Association Between Anti-Inflammatory Diet, Dietary Diversity, and Depressive Symptoms Among Chinese Pregnant Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Maternal Dietary Assessment
2.3. Assessment of Maternal Dietary Inflammatory Potential
2.4. Derivation of Dietary Diversity Score
2.5. Measurement of Depressive Symptoms
2.6. Measurement of Covariates
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrman, H.; Patel, V.; Kieling, C.; Berk, M.; Buchweitz, C.; Cuijpers, P.; Furukawa, T.A.; Kessler, R.C.; Kohrt, B.A.; Maj, M.; et al. Time for united action on depression: A Lancet-World Psychiatric Association Commission. Lancet 2022, 399, 957–1022. [Google Scholar] [CrossRef]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Salk, R.H.; Hyde, J.S.; Abramson, L.Y. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol. Bull. 2017, 143, 783–822. [Google Scholar] [CrossRef]
- Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry 2017, 4, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.L.; Holden, J.M.; Sagovsky, R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br. J. Psychiatry 1987, 150, 782–786. [Google Scholar] [CrossRef]
- Hagatulah, N.; Bränn, E.; Oberg, A.S.; Valdimarsdóttir, U.A.; Shen, Q.; Lu, D. Perinatal depression and risk of mortality: Nationwide, register based study in Sweden. BMJ 2024, 384, e075462. [Google Scholar] [CrossRef]
- Yu, H.; Shen, Q.; Bränn, E.; Yang, Y.; Oberg, A.S.; Valdimarsdóttir, U.A.; Lu, D. Perinatal Depression and Risk of Suicidal Behavior. JAMA Netw. Open 2024, 7, e2350897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, P.; Ge, Q.; Sun, Z.; Cai, J.; Xiao, C.; Yu, C.; Nosarti, C.; Liao, J.; Liu, Z. Maternal Prenatal Depressive Symptoms and Fetal Growth During the Critical Rapid Growth Stage. JAMA Netw. Open 2023, 6, e2346018. [Google Scholar] [CrossRef] [PubMed]
- Monthé-Drèze, C.; Aris, I.M.; Rifas-Shiman, S.L.; Shivappa, N.; Hebert, J.R.; Oken, E.; Sen, S. The Role of Prenatal Psychosocial Stress in the Associations of a Proinflammatory Diet in Pregnancy with Child Adiposity and Growth Trajectories. JAMA Netw. Open 2023, 6, e2251367. [Google Scholar] [CrossRef]
- Srinivasan, R.; Pearson, R.M.; Johnson, S.; Lewis, G.; Lewis, G. Maternal perinatal depressive symptoms and offspring psychotic experiences at 18 years of age: A longitudinal study. Lancet Psychiatry 2020, 7, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Cattarinussi, G.; Aarabi, M.H.; Sanjari Moghaddam, H.; Homayoun, M.; Ashrafi, M.; Soltanian-Zadeh, H.; Sambataro, F. Effect of parental depressive symptoms on offspring’s brain structure and function: A systematic review of neuroimaging studies. Neurosci. Biobehav. Rev. 2021, 131, 451–465. [Google Scholar] [CrossRef]
