Individual and Combined Effects of Medium- and Long-Chain Triacylglycerol and 2′-Fucosyllactose on Small Intestinal Morphology, Barrier Function, and Gut Microbiota in Growing C57BL/6 Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. H&E and AB-PAS Staining
2.3. Immunohistochemical (IHC) Staining
2.4. Detection of LPS and SIgA
2.5. Western Blot
2.6. 16S rRNA Gene Sequencing
2.7. Statistical Analysis
3. Results
3.1. General Indicators of Growing C57BL/6 Mice Following Interventions
3.2. Small Intestinal Morphology and Epithelial Cell Proliferation in Growing C57BL/6 Mice Following Interventions
3.3. Small Intestinal Barrier Function in Growing C57BL/6 Mice Following Interventions
3.4. Diversity and Composition of the Gut Microbiota in Growing C57BL/6 Mice Following Interventions
3.5. Differentially Abundant Bacteria in Growing C57BL/6 Mice Following Interventions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2′-FL | 2′-fucosyllactose |
AB-PAS | Alcian Blue-Periodic Acid-Schiff |
BW | body weight |
CON | control |
DAB | diaminobenzidine |
EFAs | essential fatty acids |
ELISA | enzyme-linked immunosorbent assay |
FAs | fatty acids |
HFD | high-fat diet |
HM | human milk |
HMF | human milk fat |
HMOs | human milk oligosaccharides |
HRP | horseradish peroxidase |
IECs | intestinal epithelial cells |
IFs | infant formulas |
IHC | immunohistochemical |
LCFAs | long-chain fatty acids |
LCT | long-chain triglyceride |
LDA | linear discriminant analysis |
LEfSe | linear discriminant analysis effect size |
LPS | lipopolysaccharide |
MCFAs | medium-chain fatty acids |
MCT | medium-chain triglyceride |
MLCT | medium- and long-chain triacylglycerol |
MLCT + 2′-FL | the combination of MLCT and 2′-FL |
NMDS | nonmetric multidimensional scaling |
OTUs | operational taxonomic units |
SCFAs | short-chain fatty acids |
SD | standard deviation |
sIgA | secretory immunoglobulin A |
TGs | triglycerides |
TLRs | Toll-like receptors |
V/C ratio | villus height/crypt depth ratio |
ZO-1 | zonula occludens-1 |
References
- Hoffman, D.J.; Powell, T.L.; Barrett, E.S.; Hardy, D.B. Developmental Origins of Metabolic Diseases. Physiol. Rev. 2021, 101, 739–795. [Google Scholar] [CrossRef]
- Ames, S.R.; Lotoski, L.C.; Azad, M.B. Comparing Early Life Nutritional Sources and Human Milk Feeding Practices: Personalized and Dynamic Nutrition Supports Infant Gut Microbiome Development and Immune System Maturation. Gut Microbes 2023, 15, 2190305. [Google Scholar] [CrossRef]
- Brockway, M.M.; Daniel, A.I.; Reyes, S.M.; Gauglitz, J.M.; Granger, M.; McDermid, J.M.; Chan, D.; Refvik, R.; Sidhu, K.K.; Musse, S.; et al. Human Milk Bioactive Components and Child Growth and Body Composition in the First 2 Years: A Systematic Review. Adv. Nutr. 2024, 15, 100127. [Google Scholar] [CrossRef]
- Szyller, H.; Antosz, K.; Batko, J.; Mytych, A.; Dziedziak, M.; Wrześniewska, M.; Braksator, J.; Pytrus, T. Bioactive Components of Human Milk and Their Impact on Child’s Health and Development, Literature Review. Nutrients 2024, 16, 1487. [Google Scholar] [CrossRef]
- Infant and Young Child Feeding. Available online: https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding (accessed on 18 April 2025).
- Wells, J.M.; Gao, Y.; de Groot, N.; Vonk, M.M.; Ulfman, L.; van Neerven, R.J.J. Babies, Bugs, and Barriers: Dietary Modulation of Intestinal Barrier Function in Early Life. Annu. Rev. Nutr. 2022, 42, 165–200. [Google Scholar] [CrossRef]
- Moor, A.E.; Harnik, Y.; Ben-Moshe, S.; Massasa, E.E.; Rozenberg, M.; Eilam, R.; Bahar Halpern, K.; Itzkovitz, S. Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis. Cell 2018, 175, 1156–1167.e15. [Google Scholar] [CrossRef] [PubMed]
- Houtekamer, R.M.; van der Net, M.C.; Maurice, M.M.; Gloerich, M. Mechanical Forces Directing Intestinal Form and Function. Curr. Biol. 2022, 32, R791–R805. [Google Scholar] [CrossRef]
- Bahar Halpern, K.; Massalha, H.; Zwick, R.K.; Moor, A.E.; Castillo-Azofeifa, D.; Rozenberg, M.; Farack, L.; Egozi, A.; Miller, D.R.; Averbukh, I.; et al. Lgr5+ Telocytes Are a Signaling Source at the Intestinal Villus Tip. Nat. Commun. 2020, 11, 1936. [Google Scholar] [CrossRef]
- Martel, J.; Chang, S.-H.; Ko, Y.-F.; Hwang, T.-L.; Young, J.D.; Ojcius, D.M. Gut Barrier Disruption and Chronic Disease. Trends Endocrinol. Metab. 2022, 33, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Paone, P.; Cani, P.D. Mucus Barrier, Mucins and Gut Microbiota: The Expected Slimy Partners? Gut 2020, 69, 2232–2243. [Google Scholar] [CrossRef]
