Maternal Folate Excess, Placental Hormones, and Gestational Diabetes Mellitus: Findings from Prospective Cohorts Before and After Mandatory Folic Acid Food Fortification
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohorts and Criteria
2.2. Blood Biochemical Measurements
2.3. Statistical Methodology
3. Results
3.1. Comparative Assessment of Maternal Factors and Pregnancy Outcomes in SCOPE and STOP
3.2. Maternal Folate Status Pre and Post FA Fortification
3.3. Red Cell Folate Increases GDM Risk in Women Post-Fortification
3.4. Red Cell Folate Strata Reflect a Stepwise Rise in GDM Incidence in Women Post Fortification
3.5. Placenta but Not Pituitary Secreted Hormone Concentrations Are Altered Post FA Fortification
3.6. Folate May Act via Placental Hormones to Increase Risk of GDM
4. Discussion
4.1. Increased GDM Incidence Post-Fortification
4.2. Maternal Folate Excess: A Potential Contributor to the GDM Rise in Australia
4.3. Maternal Folate Excess Is Associated with Altered Placental Hormone Levels
4.4. Clinical Implications
4.5. Study Strengths and Limitations
4.6. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. IPTW Analysis Assumptions
- 1.
- Consistency
- 2.
- Positivity
- 3.
- Ignorable treatment
- 4.
- Ignorable study alignment
Appendix B. Direct Acyclic Graph (DAG) for Mediation Analysis
References
- AIHW. Australian Institute of Health and Welfare: Incidence of Gestational Diabetes, 2011 to 2022. 2022. Available online: https://www.aihw.gov.au/reports/diabetes/diabetes/contents/how-common-is-diabetes/gestational-diabetes (accessed on 30 May 2025).
- World Health Organisaion. World Health Organisation Guidelines: Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy; WHO/NMH/MND/13.2; World Health Organisation: Geneva, Switzerland, 2013; Available online: https://iris.who.int/bitstream/handle/10665/85975/WHO_NMH_MND_13.2_eng.pdf?sequence=1 (accessed on 26 July 2025).
- Zhu, B.; Ge, X.; Huang, K.; Mao, L.; Yan, S.; Xu, Y.; Huang, S.; Hao, J.; Zhu, P.; Niu, Y.; et al. Folic Acid Supplement Intake in Early Pregnancy Increases Risk of Gestational Diabetes Mellitus: Evidence From a Prospective Cohort Study. Diabetes Care 2016, 39, e36–e37. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yu, X.; Li, L.; Chen, Y.; Yang, Y.; Yang, Y.; Hu, Y.; Zhao, Y.; Tang, H.; Xu, D.; et al. Duration of periconceptional folic acid supplementation and risk of gestational diabetes mellitus. Asia Pac. J. Clin. Nutr. 2019, 28, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, Y.; Huang, L.; Zhong, C.; Chen, R.; Zhou, X.; Chen, X.; Li, X.; Cui, W.; Xiong, T.; et al. High-Dose Folic Acid Supplement Use From Prepregnancy Through Midpregnancy Is Associated With Increased Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2019, 42, e113–e115. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.M.; Arthurs, A.L.; Smith, M.D.; Roberts, C.T.; Jankovic-Karasoulos, T. Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022, 14, 3930. [Google Scholar] [CrossRef]
- Huang, Y.; He, Y.; Sun, X.; He, Y.; Li, Y.; Sun, C. Maternal high folic acid supplement promotes glucose intolerance and insulin resistance in male mouse offspring fed a high-fat diet. Int. J. Mol. Sci. 2014, 15, 6298–6313. [Google Scholar] [CrossRef]
- Karacil Ermumcu, M.S.; Acar Tek, N. Effects of High-dose Folic Acid Supplementation on Maternal/Child Health Outcomes: Gestational Diabetes Mellitus in Pregnancy and Insulin Resistance in Offspring. Can. J. Diabetes 2023, 47, 133–142. [Google Scholar] [CrossRef]
- Pannia, E.; Yang, N.V.; Ho, M.; Chatterjee, D.; Hammoud, R.; Kubant, R.; Anderson, G.H. Folic acid content of diet during pregnancy determines post-birth re-set of metabolism in Wistar rat dams. J. Nutr. Biochem. 2020, 83, 108414. [Google Scholar] [CrossRef]
- Keating, E.; Correia-Branco, A.; Araujo, J.R.; Meireles, M.; Fernandes, R.; Guardao, L.; Guimaraes, J.T.; Martel, F. Excess perigestational folic acid exposure induces metabolic dysfunction in post-natal life. J. Endocrinol. 2015, 224, 245–259. [Google Scholar] [CrossRef]
- World Health Organisaion. WHO Antenatal Care Recommendations for a Positive Pregnancy Experience: Nutritional Interventions 2022. Available online: https://www.who.int/publications/i/item/9789240007789 (accessed on 26 July 2025).