- Tirumalaraju, V.; Suchting, R.; Evans, J.; Goetzl, L.; Refuerzo, J.; Neumann, A.; Anand, D.; Ravikumar, R.; Green, C.E.; Cowen, P.J.; et al. Risk of Depression in the Adolescent and Adult Offspring of Mothers With Perinatal Depression: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e208783. [Google Scholar] [CrossRef]
- Dachew, B.; Ayano, G.; Duko, B.; Lawrence, B.; Betts, K.; Alati, R. Paternal Depression and Risk of Depression Among Offspring: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2023, 6, e2329159. [Google Scholar] [CrossRef]
- Yin, X.; Sun, N.; Jiang, N.; Xu, X.; Gan, Y.; Zhang, J.; Qiu, L.; Yang, C.; Shi, X.; Chang, J.; et al. Prevalence and associated factors of antenatal depression: Systematic reviews and meta-analyses. Clin. Psychol. Rev. 2021, 83, 101932. [Google Scholar] [CrossRef]
- Wei, D.M.; Au Yeung, S.L.; He, J.R.; Xiao, W.Q.; Lu, J.H.; Tu, S.; Chen, N.N.; Lam, K.B.H.; Cheng, K.K.; Leung, G.M.; et al. The role of social support in family socio-economic disparities in depressive symptoms during early pregnancy: Evidence from a Chinese birth cohort. J. Affect. Disord. 2018, 238, 418–423. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Y.; Ai, J.; Nie, J.; Yang, J. The association between unintended pregnancy and maternal mental health in rural China. Front. Public Health 2025, 13, 1498473. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Ju, T.; Zeng, D.; Duan, F.; Zhu, Y.; Liu, J.; Li, Y.; Lu, W. “Inflamed” depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol. Res. 2024, 207, 107322. [Google Scholar] [CrossRef]
- Köhler, O.; Benros, M.E.; Nordentoft, M.; Farkouh, M.E.; Iyengar, R.L.; Mors, O.; Krogh, J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 2014, 71, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Guo, W.; Feng, Y.; Deng, H.; Li, G.; Nie, H.; Guo, G.; Yu, H.; Ma, Y.; Wang, J.; et al. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: A systematic review and meta-analysis of randomised controlled trials. J. Neurol. Neurosurg. Psychiatry 2020, 91, 21–32. [Google Scholar] [CrossRef]
- Arteaga-Henríquez, G.; Simon, M.S.; Burger, B.; Weidinger, E.; Wijkhuijs, A.; Arolt, V.; Birkenhager, T.K.; Musil, R.; Müller, N.; Drexhage, H.A. Low-Grade Inflammation as a Predictor of Antidepressant and Anti-Inflammatory Therapy Response in MDD Patients: A Systematic Review of the Literature in Combination With an Analysis of Experimental Data Collected in the EU-MOODINFLAME Consortium. Front. Psychiatry 2019, 10, 458. [Google Scholar] [CrossRef]
- Witkamp, R.F. Bioactive Components in Traditional Foods Aimed at Health Promotion: A Route to Novel Mechanistic Insights and Lead Molecules? Annu. Rev. Food Sci. Technol. 2022, 13, 315–336. [Google Scholar] [CrossRef]