- Damianos, J.; Abdelnaem, N.; Camilleri, M. Gut Goo: Physiology, Diet, and Therapy of Intestinal Mucus and Biofilms in Gastrointestinal Health and Disease. Clin. Gastroenterol. Hepatol. 2025, 23, 205–215. [Google Scholar] [CrossRef]
- Horowitz, A.; Chanez-Paredes, S.D.; Haest, X.; Turner, J.R. Paracellular Permeability and Tight Junction Regulation in Gut Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 417–432. [Google Scholar] [CrossRef]
- Kayama, H.; Okumura, R.; Takeda, K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu. Rev. Immunol. 2020, 38, 23–48. [Google Scholar] [CrossRef]
- Markandey, M.; Bajaj, A.; Ilott, N.E.; Kedia, S.; Travis, S.; Powrie, F.; Ahuja, V. Gut Microbiota: Sculptors of the Intestinal Stem Cell Niche in Health and Inflammatory Bowel Disease. Gut Microbes 2021, 13, 1990827. [Google Scholar] [CrossRef]
- Frazer, L.C.; Good, M. Intestinal Epithelium in Early Life. Mucosal Immunol. 2022, 15, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Serrano Matos, Y.A.; Cano, J.; Shafiq, H.; Williams, C.; Sunny, J.; Cowardin, C.A. Colonization during a Key Developmental Window Reveals Microbiota-Dependent Shifts in Growth and Immunity during Undernutrition. Microbiome 2024, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.-Y.; Tan, L.T.-H.; Law, J.W.-F.; Hong, K.-W.; Ratnasingam, V.; Ab Mutalib, N.-S.; Lee, L.-H.; Letchumanan, V. Exploring the Potential of Human Milk and Formula Milk on Infants’ Gut and Health. Nutrients 2022, 14, 3554. [Google Scholar] [CrossRef]
- Wei, W.; Jin, Q.; Wang, X. Human Milk Fat Substitutes: Past Achievements and Current Trends. Prog. Lipid Res. 2019, 74, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhang, X.; Li, X.; Liu, L.; Liu, S.; Hao, D.; Bora, A.F.M.; Kouame, K.J.E.-P.; Xu, Y.; Liu, W.; et al. Novel Trends and Challenges in Fat Modification of Next-Generation Infant Formula: Considering the Structure of Milk Fat Globules to Improve Lipid Digestion and Metabolism of Infants. Food Res. Int. 2023, 174, 113574. [Google Scholar] [CrossRef]
- Yu, J.; Yan, Z.; Mi, L.; Wang, L.; Liu, Z.; Ye, X.; Jin, Q.; Pang, J.; Wei, W.; Wang, X. Medium- and Long-Chain Triacylglycerols and Di-Unsaturated Fatty Acyl-Palmitoyl-Glycerols in Chinese Human Milk: Association with Region during the Lactation. Front. Nutr. 2022, 9, 1040321. [Google Scholar] [CrossRef]
- Chen, X.; Yang, M.; Wei, W.; Huang, S.; Qiu, Y.; Li, Z.; Lan, Q.; Huang, B.; Wu, T.; Bi, Q.; et al. A Novel Infant Formula with Medium- and Long-Chain Triacylglycerols and Sn-2 Palmitate Supports Adequate Growth and Lipid Absorption in Healthy Term Infants. Nutrients 2025, 17, 1401. [Google Scholar] [CrossRef]
- Cheng, X.; Jiang, C.; Jin, J.; Jin, Q.; Akoh, C.C.; Wei, W.; Wang, X. Medium- and Long-Chain Triacylglycerol: Preparation, Health Benefits, and Food Utilization. Annu. Rev. Food Sci. Technol. 2024, 15, 381–408. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Tang, T.-K.; Chan, E.-S.; Phuah, E.-T.; Lai, O.-M.; Tan, C.-P.; Wang, Y.; Ab Karim, N.A.; Mat Dian, N.H.; Tan, J.S. Medium Chain Triglyceride and Medium-and Long Chain Triglyceride: Metabolism, Production, Health Impacts and Its Applications—A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4169–4185. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Liu, R.; Chang, M.; Wei, W.; Jin, Q.; Wang, X. Reviews of Medium- and Long-Chain Triglyceride with Respect to Nutritional Benefits and Digestion and Absorption Behavior. Food Res. Int. 2022, 155, 111058. [Google Scholar] [CrossRef]
- Huang, L.; Gao, L.; Chen, C. Role of Medium-Chain Fatty Acids in Healthy Metabolism: A Clinical Perspective. Trends Endocrinol. Metab. 2021, 32, 351–366. [Google Scholar] [CrossRef]
- Wu, G.H.; Zaniolo, O.; Schuster, H.; Schlotzer, E.; Pradelli, L. Structured Triglycerides versus Physical Mixtures of Medium- and Long-Chain Triglycerides for Parenteral Nutrition in Surgical or Critically Ill Adult Patients: Systematic Review and Meta-Analysis. Clin. Nutr. 2017, 36, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, W.; Wang, Y.; Liu, X.; Jin, Q.; Wang, X. Medium- and Long-Chain Triacylglycerols as Enteral Nutrition Enhancing the Nutritional Status of Postoperative Rats Undergoing Chemotherapy by Increasing the Bioavailability of Functional Fatty Acids. Food Chem. 2025, 468, 142410. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.-X.; Chen, S.-N.; Zhu, H.-L.; Niu, X.; Li, J.; Fan, Y.-W.; Deng, Z.-Y. Consumption of Interesterified Medium- and Long-Chain Triacylglycerols Improves Lipid Metabolism and Reduces Inflammation in High-Fat Diet-Induced Obese Rats. J. Agric. Food Chem. 2020, 68, 8255–8262. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-N.; Shen, J.-R.; Xiong, C.-Y.; Zhu, X.-M.; Deng, Z.-Y. Investigation of Lipid Metabolism by a New Structured Lipid with Medium- and Long-Chain Triacylglycerols from Cinnamomum Camphora Seed Oil in Healthy C57BL/6J Mice. J. Agric. Food Chem. 2018, 66, 1990–1998. [Google Scholar] [CrossRef]
