 | 56,063 | −0.0614 ± 0.00372 | <10−50 | 51,236 | −0.0854 ± 0.00520 | <10−50 |
Leg fat-free mass (right) | 107,308 | −0.0674 ± 0.00321 | <10−50 | 56,069 | −0.0582 ± 0.00371 | <10−50 | 51,239 | −0.0702 ± 0.00549 | <10−30 |
Biomarker | Both Sexes | Female Only | Male Only | ||||||
---|---|---|---|---|---|---|---|---|---|
N | rs13107325 (Beta ± SE) | FDR rs13107325 | N | rs13107325 (Beta ± SE) | FDR rs13107325 | N | rs13107325 (Beta ± SE) | FDR rs13107325 | |
HDL (mmol/L) | 94,896 | −0.0298 ± 0.00343 | <10−15 | 49,134 | −0.0382 ± 0.00515 | <10−10 | 45,762 | −0.0242 ± 0.00429 | <10−5 |
ApoA (g/L) | 94,335 | −0.0170 ± 0.00241 | <10−10 | 48,636 | −0.0187 ± 0.00368 | <10−5 | 45,699 | −0.0169 ± 0.00323 | <10−5 |
LDL (mmol/L) | 103,571 | −0.0191 ± 0.00811 | 0.0327 | 54,103 | −0.0196 ± 0.0115 | 0.155 | 49,468 | −0.0195 ± 0.0111 | 0.137 |
ApoB (g/L) | 103,304 | 0.00106 ± 0.00227 | 0.745 | 54,023 | −0.000158 ± 0.00303 | 0.959 | 49,281 | −0.00283 ± 0.00323 | 0.444 |
Triglyceride (mmol/L) | 103,704 | 0.0308 ± 0.00761 | <10−3 | 54,171 | 0.0314 ± 0.00855 | <10−3 | 49,533 | 0.0300 ± 0.0133 | 0.0550 |
Lipoprotein A (nmol/L) | 82,815 | −0.169 ± 0.335 | 0.745 | 43,397 | 0.437 ± 0.489 | 0.521 | 39,418 | −0.678 ± 0.467 | 0.204 |
CRP (mg/L) | 103,561 | −0.00124 ± 0.0128 | 0.922 | 54,095 | −0.0105 ± 0.0196 | 0.692 | 49,466 | 0.00700 ± 0.0168 | 0.676 |
Biomarker | Both Sexes | Female Only | Male Only | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Dietary Mn (Beta ± SE) | FDR Dietary Mn | N | Dietary Mn (Beta ± SE) | FDR Dietary Mn | N | Dietary Mn (Beta ± SE) | FDR Dietary Mn | |
HDL (mmol/L) | 94,896 | 0.00958 ± 0.00103 | <10−15 | 49,134 | 0.0139 ± 0.00167 | <10−15 | 45,762 | 0.00763 ± 0.00121 | <10−5 |
ApoA (g/L) | 94,335 | 0.00128 ± 0.000726 | 0.778 | 48,636 | 0.00159 ± 0.00119 | 0.183 | 45,699 | 0.00117 ± 0.000913 | 0.199 |
LDL (mmol/L) | 103,571 | −0.0520 ± 0.00245 | <10−50 | 54,103 | −0.0476 ± 0.00373 | <10−30 | 49,468 | −0.0472 ± 0.00313 | <10−50 |
ApoB (g/L) | 103,304 | −0.0157 ± 0.000684 | <10−100 | 54,023 | −0.0151 ± 0.000983 | <10−50 | 49,281 | −0.0144 ± 0.000911 | <10−50 |
Triglyceride (mmol/L) | 103,704 | −0.0451 ± 0.00229 | <10−50 | 54,171 | −0.0349 ± 0.00277 | <10−30 | 49,533 | −0.0517 ± 0.00375 | <10−30 |
Lipoprotein A (nmol/L) | 82,815 | 0.430 ± 0.101 | <10−3 | 43,397 | 0.519 ± 0.159 | 0.00125 | 39,418 | 0.404 ± 0.131 | 0.00245 |
CRP (mg/L) | 103,561 | −0.126 ± 0.00385 | <10−200 | 54,095 | −0.141 ± 0.00635 | <10−100 | 49,466 | −0.112 ± 0.00473 | <10−100 |
Lipid/Lipoprotein Composition | Both Sexes | |||
---|---|---|---|---|
rs13107325 (Beta ± SE) | FDR rs13107325 | Dietary Mn (Beta ± SE) | FDR Dietary Mn | |
Average Diameter for HDL Particles | −0.0108 ± 0.00240 | <10−3 | 0.0129 ± 0.000724 | <10−50 |
Average Diameter for LDL Particles | −0.00316 ± 0.00115 | 0.00911 | 0.00351 ± 0.000346 | <10−20 |