- Quan, Z.; Li, H.; Quan, Z.; Qing, H. Appropriate Macronutrients or Mineral Elements Are Beneficial to Improve Depression and Reduce the Risk of Depression. Int. J. Mol. Sci. 2023, 24, 7098. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Wang, S.; Huang, Q.; Chen, X.; Qiu, L.; Ouyang, K.; Chen, Y. The association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and risk of depression among US adults: A cross-sectional NHANES study. J. Affect. Disord. 2024, 344, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Puri, B.K.; Bortolasci, C.C.; Carvalho, A.; Berk, M.; Walder, K.; Moreira, E.G.; Maes, M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci. Biobehav. Rev. 2021, 125, 244–263. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Y.; Liu, Y.; Yan, Z.; Peng, W. A J-shaped association between Dietary Inflammatory Index (DII) and depression: A cross-sectional study from NHANES 2007-2018. J. Affect. Disord. 2023, 323, 257–263. [Google Scholar] [CrossRef]
- Wang, X.; Sun, M.; Wang, L.; Li, J.; Xie, Z.; Guo, R.; Wang, Y.; Li, B. The role of dietary inflammatory index and physical activity in depressive symptoms: Results from NHANES 2007–2016. J. Affect. Disord. 2023, 335, 332–339. [Google Scholar] [CrossRef]
- Bizzozero-Peroni, B.; Ortolá, R.; Martínez-Vizcaíno, V.; Rodríguez-Artalejo, F.; Fernández-Rodríguez, R.; Banegas, J.R.; Lopez-Garcia, E.; Mesas, A.E. Proinflammatory dietary pattern and depression risk in older adults: Prospective analyses from the Seniors-ENRICA studies. Clin. Nutr. 2022, 41, 2614–2620. [Google Scholar] [CrossRef] [PubMed]
- Shakya, P.R.; Melaku, Y.A.; Shivappa, N.; Hébert, J.R.; Adams, R.J.; Page, A.J.; Gill, T.K. Dietary inflammatory index (DII®) and the risk of depression symptoms in adults. Clin. Nutr. 2021, 40, 3631–3642. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, P.; Wan, Z.; Kang, Y.; Dong, X.; Li, Y.; Wang, Y.; Xie, J.; Duan, Y. Dietary diversity, physical activity and depressive symptoms among middle-aged women: A cross-sectional study of 48,637 women in China. J. Affect. Disord. 2023, 321, 147–152. [Google Scholar] [CrossRef]
- Zhong, W.; Zhao, A.; Lan, H.; Mao, S.; Li, P.; Jiang, H.; Wang, P.; Szeto, I.M.; Zhang, Y. Dietary Diversity, Micronutrient Adequacy and Bone Status during Pregnancy: A Study in Urban China from 2019 to 2020. Nutrients 2022, 14, 4690. [Google Scholar] [CrossRef] [PubMed]
- Arimond, M.; Wiesmann, D.; Becquey, E.; Carriquiry, A.; Daniels, M.C.; Deitchler, M.; Fanou-Fogny, N.; Joseph, M.L.; Kennedy, G.; Martin-Prevel, Y.; et al. Simple food group diversity indicators predict micronutrient adequacy of women’s diets in 5 diverse, resource-poor settings. J. Nutr. 2010, 140, 2059s–2069s. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Wisner, K.L. Nutrition and depression: Implications for improving mental health among childbearing-aged women. Biol. Psychiatry 2005, 58, 679–685. [Google Scholar] [CrossRef]