- Nosaka, N.; Tsujino, S.; Sadamitsu, S.; Ando, N.; Kato, K. Ingestion of Triglycerides Containing Medium- and Long-Chain Fatty Acids Can Increase Metabolism of Ingested Long-Chain Triglycerides in Overweight Persons. Front. Nutr. 2023, 10, 1260506. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Cheng, X.; Shen, L.; Liu, Z.; Ye, X.; Yan, Z.; Wei, W.; Wang, X. Novel Human Milk Fat Substitutes Based on Medium- and Long-Chain Triacylglycerol Regulate Thermogenesis, Lipid Metabolism, and Gut Microbiota Diversity in C57BL/6J Mice. J. Agric. Food Chem. 2024, 72, 6213–6225. [Google Scholar] [CrossRef] [PubMed]
- Gianni, M.L.; Roggero, P.; Baudry, C.; Fressange-Mazda, C.; Galli, C.; Agostoni, C.; le Ruyet, P.; Mosca, F. An Infant Formula Containing Dairy Lipids Increased Red Blood Cell Membrane Omega 3 Fatty Acids in 4 Month-Old Healthy Newborns: A Randomized Controlled Trial. BMC Pediatr. 2018, 18, 53. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, X.; Yuan, T.; Jin, Q.; Wei, W.; Wang, X. Digestion of Medium- and Long-Chain Triacylglycerol and Sn-2 Palmitate in Infant Formula: A Study Based on Dynamic In Vitro Simulation of Infant Gastrointestinal Lipolysis. J. Agric. Food Chem. 2022, 70, 3263–3271. [Google Scholar] [CrossRef]
- Yuan, T.; Wang, L.; Jin, J.; Mi, L.; Pang, J.; Liu, Z.; Gong, J.; Sun, C.; Li, J.; Wei, W.; et al. Role Medium-Chain Fatty Acids in the Lipid Metabolism of Infants. Front. Nutr. 2022, 9, 804880. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Wei, W.; Wang, X. A Review on Lipid Inclusion in Preterm Formula: Characteristics, Nutritional Support, Challenges, and Future Perspectives. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70099. [Google Scholar] [CrossRef]
- Yu, J.; Li, L.; Kraithong, S.; Zou, L.; Zhang, X.; Huang, R. Comprehensive Review on Human Milk Oligosaccharides: Biosynthesis, Structure, Intestinal Health Benefits, Immune Regulation, Neuromodulation Mechanisms, and Applications. Food Res. Int. 2025, 209, 116328. [Google Scholar] [CrossRef]
- Kassai, S.; de Vos, P. Gastrointestinal Barrier Function, Immunity, and Neurocognition: The Role of Human Milk Oligosaccharide (hMO) Supplementation in Infant Formula. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13271. [Google Scholar] [CrossRef]
- Zhu, Y.; Wan, L.; Li, W.; Ni, D.; Zhang, W.; Yan, X.; Mu, W. Recent Advances on 2′-Fucosyllactose: Physiological Properties, Applications, and Production Approaches. Crit. Rev. Food Sci. Nutr. 2022, 62, 2083–2092. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, W.; Mu, W. Human Milk Oligosaccharides: The New Gold Standard for Premium Infant Formula. J. Agric. Food Chem. 2022, 70, 2061–2063. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.; Liu, C.; Guo, X.; Liu, Z.; Zhang, L.; Bao, S.; Wu, X.; Wang, X.; Zhang, J.; et al. 2′-Fucosyllactose Restores the Intestinal Mucosal Barrier in Ulcerative Colitis by Inhibiting STAT3 Palmitoylation and Phosphorylation. Clin. Nutr. 2024, 43, 380–394. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Li, W.; Yin, J.; Zhang, B.; Wang, J.; Wang, S. Differential Responses on Gut Microbiota and Microbial Metabolome of 2′-Fucosyllactose and Galactooligosaccharide against DSS-Induced Colitis. Food Res. Int. 2022, 162, 112072. [Google Scholar] [CrossRef] [PubMed]