- Müller, F.; O’Rahilly, R. The development of the human brain from a closed neural tube at stage 13. Anat. Embryol. 1988, 177, 203–224. [Google Scholar] [CrossRef] [PubMed]
- Jankovic-Karasoulos, T.; Smith, M.D.; Leemaqz, S.; Williamson, J.; McCullough, D.; Arthurs, A.L.; Jones, L.A.; Bogias, K.J.; Mol, B.W.; Dalton, J.; et al. Elevated Maternal Folate Status and Changes in Maternal Prolactin, Placental Lactogen and Placental Growth Hormone Following Folic Acid Food Fortification: Evidence from Two Prospective Pregnancy Cohorts. Nutrients 2023, 15, 1553. [Google Scholar] [CrossRef]
- Ledowsky, C.; Mahimbo, A.; Scarf, V.; Steel, A. Women Taking a Folic Acid Supplement in Countries with Mandatory Food Fortification Programs May Be Exceeding the Upper Tolerable Limit of Folic Acid: A Systematic Review. Nutrients 2022, 14, 2715. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.A.; Steane, S.E.; Young, S.L.; de Jersey, S.; Schoenaker, D.A.J.M.; Borg, D.J.; Lockett, J.; Collins, C.E.; Perkins, A.V.; Kumar, S.; et al. Dietary supplements, guideline alignment and biochemical nutrient status in pregnancy: Findings from the Queensland Family Cohort pilot study. Matern. Child Nutr. 2024, 20, e13589. [Google Scholar] [CrossRef]
- Xu, R.; Liu, S.; Zhong, Z.; Guo, Y.; Xia, T.; Chen, Y.; Ding, L. The Influence of Maternal Folate Status on Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2766. [Google Scholar] [CrossRef]
- Stern, C.; Schwarz, S.; Moser, G.; Cvitic, S.; Jantscher-Krenn, E.; Gauster, M.; Hiden, U. Placental Endocrine Activity: Adaptation and Disruption of Maternal Glucose Metabolism in Pregnancy and the Influence of Fetal Sex. Int. J. Mol. Sci. 2021, 22, 12722. [Google Scholar] [CrossRef] [PubMed]
- Rassie, K.L.; Giri, R.; Melder, A.; Joham, A.; Mousa, A.; Teede, H.J. Lactogenic hormones in relation to maternal metabolic health in pregnancy and postpartum: Protocol for a systematic review. BMJ Open 2022, 12, e055257. [Google Scholar] [CrossRef] [PubMed]
- AIHW. Australian Institute of Health and Welfare: Prevalence of Type 2 Diabetes 2000–2021. 2022. Available online: https://www.aihw.gov.au/reports/diabetes/diabetes/contents/how-common-is-diabetes/type-2-diabetes (accessed on 2 June 2025).
- Baker, B.C.; Hayes, D.J.; Jones, R.L. Effects of micronutrients on placental function: Evidence from clinical studies to animal models. Reproduction 2018, 156, R69–R82. [Google Scholar] [CrossRef]
- Stover, P.J. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr. 2009, 139, 2402–2405. [Google Scholar] [CrossRef]
- Vo, T.; Porcher, R.; Chaimani, A.; Vansteelandt, S. A novel approach for identifying and addressing case-mix heterogeneity in individual participant data meta-analysis. Res. Synth. Methods 2019, 10, 582–596. [Google Scholar] [CrossRef]
- Vansteelandt, S.; Bekaert, M.; Lange, T. Imputation Strategies for the Estimation of Natural Direct and Indirect Effects. Epidemiol. Methods 2012, 1, 131–158. [Google Scholar] [CrossRef]
- Steen, J.; Loeys, T.; Moerkerke, B.; Vansteelandt, S. An R Package for Flexible Mediation Analysis using Natural Effect Models. J. Stat. Softw. 2017, 76, 1–46. [Google Scholar] [CrossRef]