- Bloch, M.H.; Hannestad, J. Omega-3 fatty acids for the treatment of depression: Systematic review and meta-analysis. Mol. Psychiatry 2012, 17, 1272–1282. [Google Scholar] [CrossRef]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, K.; Mi, B.; Liu, H.; Wang, Y.; Huo, Y.; Ma, L.; Liu, D.; Jing, H.; Liu, J.; et al. Maternal Dietary Inflammatory Potential and Offspring Birth Outcomes in a Chinese Population. J. Nutr. 2023, 153, 1512–1523. [Google Scholar] [CrossRef]
- Cai, Z.; Li, L.; Feng, J.; Raat, H.; Wu, Y.; Zhou, H.; Rozelle, S. Dietary Diversity and Its Contribution to the Magnitude of Anaemia among Pregnant Women: Evidence from Rural Areas of Western China. Nutrients 2023, 15, 3714. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, Y.; Qu, P.; Zhao, D.; Li, S.; Zeng, L.; Zhu, Z.; Qi, Q.; Mi, B.; Zhang, B.; et al. The Interactions between Maternal Iron Supplementation and Iron Metabolism-Related Genetic Polymorphisms on Birth Outcomes: A Prospective Study in Chinese. J. Nutr. 2023, 153, 2442–2452. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, H.M.; Brantsaeter, A.L.; Ydersbond, T.A.; Alexander, J.; Haugen, M. Methodological challenges when monitoring the diet of pregnant women in a large study: Experiences from the Norwegian Mother and Child Cohort Study (MoBa). Matern. Child Nutr. 2008, 4, 14–27. [Google Scholar] [CrossRef]
- Chen, L.W.; Aubert, A.M.; Shivappa, N.; Bernard, J.Y.; Mensink-Bout, S.M.; Geraghty, A.A.; Mehegan, J.; Suderman, M.; Polanska, K.; Hanke, W.; et al. Associations of maternal dietary inflammatory potential and quality with offspring birth outcomes: An individual participant data pooled analysis of 7 European cohorts in the ALPHABET consortium. PLoS Med. 2021, 18, e1003491. [Google Scholar] [CrossRef]
- Cheng, Y.; Yan, H.; Dibley, M.J.; Shen, Y.; Li, Q.; Zeng, L. Validity and reproducibility of a semi-quantitative food frequency questionnaire for use among pregnant women in rural China. Asia Pac. J. Clin. Nutr. 2008, 17, 166–177. [Google Scholar]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Institute of Nutrition and Food Safety; China Center for Disease Control and Prevention. China Food Composition Book 1, 6th ed.; Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
- Institute of Nutrition and Food Safety; China Center for Disease Control and Prevention. China Food Composition Book 2, 6th ed.; Peking University Medical Press: Beijing, China, 2019. [Google Scholar]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- FAO. Minimum Dietary Diversity for Women: A Guide to Measurement; FAO: Rome, Italy; USAID: Washington, DC, USA, 2016. [Google Scholar]
- Sun, C.; Wu, Y.; Cai, Z.; Li, L.; Feng, J.; van Grieken, A.; Raat, H.; Rozelle, S.; Zhou, H. Maternal Dietary Diversity and Small for Gestational Age: The Effect Modification by Pre-Pregnancy Body Mass Index and Gestational Weight Gain in a Prospective Study within Rural Sichuan, China (2021–2022). Nutrients 2023, 15, 3669. [Google Scholar] [CrossRef]
