Dietary Patterns and the Risk of Composite-Defined Osteoporosis in Pre- and Postmenopausal Women: A Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Participants’ General Characteristics and Health Information
2.3. Dietary Assessment and Patterns
2.4. Outcome Definition
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Premenopausal and Postmenopausal Women at Baseline
3.2. Factor Loading Matrix for the Factor Analysis of Food Groups in Premenopausal and Postmenopausal Women
3.3. Association Between Dietary Pattern and Composite-Defined Osteoporosis Incidence in Premenopausal and Postmenopausal Women
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nih Consensus Development Panel on Osteoporosis Prevention Diagnosis Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2022; p. UN DESA/POP/2022/TR/NO.2023. [Google Scholar]
- Health Insurance Review & Assessment Service. Statistics of Diseases and Medical Practices in Life. Available online: https://www.hira.or.kr/ra/stcIlnsInfm/stcIlnsInfmView.do?pgmid=HIRAA030502000000&sortSno=191 (accessed on 1 February 2025).
- International Osteoporosis Foundation. Epidemiology of Osteoporosis and Fragility Fractures. Available online: https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fractures#ref_bottom_3 (accessed on 13 June 2025).
- Kanis, J.A.; Johnell, O.; Oden, A.; Sembo, I.; Redlund-Johnell, I.; Dawson, A.; De Laet, C.; Jonsson, B. Long-term risk of osteoporotic fracture in Malmo. Osteoporos. Int. 2000, 11, 669–674. [Google Scholar] [CrossRef]
- The North American Menopause Society. Management of osteoporosis in postmenopausal women: The 2021 position statement of The North American Menopause Society. Menopause 2021, 28, 973–997. [Google Scholar] [CrossRef] [PubMed]
- Cauley, J.A.; Thompson, D.E.; Ensrud, K.C.; Scott, J.C.; Black, D. Risk of mortality following clinical fractures. Osteoporos. Int. 2000, 11, 556–561. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Osteoporosis Day|Simple Ways to Prevent Osteoporosis. Available online: https://www.who.int/westernpacific/articles/item/simple-ways-to-prevent-osteoporosis (accessed on 13 February 2025).
- Kanis, J.A.; Johnell, O.; Oden, A.; Johansson, H.; De Laet, C.; Eisman, J.A.; Fujiwara, S.; Kroger, H.; McCloskey, E.V.; Mellstrom, D.; et al. Smoking and fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 155–162. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johansson, H.; Johnell, O.; Oden, A.; De Laet, C.; Eisman, J.A.; Pols, H.; Tenenhouse, A. Alcohol intake as a risk factor for fracture. Osteoporos. Int. 2005, 16, 737–742. [Google Scholar] [CrossRef]
- Riggs, B.L.; Khosla, S.; Melton, L.J. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 1998, 13, 763–773. [Google Scholar] [CrossRef]
- Ozpak Akkus, O.; Atalay, B. Post-menopausal osteoporosis: Do body composition, nutritional habits, and physical activity affect bone mineral density? Nutr. Hosp. 2020, 37, 977–983. [Google Scholar] [CrossRef]
- Lee, H.; Lee, K.-H.; Kim, E.; Kim, M.-J.; Hwang, S.-M. The related factors influencing on self-rated health level of middle-aged women. Korean J. Community Nutr. 2012, 17, 290–301. [Google Scholar] [CrossRef]
- Kostecka, M. The role of healthy diet in the prevention of osteoporosis in perimenopausal period. Pak. J. Med. Sci. 2014, 30, 763–768. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Michels, K.B.; Schulze, M.B. Can dietary patterns help us detect diet–disease associations? Nutr. Res. Rev. 2005, 18, 241–248. [Google Scholar] [CrossRef]
- Park, S.J.; Joo, S.E.; Min, H.; Park, J.K.; Kim, Y.; Kim, S.S.; Ahn, Y. Dietary patterns and osteoporosis risk in postmenopausal korean women. Osong Public Health Res. Perspect. 2012, 3, 199–205. [Google Scholar] [CrossRef]
- Park, S.-J.; Ahn, Y.-J.; Kim, H.-M.; Joo, S.-E.; Oh, K.-S.; Park, C. The association of dietary patterns with bone mineral density in middle-aged women: A cohort of Korean Genome Epidemiology Study. Korean J. Community Nutr. 2007, 12, 352–360. [Google Scholar]
- Ghadiri, M.; Soltani, M.; Rajabzadeh-Dehkordi, M.; Gerami, S.; Shateri, Z.; Nouri, M.; Gargari, B.P. The relation between dietary quality and healthy eating index with bone mineral density in osteoporosis: A case-control study. BMC Musculoskelet. Disord. 2023, 24, 584. [Google Scholar] [CrossRef] [PubMed]
- Korea Disease Control and Prevention Agency. Korean Genome and Epidemiology Study Integrated Data User Guide. Available online: https://nih.go.kr/ko/main/contents.do?menuNo=300584 (accessed on 20 February 2025).