Average Diameter for VLDL Particles | 0.0575 ± 0.0168 | 0.00119 | −0.0703 ± 0.005071 | <10−30 |
Concentration of HDL Particles | −0.0000938 ± 0.0000283 | 0.00162 | −0.0000462 ± 0.000008536 | <10−5 |
Concentration of Large HDL Particles | −0.0000392 ± 0.00000857 | <10−3 | 0.0000395 ± 0.000002587 | <10−50 |
Concentration of Medium HDL Particles | −0.0000372 ± 0.0000106 | 0.00105 | −0.00000854 ± 0.000003209 | 0.00929 |
Concentration of Small HDL Particles | −0.0000193 ± 0.0000165 | 0.276 | −0.000092 ± 0.000004992 | <10−50 |
Concentration of Very Large HDL Particles | −0.00000492 ± 0.00000101 | <10−5 | 0.00000439 ± 0.000000305 | <10−30 |
Triglycerides in Chylomicrons and Extremely Large VLDL | 0.00428 ± 0.00152 | 0.00761 | −0.006562 ± 0.000457 | <10−30 |
Triglycerides in HDL | 0.000508 ± 0.000574 | 0.400 | −0.002724 ± 0.000173 | <10−50 |
Triglycerides in IDL | 0.000576 ± 0.00031 | 0.0854 | −0.00155 ± 0.0000935 | <10−50 |
Triglycerides in LDL | 0.000846 ± 0.00046 | 0.0859 | −0.00267 ± 0.000139 | <10−50 |
Triglycerides in Large HDL | −0.000125 ± 0.000152 | 0.424 | −0.000236 ± 0.0000458 | <10−5 |
Triglycerides in Medium HDL | 0.000389 ± 0.000233 | 0.116 | −0.00117 ± 0.0000704 | <10−50 |
Triglycerides in Small HDL | 0.000759 ± 0.000214 | <10−3 | −0.00135 ± 0.0000648 | <10−50 |
Triglycerides in VLDL | 0.0124 ± 0.00613 | 0.0632 | −0.0292 ± 0.001852 | <10−50 |
Triglycerides in Very Large HDL | −0.0000326 ± 0.00003 | 0.312 | −0.000054 ± 0.0000092 | <10−5 |
Triglycerides to Total Lipids in Large HDL percentage | 0.122 ± 0.0326 | <10−3 | −0.166 ± 0.009831 | <10−50 |
Triglycerides to Total Lipids in Medium HDL percentage | 0.0769 ± 0.0223 | 0.00119 | −0.108 ± 0.006725 | <10−50 |
Triglycerides to Total Lipids in Small HDL percentage | 0.0603 ± 0.0158 | <10−3 | −0.0668 ± 0.004774 | <10−30 |
Triglycerides to Total Lipids in Very Large HDL percentage | 0.137 ± 0.0307 | <10−3 | −0.178 ± 0.009278 | <10−50 |
Cholesterol in Large HDL | −0.009701 ± 0.00181 | <10−5 | 0.00935 ± 0.000546 | <10−50 |
Cholesterol in Medium HDL | −0.00485 ± 0.00142 | 0.00119 | 0.000351 ± 0.000428 | 0.419 |
Cholesterol in Small HDL | −0.000969 ± 0.000773 | 0.247 | −0.00391 ± 0.000233 | <10−50 |
Cholesterol in Very Large HDL | −0.00174 ± 0.000368 | <10−3 | 0.00188 ± 0.000111 | <10−50 |
Cholesterol to Total Lipids in Large HDL percentage | −0.326 ± 0.0574 | <10−5 | 0.396 ± 0.0173 | <10−100 |
Cholesterol to Total Lipids in Medium HDL percentage | −0.139 ± 0.0387 | <10−3 | 0.178 ± 0.0117 | <10−50 |
Cholesterol to Total Lipids Small HDL percentage | −0.0420 ± 0.0238 | 0.0972 | 0.074 ± 0.0072 | <10−20 |
Cholesterol to Total Lipids Very Large HDL percentage | 0.0956 ± 0.0488 | 0.0707 | −0.167 ± 0.0147 | <10−20 |
Total Lipids in HDL | −0.0349 ± 0.00711 | <10−5 | 0.00532 ± 0.00215 | 0.123 |
Total Lipids in Large HDL | −0.0163 ± 0.00360 | <10−3 | 0.0154 ± 0.00109 | <10−30 |