- Vázquez, M.B.; Míguez, M.C. Validation of the Edinburgh postnatal depression scale as a screening tool for depression in Spanish pregnant women. J. Affect. Disord. 2019, 246, 515–521. [Google Scholar] [CrossRef]
- Lee, D.T.; Yip, S.K.; Chiu, H.F.; Leung, T.Y.; Chan, K.P.; Chau, I.O.; Leung, H.C.; Chung, T.K. Detecting postnatal depression in Chinese women. Validation of the Chinese version of the Edinburgh Postnatal Depression Scale. Br. J. Psychiatry 1998, 172, 433–437. [Google Scholar] [CrossRef]
- Li, R.; Zhan, W.; Huang, X.; Zhang, L.; Sun, Y.; Zhang, Z.; Bao, W.; Ma, Y. Investigating Associations Between Depressive Symptoms and Anti-/Pro-Inflammatory Nutrients in an Elderly Population in Northern China: A Bayesian Kernel Machine Regression Approach. J. Inflamm. Res. 2021, 14, 5201–5213. [Google Scholar] [CrossRef]
- Buckman, J.E.J.; Saunders, R.; Stott, J.; Arundell, L.L.; O’Driscoll, C.; Davies, M.R.; Eley, T.C.; Hollon, S.D.; Kendrick, T.; Ambler, G.; et al. Role of age, gender and marital status in prognosis for adults with depression: An individual patient data meta-analysis. Epidemiol. Psychiatr. Sci. 2021, 30, e42. [Google Scholar] [CrossRef]
- Freeman, A.; Tyrovolas, S.; Koyanagi, A.; Chatterji, S.; Leonardi, M.; Ayuso-Mateos, J.L.; Tobiasz-Adamczyk, B.; Koskinen, S.; Rummel-Kluge, C.; Haro, J.M. The role of socio-economic status in depression: Results from the COURAGE (aging survey in Europe). BMC Public Health 2016, 16, 1098. [Google Scholar] [CrossRef]
- Luo, L.; Hu, J.; Huang, R.; Kong, D.; Hu, W.; Ding, Y.; Yu, H. The association between dietary inflammation index and depression. Front. Psychiatry 2023, 14, 1131802. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, S.J.; Wang, Z.B.; Zhang, D.D.; Gao, P.Y.; Ou, Y.N.; Feng, J.F.; Cheng, W.; Tan, L.; Yu, J.T. Dietary inflammatory index and brain disorders: A Large Prospective Cohort study. Transl. Psychiatry 2025, 15, 99. [Google Scholar] [CrossRef]
- Adjibade, M.; Andreeva, V.A.; Lemogne, C.; Touvier, M.; Shivappa, N.; Hébert, J.R.; Wirth, M.D.; Hercberg, S.; Galan, P.; Julia, C.; et al. The Inflammatory Potential of the Diet Is Associated with Depressive Symptoms in Different Subgroups of the General Population. J. Nutr. 2017, 147, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Schoenaker, D.A.; Hebert, J.R.; Mishra, G.D. Association between inflammatory potential of diet and risk of depression in middle-aged women: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2016, 116, 1077–1086. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Gordon, J.L.; Girdler, S.S.; Meltzer-Brody, S.E.; Stika, C.S.; Thurston, R.C.; Clark, C.T.; Prairie, B.A.; Moses-Kolko, E.; Joffe, H.; Wisner, K.L. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: A novel heuristic model. Am. J. Psychiatry 2015, 172, 227–236. [Google Scholar] [CrossRef]