- Kim, Y.; Han, B.-G.; Group, K. Cohort profile: The Korean genome and epidemiology study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Korea Disease Control and Prevention Agency. Manual of Korean Genome and Epidemiology Study: Baseline Survey and Examination; Korea Disease Control and Prevention Agency: Cheongju, Republic of Korea, 2011.
- Korea Disease Control and Prevention Agency. Guidelines for Food Frequency Questionnaire of the Korean Genome and Epidemiology Study; Korea Disease Control and Prevention Agency: Cheongju, Republic of Korea, 2011.
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
- Lee, K.W.; Kang, M.-S.; Lee, S.J.; Kim, H.-R.; Jang, K.-A.; Shin, D. Prospective Associations between Dietary Patterns and Abdominal Obesity in Middle-Aged and Older Korean Adults. Foods 2023, 12, 2148. [Google Scholar] [CrossRef]
- World Health Organization. Prevention and Management of Osteoporosis: Report of a WHO Scientific Group; World Health Organization: Geneva, Switzerland, 2003.
- Nguyen, H.H.; Wu, F.; Oddy, W.H.; Wills, K.; Winzenberg, T.; Jones, G. Associations between dietary patterns and osteoporosis-related outcomes in older adults: A longitudinal study. Eur. J. Clin. Nutr. 2021, 75, 792–800. [Google Scholar] [CrossRef]
- Lanyan, A.; Marques-Vidal, P.; Métrailler, A.; Gonzalez Rodriguez, E.; Hans, D.; Shevroja, E.; Lamy, O. Relationship between dietary characteristics and heel quantitative ultrasound parameters in postmenopausal women from the OsteoLaus cohort. Sci. Rep. 2024, 14, 1638. [Google Scholar] [CrossRef]
- Pérez-Rey, J.; Roncero-Martín, R.; Rico-Martín, S.; Rey-Sánchez, P.; Pedrera-Zamorano, J.D.; Pedrera-Canal, M.; López-Espuela, F.; Lavado-García, J.M. Adherence to a Mediterranean Diet and Bone Mineral Density in Spanish Premenopausal Women. Nutrients 2019, 11, 555. [Google Scholar] [CrossRef]
- Denova-Gutierrez, E.; Mendez-Sanchez, L.; Munoz-Aguirre, P.; Tucker, K.L.; Clark, P. Dietary Patterns, Bone Mineral Density, and Risk of Fractures: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1922. [Google Scholar] [CrossRef]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns in Relation to Low Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 219–236. [Google Scholar] [CrossRef]
- Cummins, N.M.; Jakeman, P.M.; Sestak, I.; Murphy, N.; Carroll, P. The effect of behavioural risk factors on osteoporosis in Irish women. Ir. J. Med. Sci. 2013, 182, 97–105. [Google Scholar] [CrossRef]
- Shin, S.; Joung, H. A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women. Br. J. Nutr. 2013, 110, 1926–1933. [Google Scholar] [CrossRef]
- Godos, J.; Giampieri, F.; Chisari, E.; Micek, A.; Paladino, N.; Forbes-Hernandez, T.Y.; Quiles, J.L.; Battino, M.; La Vignera, S.; Musumeci, G.; et al. Alcohol Consumption, Bone Mineral Density, and Risk of Osteoporotic Fractures: A Dose-Response Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1515. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Jones, A.D.; Faulkner, R.A.; Forwood, M.R.; Mirwald, R.L.; Bailey, D.A. Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J. Bone Miner. Res. 2011, 26, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Cauley, J.A.; Robbins, J.; Chen, Z.; Cummings, S.R.; Jackson, R.D.; LaCroix, A.Z.; LeBoff, M.; Lewis, C.E.; McGowan, J.; Neuner, J.; et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: The Women’s Health Initiative randomized trial. JAMA 2003, 290, 1729–1738. [Google Scholar] [CrossRef]