- Grieger, J.A.; Bianco-Miotto, T.; Grzeskowiak, L.E.; Leemaqz, S.Y.; Poston, L.; McCowan, L.M.; Kenny, L.C.; Myers, J.E.; Walker, J.J.; Dekker, G.A.; et al. Metabolic syndrome in pregnancy and risk for adverse pregnancy outcomes: A prospective cohort of nulliparous women. PLOS Med. 2018, 15, e1002710. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S. Assessment and interpretation of micronutrient status during pregnancy. Proc. Nutr. Soc. 2008, 67, 437–450. [Google Scholar] [CrossRef]
- Samoilenko, M.; Lefebvre, G. An exact regression-based approach for the estimation of natural direct and indirect effects with a binary outcome and a continuous mediator. Stat. Med. 2023, 42, 353–387. [Google Scholar] [CrossRef]
- Zou, J.; Fu, Q.; Huang, X.; Yao, Z.; Wang, W. U-shaped Association Between Folic Acid Supplementation and the Risk of Gestational Diabetes Mellitus in Chinese Women. Can. J. Diabetes 2023, 47, 78–84. [Google Scholar] [CrossRef]
- Furness, D.L.F.; Yasin, N.; Dekker, G.A.; Thompson, S.D.; Roberts, C.T. Maternal red blood cell folate concentration at 10-12 weeks gestation and pregnancy outcome. J. Matern. Neonatal Med. 2012, 25, 1423–1427. [Google Scholar] [CrossRef]
- Maruvada, P.; Stover, P.J.; Mason, J.B.; Bailey, R.L.; Davis, C.D.; Field, M.S.; Finnell, R.H.; Garza, C.; Green, R.; Gueant, J.-L.; et al. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: A summary, and perspectives, from an NIH workshop. Am. J. Clin. Nutr. 2020, 112, 1390–1403. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Chen, H.; Jiang, Y.; Wang, Y.; Wang, D.; Li, M.; Dou, Y.; Sun, X.; Huang, G.; et al. Association of Maternal Folate and Vitamin B(12) in Early Pregnancy With Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2021, 44, 217–223. [Google Scholar] [CrossRef]
- Li, N.; Jiang, J.; Guo, L. Effects of maternal folate and vitamin B12 on gestational diabetes mellitus: A dose-response meta-analysis of observational studies. Eur. J. Clin. Nutr. 2022, 76, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, C.C.; Winterfeldt, E.; Owens, F. Short-term serum and red blood cell folate responses to folate intake by women. Nutr. Res. 1988, 8, 981–993. [Google Scholar] [CrossRef]
- Ekinci, E.I.; Torkamani, N.; Ramchand, S.K.; Churilov, L.; Sikaris, K.A.; Lu, Z.X.; Houlihan, C.A. Higher maternal serum prolactin levels are associated with reduced glucose tolerance during pregnancy. J. Diabetes Investig. 2017, 8, 697–700. [Google Scholar] [CrossRef]
- Barbour, L.A.; Shao, J.; Qiao, L.; Pulawa, L.K.; Jensen, D.R.; Bartke, A.; Garrity, M.; Draznin, B.; Friedman, J.E. Human placental growth hormone causes severe insulin resistance in transgenic mice. Am. J. Obstet. Gynecol. 2002, 186, 512–517. [Google Scholar] [CrossRef] [PubMed]
SCOPE (N = 1164) | STOP (N = 1300) | p-Value | |
---|---|---|---|
Maternal age (y): Median (IQ range) | 23.0 (20.0–27.0) | 26.0 (22.0–29.0) | <0.0001 |
Maternal BMI: Median (IQ range) | 25.6 (22.2–30.8) | 26.3 (22.7–31.8) | 0.006 |
Maternal BMI (category): N(%) | 0.02 | ||
Missing | 0 (0.0) | 1 (0.1) | |
<20 | 122 (10.5) | 95 (7.3) | |
≥20 to <25 | 398 (34.2) | 442 (34.0) | |
≥25 to <30 | 322 (27.7) | 361 (27.8) | |
≥30 to <40 | 267 (22.9) | 315 (24.2) | |
≥40 | 55 (4.7) | 86 (6.6) | |
SEI *: Median (IQ range) | 25.0 (20.0–30.0) | 29.0 (22.0–45.0) | <0.0001 |
Ethnicity: Caucasian N(%) | 0.0005 | ||
Yes | 1067 (91.7) | 1073 (82.5) | |
No | 97 (8.3) | 227 (17.5) | |
Smoking: N(%) | <0.0001 | ||
Missing | 0 (0.0) | 7 (0.5) | |
No | 886 (76.1) | 1077 (82.8) | |
Yes | 278 (23.9) | 216 (16.6) | |
Folic acid supplementation (μg/day): N(%) | <0.0001 | ||
Missing | 0 (0.0) | 152 (11.7) | |