- Paone, P.; Latousakis, D.; Terrasi, R.; Vertommen, D.; Jian, C.; Borlandelli, V.; Suriano, F.; Johansson, M.E.V.; Puel, A.; Bouzin, C.; et al. Human Milk Oligosaccharide 2′-Fucosyllactose Protects against High-Fat Diet-Induced Obesity by Changing Intestinal Mucus Production, Composition and Degradation Linked to Changes in Gut Microbiota and Faecal Proteome Profiles in Mice. Gut 2024, 73, 1632–1649. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, G.; Yang, J.; Qi, X.; Yao, F.; Gao, Y.; Li, C.; Liu, L.; Kang, L. Surface Proteins of Bifidobacterium Bifidum DNG6 Growing in 2′-Fucosyllactose Alleviating Lipopolysaccharide-Induced Intestinal Barrier Injury in Vitro. J. Dairy Sci. 2024, 107, 8865–8873. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Luo, T.; Deng, Z.; Li, J.; Zheng, L.; Zhang, B. Human Milk Oligosaccharides: A Critical Review on Structure, Preparation, Their Potential as a Food Bioactive Component, and Future Perspectives. J. Agric. Food Chem. 2023, 71, 15908–15925. [Google Scholar] [CrossRef]
- Azagra-Boronat, I.; Massot-Cladera, M.; Mayneris-Perxachs, J.; Knipping, K.; Van’t Land, B.; Tims, S.; Stahl, B.; Garssen, J.; Franch, À.; Castell, M.; et al. Immunomodulatory and Prebiotic Effects of 2′-Fucosyllactose in Suckling Rats. Front. Immunol. 2019, 10, 1773. [Google Scholar] [CrossRef]
- Daniels, V.C.; Monaco, M.H.; Wang, M.; Hirvonen, J.; Jensen, H.M.; Ouwehand, A.C.; Mukherjea, R.; Dilger, R.N.; Donovan, S.M. Evaluation of 2′-Fucosyllactose and Bifidobacterium Longum Subspecies Infantis on Growth, Organ Weights, and Intestinal Development of Piglets. Nutrients 2021, 14, 199. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, F.; Zhang, M.; Jin, Y.; Yuan, X.; Hao, Y.; Chen, L.; Fang, B. 2′-Fucosyllactose and 3′-Sialyllactose Reduce Mortality in Neonatal Enteroaggregative Escherichia Coli Infection by Improving the Construction of Intestinal Mucosal Immunity. J. Agric. Food Chem. 2024, 72, 26165–26177. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Yang, Y.; Wu, S.; Zhao, J.; Li, Y.; Kang, X.; Li, Z.; Chen, J.; Shen, X.; et al. Bifidobacterium Infantis and 2′-Fucosyllactose Supplementation in Early Life May Have Potential Long-Term Benefits on Gut Microbiota, Intestinal Development, and Immune Function in Mice. J. Dairy Sci. 2023, 106, 7461–7476. [Google Scholar] [CrossRef]
- Chleilat, F.; Klancic, T.; Ma, K.; Schick, A.; Nettleton, J.E.; Reimer, R.A. Human Milk Oligosaccharide Supplementation Affects Intestinal Barrier Function and Microbial Composition in the Gastrointestinal Tract of Young Sprague Dawley Rats. Nutrients 2020, 12, 1532. [Google Scholar] [CrossRef] [PubMed]
- Hoedt, E.C.; Hueston, C.M.; Cash, N.; Bongers, R.S.; Keane, J.M.; van Limpt, K.; Ben Amor, K.; Knol, J.; MacSharry, J.; van Sinderen, D. A Synbiotic Mixture of Selected Oligosaccharides and Bifidobacteria Assists Murine Gut Microbiota Restoration Following Antibiotic Challenge. Microbiome 2023, 11, 168. [Google Scholar] [CrossRef]
- Park, S.; Park, Y.; Jeong, Y.-J.; Oh, J.G.; Yoo, H.J.; Yang, J.; Kwon, J.-I.; Lee, K.-W. Combining 2′-Fucosyllactose and Galacto-Oligosaccharides Exerts Anti-Inflammatory Effects and Promotes Gut Health. J. Dairy Sci. 2024, 107, 10203–10220. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Lee, S.; Kim, G.; Shin, H.J.; Lee, E.J.; Lee, C.S.; Yoon, S.; Lee, E.; Lim, A.; Kim, S.H. Ameliorating Effect of 2′-Fucosyllactose and 6′-Sialyllactose on Lipopolysaccharide-Induced Intestinal Inflammation. J. Dairy Sci. 2024, 107, 4147–4160. [Google Scholar] [CrossRef]
- He, Y.; Zhang, B.; Xin, Y.; Wang, W.; Wang, X.; Liu, Z.; She, Y.; Guo, R.; Jia, G.; Wu, S.; et al. Synbiotic Combination of 2′-Fucosyllactose and Bifidobacterium Mitigates Neurodevelopmental Disorders and ASD-like Behaviors Induced by Valproic Acid. Food Funct. 2025, 16, 2703–2717. [Google Scholar] [CrossRef] [PubMed]
- Chopyk, D.M.; Grakoui, A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology 2020, 159, 849–863. [Google Scholar] [CrossRef]
- Zhao, G.; Williams, J.; Washington, M.K.; Yang, Y.; Long, J.; Townsend, S.D.; Yan, F. 2′-Fucosyllactose Ameliorates Chemotherapy-Induced Intestinal Mucositis by Protecting Intestinal Epithelial Cells Against Apoptosis. Cell Mol. Gastroenterol. Hepatol. 2022, 13, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, B.; Zhang, Y.; Li, W.; Yin, J.; Shi, A.; Wang, J.; Wang, S. 2′-Fucosyllactose Promotes Colonization of Akkermansia Muciniphila and Prevents Colitis In Vitro and in Mice. J. Agric. Food Chem. 2024, 72, 4765–4776. [Google Scholar] [CrossRef]
- Tian, Z.; Cui, Y.; Yu, M.; Deng, D.; Li, Z.; Ma, X.; Qu, M. Reduced Glutathione Promoted Growth Performance by Improving the Jejunal Barrier, Antioxidant Function, and Altering Proteomics of Weaned Piglets. Antioxidants 2025, 14, 107. [Google Scholar] [CrossRef]
- Gehart, H.; Clevers, H. Tales from the Crypt: New Insights into Intestinal Stem Cells. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 19–34. [Google Scholar] [CrossRef]