- Popat, V.B.; Calis, K.A.; Vanderhoof, V.H.; Cizza, G.; Reynolds, J.C.; Sebring, N.; Troendle, J.F.; Nelson, L.M. Bone mineral density in estrogen-deficient young women. J. Clin. Endocrinol. Metab. 2009, 94, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Li, C.F.; Liu, Y.P.; Liu, C.Y.; Zhu, H.L.; Wu, B.H.; Li, B.L.; Chen, Y.M. Dietary Acid Load Was Positively Associated with the Risk of Hip Fracture in Elderly Adults. Nutrients 2022, 14, 3748. [Google Scholar] [CrossRef]
- Farshbaf-Khalili, A.; Ostadrahimi, A.; Heris, J.A.; Sarrafi, S.; Mohammadisima, N. Dietary acid load is associated with primary osteoporosis in postmenopausal women aged 50–65 years: A cross-sectional study. Food Sci. Nutr. 2023, 11, 668–676. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Potential renal acid load of foods and its influence on urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Tian, L.; Yu, X.J. Fat, Sugar, and Bone Health: A Complex Relationship. Nutrients 2017, 9, 506. [Google Scholar] [CrossRef]
- Orchard, T.; Yildiz, V.; Steck, S.E.; Hebert, J.R.; Ma, Y.; Cauley, J.A.; Li, W.; Mossavar-Rahmani, Y.; Johnson, K.C.; Sattari, M.; et al. Dietary Inflammatory Index, Bone Mineral Density, and Risk of Fracture in Postmenopausal Women: Results From the Women’s Health Initiative. J. Bone Miner. Res. 2017, 32, 1136–1146. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Lam, J.; Takeshita, S.; Barker, J.E.; Kanagawa, O.; Ross, F.P.; Teitelbaum, S.L. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Investig. 2000, 106, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Azuma, Y.; Katogi, R.; Kaji, K.; Takeshita, S.; Naito, A.; Kamimura, T.; Inoue, J.; Kudo, A. Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts. J. Bone Miner. Res. 2000, 15, S386. [Google Scholar] [CrossRef] [PubMed]
- Axmann, R.; Böhm, C.; Krönke, G.; Zwerina, J.; Smolen, J.; Schett, G. Inhibition of Interleukin-6 Receptor Directly Blocks Osteoclast Formation In Vitro and In Vivo. Arthritis Rheum. 2009, 60, 2747–2756. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.T.; Felson, D.T.; Dawson-Hughes, B.; Tucker, K.L.; Cupples, L.A.; Wilson, P.W.; Kiel, D.P. Risk factors for longitudinal bone loss in elderly men and women: The Framingham Osteoporosis Study. J. Bone Miner. Res. 2000, 15, 710–720. [Google Scholar] [CrossRef]
- Misra, D.; Berry, S.; Broe, K.; McLean, R.; Cupples, L.; Tucker, K.; Kiel, D.; Hannan, M. Does dietary protein reduce hip fracture risk in elders? The Framingham Osteoporosis Study. Osteoporos. Int. 2011, 22, 345–349. [Google Scholar] [CrossRef]
- Dolan, E.; Sale, C. Protein and bone health across the lifespan. Proc. Nutr. Soc. 2019, 78, 45–55. [Google Scholar] [CrossRef]
- Webster, J.; Greenwood, D.C.; Cade, J.E. Foods, nutrients and hip fracture risk: A prospective study of middle-aged women. Clin. Nutr. 2022, 41, 2825–2832. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Weitzmann, M.N.; Pacifici, R. Estrogen deficiency and bone loss: An inflammatory tale. J. Clin. Investig. 2006, 116, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Premenopausal Women (n = 2865) | Postmenopausal Women (n = 2000) |
---|---|---|
Age (years) | 48.30 ± 0.15 | 58.32 ± 0.15 |
Household income | ||
Low | 832 (29.57) | 1131 (57.85) |
Mid-low | 877 (31.17) | 477 (24.41) |
Mid-high | 893 (31.73) | 282 (14.42) |
High | 212 (7.53) | 65 (3.32) |
Education | ||
Middle school graduation or lower | 1650 (57.89) | 1634 (82.53) |
High school graduation | 974 (34.18) | 272 (13.74) |
College graduation or higher | 226 (7.93) | 74 (3.73) |
Alcohol consumption | ||
Non-drinkers | 2003 (70.23) | 1593 (80.17) |
Current drinkers | 849 (29.77) | 394 (19.83) |
Smoking | ||