None | 251 (21.6) | 97 (7.5) | |
≤400 | 116 (10.0) | 15 (1.2) | |
>400 to <800 | 495 (42.5) | 256 (19.7) | |
≥800 | 302 (25.9) | 780 (60.0) | |
Metabolic Syndrome: N(%) | <0.0001 | ||
Missing | 11 (0.9) | 92 (7.1) | |
No | 953 (81.9) | 1096 (84.3) | |
Yes | 200 (17.2) | 112 (8.6) | |
Pregnancy Outcome | |||
Gestational diabetes mellitus (GDM) † | 58 (5.0) | 198 (15.2) | <0.0001 |
Gestational hypertension (GHTN) | 94 (8.1) | 83 (6.4) | 0.14 |
Preeclampsia (PE) | 117 (10.1) | 120 (9.2) | 0.37 |
Spontaneous preterm birth (sPTB) | 69 (5.9) | 61 (4.7) | 0.14 |
Small for gestational age (SGA) ‡ | 141 (12.1) | 155 (11.9) | 0.65 |
Relative Risk (95% CI) | p | |
---|---|---|
Effect of serum folate without study | ||
Per 10-unit increase | 1.02 (0.98, 1.05) | 0.3 |
Per 50-unit increase | 1.09 (0.93, 1.27) | 0.3 |
Effect of serum folate with study | ||
Per 10-unit increase | 3.12 (2.26, 4.29) | <0.0001 |
Per 50-unit increase | 3.12 (2.20, 4.42) | <0.0001 |
Relative Risk (95% CI) | p | |
---|---|---|
Effect of triglycerides | ||
Per 0.1 unit increase | 1.05 (1.03, 1.07) | <0.0001 |
Per 0.5-unit increase | 1.28 (1.14, 1.43) | <0.0001 |
Effect of red cell folate (RCF) | ||
Per 100-unit increase | 1.06 (1.00, 1.12) | 0.04 |
Per 500-unit increase | 1.34 (1.01, 1.78) | 0.04 |
RCF Reference Range | Total Number of Women (N) | Proportion of Women with GDM—N (%) |
---|---|---|
<360 nmol/L (deficient) | 7 | 1 (14.3) |
360–1400 nmol/L (normal) | 498 | 62 (12.5) |
>1400–<1790 nmol/L (elevated) | 389 | 63 (16.2) |
≥1790 nmol/L (excess) | 297 | 55 (18.5) |
Estimated Marginal Means (95% CI) | SCOPE | STOP | p |
PRL (ng/mL) | 157.7 (148.7, 167.2) | 145.8 (126.8, 167.65) | 0.3 |
hPL (µg/mL) | 191.8 (187.2, 196.5) | 239.8 (225.0, 255.5) | <0.0001 |
GH2 (ng/mL) | 4.7 (4.5, 4.8) | 5.3 (4.9, 5.7) | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankovic-Karasoulos, T.; Smith, M.D.; Leemaqz, S.; Mittinty, M.; Williamson, J.; McCullough, D.; Arthurs, A.L.; Dekker, G.A.; Roberts, C.T. Maternal Folate Excess, Placental Hormones, and Gestational Diabetes Mellitus: Findings from Prospective Cohorts Before and After Mandatory Folic Acid Food Fortification. Nutrients 2025, 17, 2863. https://doi.org/10.3390/nu17172863
Jankovic-Karasoulos T, Smith MD, Leemaqz S, Mittinty M, Williamson J, McCullough D, Arthurs AL, Dekker GA, Roberts CT. Maternal Folate Excess, Placental Hormones, and Gestational Diabetes Mellitus: Findings from Prospective Cohorts Before and After Mandatory Folic Acid Food Fortification. Nutrients. 2025; 17(17):2863. https://doi.org/10.3390/nu17172863
Chicago/Turabian StyleJankovic-Karasoulos, Tanja, Melanie D. Smith, Shalem Leemaqz, Murthy Mittinty, Jessica Williamson, Dylan McCullough, Anya L. Arthurs, Gustaaf A. Dekker, and Claire T. Roberts. 2025. "Maternal Folate Excess, Placental Hormones, and Gestational Diabetes Mellitus: Findings from Prospective Cohorts Before and After Mandatory Folic Acid Food Fortification" Nutrients 17, no. 17: 2863. https://doi.org/10.3390/nu17172863
APA StyleJankovic-Karasoulos, T., Smith, M. D., Leemaqz, S., Mittinty, M., Williamson, J., McCullough, D., Arthurs, A. L., Dekker, G. A., & Roberts, C. T. (2025). Maternal Folate Excess, Placental Hormones, and Gestational Diabetes Mellitus: Findings from Prospective Cohorts Before and After Mandatory Folic Acid Food Fortification. Nutrients, 17(17), 2863. https://doi.org/10.3390/nu17172863