- Beumer, J.; Clevers, H. Cell Fate Specification and Differentiation in the Adult Mammalian Intestine. Nat. Rev. Mol. Cell Biol. 2021, 22, 39–53. [Google Scholar] [CrossRef]
- Guo, F.; Qiao, J.; Hu, Z.; Huang, J.; Bi, R.; Abbas, W.; Zhen, W.; Guo, Y.; Wang, Z. Yeast Cell Wall Polysaccharides Accelerate yet In-Feed Antibiotic Delays Intestinal Development and Maturation via Modulating Gut Microbiome in Chickens. J. Anim. Sci. Biotechnol. 2025, 16, 14. [Google Scholar] [CrossRef]
- Yi, Z.; Tan, X.; Wang, Q.; Huang, P.; Li, Y.; Ding, X.; Li, J.; Huang, J.; Yang, H.; Yin, Y. Dietary Niacin Affects Intestinal Morphology and Functions via Modulating Cell Proliferation in Weaned Piglets. Food Funct. 2021, 12, 7402–7414. [Google Scholar] [CrossRef]
- Zhou, S.; Jiang, H.; Wang, Y.; Yan, A.; Liu, G.; Liu, S.; Chen, B. Dietary Supplementation with Isochlorogenic Acid Improves Growth Performance and Intestinal Health of Broilers. Anim. Nutr. 2025, 21, 472–486. [Google Scholar] [CrossRef]
- Gustafsson, J.K.; Johansson, M.E.V. The Role of Goblet Cells and Mucus in Intestinal Homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 785–803. [Google Scholar] [CrossRef] [PubMed]
- Wallaeys, C.; Garcia-Gonzalez, N.; Libert, C. Paneth Cells as the Cornerstones of Intestinal and Organismal Health: A Primer. EMBO Mol. Med. 2023, 15, e16427. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Yang, B.; Ross, R.P.; Stanton, C.; Zhao, J.; Zhang, H.; Chen, W. Crosstalk between sIgA-Coated Bacteria in Infant Gut and Early-Life Health. Trends Microbiol. 2021, 29, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Berger, B.; Porta, N.; Foata, F.; Grathwohl, D.; Delley, M.; Moine, D.; Charpagne, A.; Siegwald, L.; Descombes, P.; Alliet, P.; et al. Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk to Require Antibiotics. mBio 2020, 11, e03196-19. [Google Scholar] [CrossRef] [PubMed]
- Reverri, E.J.; Devitt, A.A.; Kajzer, J.A.; Baggs, G.E.; Borschel, M.W. Review of the Clinical Experiences of Feeding Infants Formula Containing the Human Milk Oligosaccharide 2′-Fucosyllactose. Nutrients 2018, 10, 1346. [Google Scholar] [CrossRef]
- Bosheva, M.; Tokodi, I.; Krasnow, A.; Pedersen, H.K.; Lukjancenko, O.; Eklund, A.C.; Grathwohl, D.; Sprenger, N.; Berger, B.; Cercamondi, C.I.; et al. Infant Formula with a Specific Blend of Five Human Milk Oligosaccharides Drives the Gut Microbiota Development and Improves Gut Maturation Markers: A Randomized Controlled Trial. Front. Nutr. 2022, 9, 920362. [Google Scholar] [CrossRef]
- Gart, E.; Salic, K.; Morrison, M.C.; Giera, M.; Attema, J.; de Ruiter, C.; Caspers, M.; Schuren, F.; Bobeldijk-Pastorova, I.; Heer, M.; et al. The Human Milk Oligosaccharide 2′-Fucosyllactose Alleviates Liver Steatosis, ER Stress and Insulin Resistance by Reducing Hepatic Diacylglycerols and Improved Gut Permeability in Obese Ldlr-/-.Leiden Mice. Front. Nutr. 2022, 9, 904740. [Google Scholar] [CrossRef]
- Chen, T.; Wang, C.; Nie, C.; Yuan, X.; Tu, A.; Li, J. Galactooligosaccharide or 2′-Fucosyllactose Modulates Gut Microbiota and Inhibits LPS/TLR4/NF-κB Signaling Pathway to Prevent DSS-Induced Colitis Aggravated by a High-Fructose Diet in Mice. J. Agric. Food Chem. 2023, 71, 9349–9360. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Shi, H.; Qian, W.; Meng, L.; Wang, M.; Zhou, Y.; Wen, Z.; Han, M.; Peng, Y.; Li, H.; et al. Immunomodulatory Effects of a Prebiotic Formula with 2′-Fucosyllactose and Galacto- and Fructo-Oligosaccharides on Cyclophosphamide (CTX)-Induced Immunosuppressed BALB/c Mice via the Gut-Immune Axis. Nutrients 2024, 16, 3552. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Wu, S.; Jia, W.; Zhou, Z.; Liu, M.; Jiang, F.; Huang, T.; Shen, X.; Li, Y.; et al. Oral Supplementation with Bifidobacterium Longum Ssp. Infantis and 2′-Fucosyllactose Revives Gut Microbiota Perturbation and Intestinal and Immune Developmental Delay Following Early-Life Antibiotic Challenge in BALB/c Mice. J. Dairy Sci. 2025, 108, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Noel, G.; In, J.G.; Lemme-Dumit, J.M.; DeVine, L.R.; Cole, R.N.; Guerrerio, A.L.; Campbell, J.D.; Kovbasnjuk, O.; Pasetti, M.F. Human Breast Milk Enhances Intestinal Mucosal Barrier Function and Innate Immunity in a Healthy Pediatric Human Enteroid Model. Front. Cell Dev. Biol. 2021, 9, 685171. [Google Scholar] [CrossRef]