Non-smokers | 2714 (96.28) | 1901 (96.11) |
Current smokers | 105 (3.72) | 77 (3.89) |
Physical activity 1 | ||
Low | 1040 (36.65) | 569 (28.62) |
Mid | 1028 (36.24) | 547 (27.52) |
High | 769 (27.11) | 872 (43.86) |
Body mass index (kg/m2) | 24.78 ± 0.06 | 25.17 ± 0.07 |
Total energy intake (kcal/day) | 1882.41 ± 11.73 | 1844.25 ± 14.43 |
Food Group | Premenopausal (n = 2865) | Postmenopausal (n = 2000) | ||||
---|---|---|---|---|---|---|
Factor 1 (Vegetables & Seafood) | Factor 2 (Western) | Factor 3 (White Rice, Meat & Alcohol) | Factor 1 (Diverse) | Factor 2 (Plant-Based) | Factor 3 (Sweets & Drinks) | |
White rice | 0.49 | |||||
Mixed rice | −0.35 | 0.41 | ||||
Noodles | 0.44 | 0.50 | ||||
Bread and rice cake | 0.55 | 0.40 | 0.39 | |||
Potatoes | 0.39 | 0.43 | ||||
Sweets | 0.47 | 0.6 | ||||
Fresh vegetables | 0.70 | 0.45 | 0.51 | |||
Salted vegetables | 0.53 | 0.54 | ||||
Mushroom | 0.43 | 0.32 | ||||
Seaweed | 0.51 | 0.41 | ||||
Fruits | 0.43 | 0.33 | 0.37 | |||
Legumes | 0.60 | 0.65 | ||||
Eggs | 0.36 | 0.42 | ||||
Nuts | 0.03 | 0.46 | ||||
Fish and seafood | 0.57 | 0.41 | 0.63 | |||
Salted seafood | 0.40 | |||||
Red meat | 0.50 | 0.33 | 0.69 | |||
Poultry | 0.50 | 0.58 | ||||
Ham/processed meat | 0.52 | 0.49 | ||||
Milk and dairy products | 0.41 | 0.55 | ||||
Soft drinks/beverages | 0.39 | 0.51 | ||||
Coffee and tea | 0.32 | 0.34 | ||||
Alcohol | 0.58 |
Dietary Pattern Tertiles | P for Trend 1 | |||
---|---|---|---|---|
T1 | T2 | T3 | ||
Premenopausal women (n = 2865) | ||||
“Vegetables and Seafood” pattern | ||||
No. of cases | 280 | 295 | 320 | |
Model 1 | ref | 1.00 (0.85–1.18) | 1.16 (0.98–1.36) | 0.1 |
Model 2 | ref | 1.02 (0.85–1.22) | 1.11 (0.91–1.35) | 0.3 |
“Western” pattern | ||||
No. of cases | 359 | 272 | 264 | |
Model 1 | ref | 0.90 (0.76–1.06) | 0.94 (0.79–1.11) | 0.5 |
Model 2 | ref | 0.93 (0.78–1.11) | 0.99 (0.81–1.20) | 0.9 |
“White rice, Meat, and Alcohol” pattern | ||||
No. of cases | 285 | 316 | 294 | |
Model 1 | ref | 1.13 (0.96–1.33) | 1.22 (1.03–1.44) | 0.02 |
Model 2 | ref | 1.14 (0.96–1.36) | 1.20 (1.01–1.43) | 0.04 |
Postmenopausal women (n = 2000) | ||||
“Diverse” pattern | ||||
No. of cases | 555 | 500 | 470 | |
Model 1 | ref | 0.86 (0.77–0.98) | 0.88 (0.77–0.99) | 0.1 |
Model 2 | ref | 0.87 (0.77–0.99) | 0.95 (0.82–1.11) | 0.6 |
“Plant-based” pattern | ||||
No. of cases | 489 | 502 | 534 | |
Model 1 | ref | 1.01 (0.89–1.15) | 1.08 (0.96–1.22) | 0.2 |
Model 2 | ref | 1.04 (0.91–1.19) | 1.03 (0.89–1.19) | 0.8 |
“Sweets and Drinks” pattern | ||||
No. of cases | 556 | 510 | 459 | |
Model 1 | ref | 0.92 (0.81–1.04) | 0.79 (0.69–0.89) | <0.001 |
Model 2 | ref | 1.00 (0.88–1.14) | 0.95 (0.82–1.10) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Park, K. Dietary Patterns and the Risk of Composite-Defined Osteoporosis in Pre- and Postmenopausal Women: A Prospective Cohort Study. Nutrients 2025, 17, 2947. https://doi.org/10.3390/nu17182947
Choi Y, Park K. Dietary Patterns and the Risk of Composite-Defined Osteoporosis in Pre- and Postmenopausal Women: A Prospective Cohort Study. Nutrients. 2025; 17(18):2947. https://doi.org/10.3390/nu17182947
Chicago/Turabian StyleChoi, Yejung, and Kyong Park. 2025. "Dietary Patterns and the Risk of Composite-Defined Osteoporosis in Pre- and Postmenopausal Women: A Prospective Cohort Study" Nutrients 17, no. 18: 2947. https://doi.org/10.3390/nu17182947
APA StyleChoi, Y., & Park, K. (2025). Dietary Patterns and the Risk of Composite-Defined Osteoporosis in Pre- and Postmenopausal Women: A Prospective Cohort Study. Nutrients, 17(18), 2947. https://doi.org/10.3390/nu17182947