- Huang, P.; Wei, D.; Xiao, W.; Yuan, M.; Chen, N.; Wei, X.; Xie, J.; Lu, J.; Xia, X.; Lu, M.; et al. Maternal dietary patterns and depressive symptoms during pregnancy: The Born in Guangzhou Cohort Study. Clin. Nutr. 2021, 40, 3485–3494. [Google Scholar] [CrossRef]
- Watzl, B.; Kulling, S.E.; Möseneder, J.; Barth, S.W.; Bub, A. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am. J. Clin. Nutr. 2005, 82, 1052–1058. [Google Scholar] [CrossRef]
- Verger, E.O.; Le Port, A.; Borderon, A.; Bourbon, G.; Moursi, M.; Savy, M.; Mariotti, F.; Martin-Prevel, Y. Dietary Diversity Indicators and Their Associations with Dietary Adequacy and Health Outcomes: A Systematic Scoping Review. Adv. Nutr. 2021, 12, 1659–1672. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y.; Wang, X.; Duan, Y.; Liu, M.; Wang, S.; He, X.; Yang, P.; Wang, Y.; Xie, J.; et al. Bidirectional associations between dietary diversity and depressive symptoms in Chinese adult women: A retrospective cohort study. J. Affect. Disord. 2024, 351, 683–693. [Google Scholar] [CrossRef]
- Nakamoto, M.; Torami, K.; Bui, T.T.; Tojyo, A.; Yamada, K.; Nakamoto, A.; Hata, A.; Aki, N.; Shikama, Y.; Bando, Y.; et al. Associations between dietary diversity and high sensitive C-reactive protein among Japanese workers: Findings of a cross-sectional and longitudinal study. Eur. J. Nutr. 2024, 63, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Oddo, V.M.; Welke, L.; McLeod, A.; Pezley, L.; Xia, Y.; Maki, P.; Koenig, M.D.; Kominiarek, M.A.; Langenecker, S.; Tussing-Humphreys, L. Adherence to a Mediterranean Diet Is Associated with Lower Depressive Symptoms among U.S. Adults. Nutrients 2022, 14, 278. [Google Scholar] [CrossRef]
- Bayes, J.; Schloss, J.; Sibbritt, D. The effect of a Mediterranean diet on the symptoms of depression in young males (the “AMMEND: A Mediterranean Diet in MEN with Depression” study): A randomized controlled trial. Am. J. Clin. Nutr. 2022, 116, 572–580. [Google Scholar] [CrossRef]
- Taylor, A.M.; Holscher, H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 2020, 23, 237–250. [Google Scholar] [CrossRef]
- Sandhu, K.V.; Sherwin, E.; Schellekens, H.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res. 2017, 179, 223–244. [Google Scholar] [CrossRef]
- Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017, 20, 145–155. [Google Scholar] [CrossRef]
- Dash, S.; Clarke, G.; Berk, M.; Jacka, F.N. The gut microbiome and diet in psychiatry: Focus on depression. Curr. Opin. Psychiatry 2015, 28, 1–6. [Google Scholar] [CrossRef]
- Rawdin, B.J.; Mellon, S.H.; Dhabhar, F.S.; Epel, E.S.; Puterman, E.; Su, Y.; Burke, H.M.; Reus, V.I.; Rosser, R.; Hamilton, S.P.; et al. Dysregulated relationship of inflammation and oxidative stress in major depression. Brain. Behav. Immun. 2013, 31, 143–152. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Young, J.J.; Bruno, D.; Pomara, N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J. Affect. Disord. 2014, 169, 15–20. [Google Scholar] [CrossRef]