- Cowan, C.S.M.; Dinan, T.G.; Cryan, J.F. Annual Research Review: Critical Windows—The Microbiota-Gut-Brain Axis in Neurocognitive Development. J. Child Psychol. Psychiatry 2020, 61, 353–371. [Google Scholar] [CrossRef] [PubMed]
- Brodin, P. Immune-Microbe Interactions Early in Life: A Determinant of Health and Disease Long Term. Science 2022, 376, 945–950. [Google Scholar] [CrossRef]
- Cani, P.D.; Depommier, C.; Derrien, M.; Everard, A.; de Vos, W.M. Akkermansia Muciniphila: Paradigm for next-Generation Beneficial Microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 625–637. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, J.; Hao, Y.; Zhou, H.; Hu, Y.; Zhang, C.; Zheng, H.; Wang, X.; Zeng, F.; Hu, J.; et al. Akkermansia Muciniphila Plays Critical Roles in Host Health. Crit. Rev. Microbiol. 2023, 49, 82–100. [Google Scholar] [CrossRef]
- Ioannou, A.; Berkhout, M.D.; Geerlings, S.Y.; Belzer, C. Akkermansia Muciniphila: Biology, Microbial Ecology, Host Interactions and Therapeutic Potential. Nat. Rev. Microbiol. 2025, 23, 162–177. [Google Scholar] [CrossRef]
- Kou, R.; Wang, J.; Li, A.; Wang, Y.; Fan, D.; Zhang, B.; Fu, W.; Liu, J.; Fu, H.; Wang, S. 2′-Fucosyllactose Alleviates OVA-Induced Food Allergy in Mice by Ameliorating Intestinal Microecology and Regulating the Imbalance of Th2/Th1 Proportion. Food Funct. 2023, 14, 10924–10940. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.-Q.; Song, Y.-J.; Yin, J.; Wang, Y.-Y.-F.; Peng, B.; Zhang, B.-W.; Liu, J.-M.; Dong, L.; Wang, S. 2′-Fucosyllactose Ameliorates Oxidative Stress Damage in d-Galactose-Induced Aging Mice by Regulating Gut Microbiota and AMPK/SIRT1/FOXO1 Pathway. Foods 2022, 11, 151. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Jacoby, J.J.; Jiang, Y.; Zhang, Y.; Yu, L.L. Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice. J. Agric. Food Chem. 2017, 65, 6599–6607. [Google Scholar] [CrossRef]
- Yue, C.; Li, M.; Li, J.; Han, X.; Zhu, H.; Yu, G.; Cheng, J. Medium-, Long- and Medium-Chain-Type Structured Lipids Ameliorate High-Fat Diet-Induced Atherosclerosis by Regulating Inflammation, Adipogenesis, and Gut Microbiota in ApoE−/− Mice. Food Funct. 2020, 11, 5142–5155. [Google Scholar] [CrossRef]
- Shi, R.; Tao, Y.; Tang, H.; Wu, C.; Fei, J.; Ge, H.; Gu, H.F.; Wu, J. Abelmoschus Manihot Ameliorates the Levels of Circulating Metabolites in Diabetic Nephropathy by Modulating Gut Microbiota in Non-Obese Diabetes Mice. Microb. Biotechnol. 2023, 16, 813–826. [Google Scholar] [CrossRef]
- Cao, Y.G.; Bae, S.; Villarreal, J.; Moy, M.; Chun, E.; Michaud, M.; Lang, J.K.; Glickman, J.N.; Lobel, L.; Garrett, W.S. Faecalibaculum Rodentium Remodels Retinoic Acid Signaling to Govern Eosinophil-Dependent Intestinal Epithelial Homeostasis. Cell Host Microbe 2022, 30, 1295–1310.e8. [Google Scholar] [CrossRef] [PubMed]
- Lazarini, T.; Tonon, K.M.; de Araujo Filho, H.B.; de Morais, M.B. Bifidogenic Effect of 2′-Fucosyllactose (2′-FL) on the Gut Microbiome of Healthy Formula-Fed Infants: A Randomized Clinical Trial. Nutrients 2025, 17, 973. [Google Scholar] [CrossRef] [PubMed]
- Boulangé, C.L.; Pedersen, H.K.; Martin, F.-P.; Siegwald, L.; Pallejà Caro, A.; Eklund, A.C.; Jia, W.; Zhang, H.; Berger, B.; Sprenger, N.; et al. An Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides Modifies the Fecal Microbiome and Metabolome in Infants with Cow’s Milk Protein Allergy. Int. J. Mol. Sci. 2023, 24, 11422. [Google Scholar] [CrossRef]
- Ryan, J.J.; Monteagudo-Mera, A.; Contractor, N.; Gibson, G.R. Impact of 2′-Fucosyllactose on Gut Microbiota Composition in Adults with Chronic Gastrointestinal Conditions: Batch Culture Fermentation Model and Pilot Clinical Trial Findings. Nutrients 2021, 13, 938. [Google Scholar] [CrossRef]
- Chen, Q.; Yin, Q.; Xie, Q.; Jiang, C.; Zhou, L.; Liu, J.; Li, B.; Jiang, S. 2′-Fucosyllactose Promotes the Production of Short-Chain Fatty Acids and Improves Immune Function in Human-Microbiota-Associated Mice by Regulating Gut Microbiota. J. Agric. Food Chem. 2022, 70, 13615–13625. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Wang, J.; Li, P.; Duan, Y.; Dai, H.; An, Y.; Cheng, L.; Wang, T.; Wang, C.; et al. Investigation of Gut Microbiome Changes in Type 1 Diabetic Mellitus Rats Based on High-Throughput Sequencing. Biomed. Pharmacother. 2020, 124, 109873. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.; Zheng, M.; Ye, Y.; Shi, M.; Wang, X.; Cao, L.; Wang, L. Polysaccharides in Medicinal and Food Homologous Plants Regulate Intestinal Flora to Improve Type 2 Diabetes: Systematic Review. Phytomedicine 2024, 134, 156027. [Google Scholar] [CrossRef] [PubMed]