Total Lipids in Medium HDL | −0.00800 ± 0.0026 | 0.00364 | −0.0031 ± 0.000786 | <10−3 |
Total Lipids in Small HDL | 0.000360 ± 0.00199 | 0.856 | −0.0124 ± 0.0006 | <10−50 |
Total Lipids in Very Large HDL | −0.00413 ± 0.000867 | <10−3 | 0.00426 ± 0.000262 | <10−50 |
BP (mm Hg) | Both Sexes | Female Only | Male Only | ||||||
---|---|---|---|---|---|---|---|---|---|
N | rs13107325 (Beta ± SE) | p-Values rs13107325 | N | rs13107325 (Beta ± SE) | p-Values rs13107325 | N | rs13107325 (Beta ± SE) | p-Values rs13107325 | |
Systolic BP | 104,684 | −0.601 ± 0.172 | <10−3 | 54,646 | −0.711 ± 0.246 | 0.00386 | 50,038 | −0.413 ± 0.235 | 0.0791 |
Diastolic BP | 104,684 | −0.531 ± 0.100 | <10−5 | 54,646 | −0.514 ± 0.139 | <10−3 | 50,038 | −0.528 ± 0.148 | <10−3 |
BP (mm Hg) | Both Sexes | Female Only | Male Only | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Dietary Mn (Beta ± SE) | p-Values Dietary Mn | N | Dietary Mn (Beta ± SE) | p-Values Dietary Mn | N | Dietary Mn (Beta ± SE) | p-Values Dietary Mn | |
Systolic BP | 104,684 | −0.529 ± 0.0520 | <10−20 | 54,646 | −0.549 ± 0.0800 | <10−10 | 50,038 | −0.485 ± 0.0664 | <10−10 |
Diastolic BP | 104,684 | −0.562 ± 0.0302 | <10−50 | 54,646 | −0.584 ± 0.0452 | <10−30 | 50,038 | −0.521 ± 0.0418 | <10−30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigdel, R.; Johnson, P.R.; Meade, G.E.; Kim, A.Y.; Maschmeier, G.M.; Lucas, E.A.; Montgomery, M.R.; Lin, D.; Emerson, S.R.; Chowanadisai, W. Metal Transporter Gene SLC39A8 Polymorphism rs13107325 and Dietary Manganese Intake Are Associated with Measures of Cardiovascular Disease Risk in a UK Biobank Population Cohort. Nutrients 2025, 17, 3031. https://doi.org/10.3390/nu17193031
Sigdel R, Johnson PR, Meade GE, Kim AY, Maschmeier GM, Lucas EA, Montgomery MR, Lin D, Emerson SR, Chowanadisai W. Metal Transporter Gene SLC39A8 Polymorphism rs13107325 and Dietary Manganese Intake Are Associated with Measures of Cardiovascular Disease Risk in a UK Biobank Population Cohort. Nutrients. 2025; 17(19):3031. https://doi.org/10.3390/nu17193031
Chicago/Turabian StyleSigdel, Riju, Parker R. Johnson, Gracie E. Meade, Aiden Y. Kim, Gracie M. Maschmeier, Edralin A. Lucas, McKale R. Montgomery, Dingbo Lin, Sam R. Emerson, and Winyoo Chowanadisai. 2025. "Metal Transporter Gene SLC39A8 Polymorphism rs13107325 and Dietary Manganese Intake Are Associated with Measures of Cardiovascular Disease Risk in a UK Biobank Population Cohort" Nutrients 17, no. 19: 3031. https://doi.org/10.3390/nu17193031
APA StyleSigdel, R., Johnson, P. R., Meade, G. E., Kim, A. Y., Maschmeier, G. M., Lucas, E. A., Montgomery, M. R., Lin, D., Emerson, S. R., & Chowanadisai, W. (2025). Metal Transporter Gene SLC39A8 Polymorphism rs13107325 and Dietary Manganese Intake Are Associated with Measures of Cardiovascular Disease Risk in a UK Biobank Population Cohort. Nutrients, 17(19), 3031. https://doi.org/10.3390/nu17193031