- Crozier, S.R.; Robinson, S.M.; Godfrey, K.M.; Cooper, C.; Inskip, H.M. Women’s dietary patterns change little from before to during pregnancy. J. Nutr. 2009, 139, 1956–1963. [Google Scholar] [CrossRef]
- Cucó, G.; Fernández-Ballart, J.; Sala, J.; Viladrich, C.; Iranzo, R.; Vila, J.; Arija, V. Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur. J. Clin. Nutr. 2006, 60, 364–371. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hébert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef]
Baseline Characteristics | n = 2244 | Quartiles of rEDII | p | DDS Groups | p | ||||
---|---|---|---|---|---|---|---|---|---|
Q1 (n = 561) | Q2 (n = 561) | Q3 (n = 561) | Q4 (n = 561) | Adequate (n = 443) | Inadequate (n = 1801) | ||||
Multivitamin supplement | 0.113 | 0.504 | |||||||
FA | 814(36.3) | 201(35.8) | 210(37.4) | 190(33.9) | 213(38.0) | 158(35.7) | 656(36.4) | ||
FA + iron | 704(31.4) | 162(28.9) | 178(31.7) | 190(33.9) | 174(31.0) | 135(30.5) | 569(31.6) | ||
FA + B-complex vitamins | 726(32.4) | 198(35.3) | 173(30.8) | 181(32.3) | 174(31.0) | 150(33.9) | 576(32.0) | ||
EDII | −0.00 ± 1.81 | 2.32 ± 0.88 | −0.63 ± 0.37 | 0.62 ± 0.40 | −2.30 ± 0.71 | −1.30 ± 1.55 | 0.32 ± 1.72 | <0.001 | |
EDII range | −5.18, 7.39 | 1.29, 7.39 | −1.30, −0.02 | −0.02, 1.29 | −5.18, −1.30 | −5.18, 4.69 | −4.27, 7.39 | ||
Age (years) | 25.8 ± 4.1 | 25.4 ± 4.2 | 25.9 ± 4.2 | 25.7 ± 4.0 | 26.3 ± 3.9 | <0.001 | 26.0 ± 4.1 | 25.8 ± 4.1 | 0.505 |
Parity | 0.174 | 0.720 | |||||||
Nulliparous | 1095(48.8) | 271(48.3) | 251(44.7) | 284(50.6) | 289(51.5) | 220(49.7) | 875(48.6) | ||
Multiparous | 1149(51.2) | 290(51.7) | 310(55.3) | 277(49.4) | 272(48.5) | 223(50.3) | 926(51.4) | ||
Socioeconomic status 1 | <0.001 | 0.027 | |||||||
Lower | 747(33.3) | 208(37.1) | 180(32.1) | 193(34.4) | 166(29.6) | 150(33.9) | 597(33.2) | ||
Medium | 747(33.3) | 196(34.9) | 189(33.7) | 183(32.6) | 179(31.9) | 128(28.9) | 619(34.4) | ||
Upper | 750(33.4) | 157(28.0) | 192(34.2) | 185(33.0) | 216(38.5) | 165(37.3) | 585(32.5) | ||
Body mass index (kg/m2) | 21.4 ± 2.7 | 21.5 ± 3.0 | 21.5 ± 2.5 | 21.5 ± 2.7 | 21.3 ± 2.5 | 0.061 | 21.3 ± 2.5 | 21.5 ± 2.7 | 0.033 |
Passive smoking 2 | 248(11.1) | 64(11.4) | 71(12.7) | 62(11.1) | 51(9.1) | <0.001 | 50(11.3) | 198(11.0) | 0.681 |
Pregnancy complication 3 | 70(3.1) | 22(3.9) | 22(3.9) | 12(2.1) | 14(2.5) | 0.065 | 14(3.2) | 56(3.1) | 0.953 |
Depressive symptoms | 0.012 | 0.007 | |||||||
No (EPDS < 9.5) | 2007(89.4) | 490(87.3) | 502(89.5) | 505(90.0) | 510(90.9) | 405(91.4) | 1602(89.0) | ||
Yes (EPDS ≥ 9.5) | 237(10.6) | 71(12.7) | 59(10.5) | 56(10.0) | 51(9.1) | 38(8.6) | 199(11.1) |
Food Groups | Quartiles of rEDII | DDS Groups | ||
---|---|---|---|---|
Q1 | Q4 | Adequate | Inadequate | |
Grains and tuber crops | ||||
Grains (g/d) | 876.9 ± 340.4 | 772.2 ± 197.3 *** | 918.1 ± 278.3 | 802.8 ± 271.6 *** |
Miscellaneous beans (g/d) | 3.0 ± 5.8 | 6.3 ± 8.0 *** | 6.7 ± 7.9 | 3.9 ± 6.3 *** |