- Pujo, J.; Petitfils, C.; Le Faouder, P.; Eeckhaut, V.; Payros, G.; Maurel, S.; Perez-Berezo, T.; Van Hul, M.; Barreau, F.; Blanpied, C.; et al. Bacteria-Derived Long Chain Fatty Acid Exhibits Anti-Inflammatory Properties in Colitis. Gut 2021, 70, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Foster-Nyarko, E.; Pallen, M.J. The Microbial Ecology of Escherichia Coli in the Vertebrate Gut. FEMS Microbiol. Rev. 2022, 46, fuac008. [Google Scholar] [CrossRef]
- Gatsios, A.; Kim, C.S.; Crawford, J.M. Escherichia Coli Small Molecule Metabolism at the Host-Microorganism Interface. Nat. Chem. Biol. 2021, 17, 1016–1026. [Google Scholar] [CrossRef]
- Abdul Kalam Saleena, L.; Chang, S.K.; Simarani, K.; Arunachalam, K.D.; Thammakulkrajang, R.; How, Y.H.; Pui, L.P. A Comprehensive Review of Bifidobacterium Spp.: As a Probiotic, Application in the Food and Therapeutic, and Forthcoming Trends. Crit. Rev. Microbiol. 2024, 50, 581–597. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, L.; Zhao, J.; Chen, W.; Lu, W. The Gut Core Microbial Species Bifidobacterium Longum: Colonization, Mechanisms, and Health Benefits. Microbiol. Res. 2025, 290, 127966. [Google Scholar] [CrossRef]
- Mills, S.; Yang, B.; Smith, G.J.; Stanton, C.; Ross, R.P. Efficacy of Bifidobacterium Longum Alone or in Multi-Strain Probiotic Formulations during Early Life and Beyond. Gut Microbes 2023, 15, 2186098. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Li, B.; Chen, H.; Ross, R.P.; Stanton, C.; Zhao, J.; Chen, W.; Yang, B. Bifidobacterium Longum Subsp. Infantis Promotes IgA Level of Growing Mice in a Strain-Specific and Intestinal Niche-Dependent Manner. Nutrients 2024, 16, 1148. [Google Scholar] [CrossRef]
- Vallianou, N.; Stratigou, T.; Christodoulatos, G.S.; Tsigalou, C.; Dalamaga, M. Probiotics, Prebiotics, Synbiotics, Postbiotics, and Obesity: Current Evidence, Controversies, and Perspectives. Curr. Obes. Rep. 2020, 9, 179–192. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, X.; Zhou, Q.-Y.; Huang, Y.-Y.; Rao, X.; Tu, J.-L.; Xiao, H.-Y.; Liu, D.-M. Bacillus Coagulans 13002 and Fructo-Oligosaccharides Improve the Immunity of Mice with Immunosuppression Induced by Cyclophosphamide through Modulating Intestinal-Derived and Fecal Microbiota. Food Res. Int. 2021, 140, 109793. [Google Scholar] [CrossRef]
- Wu, X.; Cao, J.; Li, M.; Yao, P.; Li, H.; Xu, W.; Yuan, C.; Liu, J.; Wang, S.; Li, P.; et al. An Integrated Microbiome and Metabolomic Analysis Identifies Immunoenhancing Features of Ganoderma Lucidum Spores Oil in Mice. Pharmacol. Res. 2020, 158, 104937. [Google Scholar] [CrossRef]
- Kiely, L.J.; Busca, K.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Molecular Strategies for the Utilisation of Human Milk Oligosaccharides by Infant Gut-Associated Bacteria. FEMS Microbiol. Rev. 2023, 47, fuad056. [Google Scholar] [CrossRef]
- Mukhopadhya, I.; Louis, P. Gut Microbiota-Derived Short-Chain Fatty Acids and Their Role in Human Health and Disease. Nat. Rev. Microbiol. 2025. [Google Scholar] [CrossRef]
- Dicks, L.M.T. How Important Are Fatty Acids in Human Health and Can They Be Used in Treating Diseases? Gut Microbes 2024, 16, 2420765. [Google Scholar] [CrossRef] [PubMed]
- Thulasinathan, B.; Suvilesh, K.N.; Maram, S.; Grossmann, E.; Ghouri, Y.; Teixeiro, E.P.; Chan, J.; Kaif, J.T.; Rachagani, S. The Impact of Gut Microbial Short-Chain Fatty Acids on Colorectal Cancer Development and Prevention. Gut Microbes 2025, 17, 2483780. [Google Scholar] [CrossRef]
- Wang, R.; Gan, C.; Mao, R.; Chen, Y.; Yan, R.; Li, G.; Xiong, T.; Guo, J. Rat Models of Postintracerebral Hemorrhage Pneumonia Induced by Nasal Inoculation with Klebsiella Pneumoniae or Intratracheal Inoculation with LPS. Front. Immunol. 2024, 15, 1477902. [Google Scholar] [CrossRef]
- Yan, J.; Xiao, L.; Feng, D.; Chen, B.; Yang, T.; Tong, B.; Luo, R.; Wang, Y.; Chen, J. Vitamin A Deficiency Suppresses CEACAM1 to Impair Colonic Epithelial Barrier Function via Downregulating Microbial-Derived Short-Chain Fatty Acids. Genes Dis. 2024, 11, 1066–1081. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; He, J.; Pan, X.; Kong, L.; Xiao, C.; Keerqin, C.; Song, Z. Dietary Macleaya Cordata Extract Supplementation Improves the Growth Performance and Gut Health of Broiler Chickens with Necrotic Enteritis. J. Anim. Sci. Biotechnol. 2023, 14, 113. [Google Scholar] [CrossRef]
- Hamosh, M. A Review. Fat Digestion in the Newborn: Role of Lingual Lipase and Preduodenal Digestion. Pediatr. Res. 1979, 13, 615–622. [Google Scholar] [CrossRef]
- Lindquist, S.; Hernell, O. Lipid Digestion and Absorption in Early Life: An Update. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 314–320. [Google Scholar] [CrossRef]
- Mokkala, K.; Houttu, N.; Cansev, T.; Laitinen, K. Interactions of Dietary Fat with the Gut Microbiota: Evaluation of Mechanisms and Metabolic Consequences. Clin. Nutr. 2020, 39, 994–1018. [Google Scholar] [CrossRef]
- Neuman, H.; Debelius, J.W.; Knight, R.; Koren, O. Microbial Endocrinology: The Interplay between the Microbiota and the Endocrine System. FEMS Microbiol. Rev. 2015, 39, 509–521. [Google Scholar] [CrossRef]
- Gregor, A.; Auernigg-Haselmaier, S.; Trajanoski, S.; König, J.; Duszka, K. Colonic Medium-Chain Fatty Acids Act as a Source of Energy and for Colon Maintenance but Are Not Utilized to Acylate Ghrelin. Nutrients 2021, 13, 3807. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, J.; Ma, X. Sodium Caprylate Improves Intestinal Mucosal Barrier Function and Antioxidant Capacity by Altering Gut Microbial Metabolism. Food Funct. 2021, 12, 9750–9762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, W.; Wang, Y.; Yu, L.; Xing, Z.; Zhang, J.; Meng, Z.; Wang, X. Innovative Applications of Medium- and Long-Chain Triacylglycerol in Nutritional Support: Current Perspectives and Future Directions. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70116. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, T.; Xu, Y.; Karrar, E.; Cao, M.; Sun, X.; Liu, R.; Chang, M.; Wang, X. Effects of Medium- and Long-Chain Structured Triacylglycerol on the Therapeutic Efficacy of Vitamin D on Ulcerative Colitis: A Consideration for Efficient Lipid Delivery Systems. J. Agric. Food Chem. 2023, 71, 4101–4112. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Niharika, J.; Kondepudi, K.K.; Bishnoi, M.; Tingirikari, J.M.R. Recent Understanding of Human Milk Oligosaccharides in Establishing Infant Gut Microbiome and Roles in Immune System. Food Res. Int. 2022, 151, 110884. [Google Scholar] [CrossRef]
- Slater, A.S.; Hickey, R.M.; Davey, G.P. Interactions of Human Milk Oligosaccharides with the Immune System. Front. Immunol. 2024, 15, 1523829. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.-S.; Wang, R.-S.; Hu, J.-Q.; Liu, S.; Wang, Y.-Y.-F.; Xing, X.-L.; Zhang, B.-W.; Liu, J.-M.; Wang, S. Current Advances in Structure-Function Relationships and Dose-Dependent Effects of Human Milk Oligosaccharides. J. Agric. Food Chem. 2022, 70, 6328–6353. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.J. Breastfeeding Promotes Bifidobacterial Immunomodulatory Metabolites. Nat. Microbiol. 2021, 6, 1335–1336. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Shen, M.; Zhang, M.; Chen, H.; Jin, Y.; Zeng, Y.; Pan, Z.; Wang, Z.; Wang, P.; Yang, Y.; et al. Individual and Combined Effects of Medium- and Long-Chain Triacylglycerol and 2′-Fucosyllactose on Small Intestinal Morphology, Barrier Function, and Gut Microbiota in Growing C57BL/6 Mice. Nutrients 2025, 17, 2837. https://doi.org/10.3390/nu17172837
Jin X, Shen M, Zhang M, Chen H, Jin Y, Zeng Y, Pan Z, Wang Z, Wang P, Yang Y, et al. Individual and Combined Effects of Medium- and Long-Chain Triacylglycerol and 2′-Fucosyllactose on Small Intestinal Morphology, Barrier Function, and Gut Microbiota in Growing C57BL/6 Mice. Nutrients. 2025; 17(17):2837. https://doi.org/10.3390/nu17172837
Chicago/Turabian StyleJin, Xinyuan, Mengfan Shen, Mengdi Zhang, Haoqi Chen, Yufeng Jin, Yupeng Zeng, Zhijun Pan, Ziling Wang, Pan Wang, Yuting Yang, and et al. 2025. "Individual and Combined Effects of Medium- and Long-Chain Triacylglycerol and 2′-Fucosyllactose on Small Intestinal Morphology, Barrier Function, and Gut Microbiota in Growing C57BL/6 Mice" Nutrients 17, no. 17: 2837. https://doi.org/10.3390/nu17172837
APA StyleJin, X., Shen, M., Zhang, M., Chen, H., Jin, Y., Zeng, Y., Pan, Z., Wang, Z., Wang, P., Yang, Y., Yan, Z., Zhu, H., & Li, D. (2025). Individual and Combined Effects of Medium- and Long-Chain Triacylglycerol and 2′-Fucosyllactose on Small Intestinal Morphology, Barrier Function, and Gut Microbiota in Growing C57BL/6 Mice. Nutrients, 17(17), 2837. https://doi.org/10.3390/nu17172837