Tuber crops (g/d) | 40.3 ± 38.5 | 78.9 ± 53.6 *** | 86.2 ± 55.1 | 54.0 ± 43.6 *** |
Vegetables/fruit (g/d) | ||||
Leafy green vegetables (g/d) | 100.6 ± 73.6 | 263.2 ± 135.0 *** | 295.6 ± 140.3 | 145.6 ± 92.1 *** |
Dark yellow vegetables (g/d) | 45.6 ± 43.3 | 97.2 ± 51.4 *** | 107.0 ± 50.2 | 64.4 ± 48.7 *** |
Dark purple vegetables (g/d) | 14.1 ± 18.3 | 38.4 ± 32.8 *** | 43.7 ± 35.5 | 20.6 ± 23.1 *** |
Light white vegetables (g/d) | 27.9 ± 27.9 | 81.9 ± 60.1 *** | 97.4 ± 69.9 | 41.5 ± 33.5 *** |
Fruit (g/d) | 345.7 ± 397.7 | 686.8 ± 423.1 *** | 741.6 ± 493.2 | 456 ± 354.8 *** |
Animal-based food (g/d) | ||||
Red meat (g/d) | 11.2 ± 17.7 | 16.7 ± 21.2 *** | 24.1 ± 28.3 | 11.8 ± 15.5 *** |
White meat (g/d) | 3.6 ± 6.6 | 5.6 ± 10.0 *** | 7.8 ± 13.0 | 3.6 ± 5.6 *** |
Processed meat (g/d) | 7.4 ± 16.0 | 7.1 ± 10.8 *** | 11.3 ± 19.5 | 6.8 ± 13.0 *** |
Organ meat (g/d) | 0.4 ± 2.4 | 1.6 ± 6.2 *** | 2.0 ± 7.4 | 0.7 ± 2.7 *** |
Fish/seafood (g/d) | 4.5 ± 8.0 | 9.0 ± 11.9 *** | 11.2 ± 14.6 | 5.3 ± 7.2 *** |
Whole eggs (g/d) | 22.6 ± 22.2 | 31.9 ± 24.0 *** | 39.0 ± 22.7 | 25.0 ± 22.6 *** |
Milk/legumes and nuts (g/d) | ||||
Milk and dairy products (g/d) | 86.8 ± 102.3 | 130.6 ± 112.3 *** | 170.9 ± 135.1 | 96.7 ± 103.0 *** |
Legumes and nuts (g/d) | 85.3 ± 156 | 241.3 ± 128.7 *** | 253.3 ± 159.2 | 139.5 ± 141.9 *** |
Condiments (g/d) | ||||
Vegetable oils (g/d) | 31.5 ± 6.3 | 30.0 ± 5.9 * | 31.4 ± 5.6 | 30.7 ± 6.1 *** |
Animal oils (g/d) | 4.0 ± 6.5 | 1.6 ± 4.5 *** | 2.9 ± 5.8 | 2.8 ± 5.7 |
Salt (g/d) | 7.4 ± 1.6 | 7.4 ± 1.7 | 7.4 ± 1.6 | 7.4 ± 1.6 |
Soy sauce (g/d) | 5.1 ± 3.9 | 4.5 ± 3.4 *** | 5.1 ± 3.6 | 4.7 ± 3.7 * |
White/brown sugar (g/d) | 3.9 ± 3.2 | 3.1 ± 3.0 ** | 3.7 ± 3.1 | 3.5 ± 3.1 *** |
Snacks/drinks (g/d) | ||||
Snacks (g/d) | 7.8 ± 11.8 | 9.3 ± 10.9 ** | 12.5 ± 15 | 8.5 ± 12.0 *** |
Soft drinks (g/d) | 7.7 ± 46.0 | 9.3 ± 44.0 | 8.1 ± 31.8 | 6.9 ± 34.7 *** |
Alcohol drinks (g/d) | 0.6 ± 11.0 | 0.1 ± 1.0 | 0.1 ± 1.0 | 0.3 ± 6.2 |
Food Parameters | Quartiles of rEDII | DDS Groups | ||
---|---|---|---|---|
Q1 | Q4 | Adequate | Inadequate | |
Energy (kcal/d) | 2244.0 ± 878.0 | 2340.2 ± 461.6 ** | 2832.1 ± 691.8 | 2163.1 ± 651.8 *** |
Carbohydrate (g/d) | 374.8 ± 167.2 | 358.9 ± 82.4 | 448.2 ± 127.6 | 346.9 ± 123.9 *** |
Protein (g/d) | 59.7 ± 26.4 | 71.7 ± 17.6 *** | 86.9 ± 23.2 | 60.4 ± 20.2 *** |
Total fat (g/d) | 63.4 ± 27.0 | 76.6 ± 18.4 *** | 86.6 ± 24.1 | 66.3 ± 21.9 *** |
Saturated fat (g/d) | 14.2 ± 7.7 | 16.2 ± 5.7 *** | 21.0 ± 7.8 | 14.1 ± 6.1 *** |
MUFA (g/d) | 28.1 ± 8.2 | 30.7 ± 6.4 *** | 35.0 ± 8.4 | 28.2 ± 6.8 *** |
PUFA (g/d) | 15.1 ± 13.6 | 24.6 ± 8.8 *** | 24.5 ± 10.3 | 18.5 ± 11.3 *** |
n-3 fatty acids (g/d) | 4.2 ± 5.4 | 7.6 ± 3.5 *** | 6.9 ± 3.9 | 5.5 ± 4.5 *** |
n-6 fatty acids (g/d) | 15.0 ± 13.6 | 24.9 ± 8.8 *** | 24.8 ± 10.4 | 18.5 ± 11.4 *** |
Cholesterol (mg/d) | 178 ± 141.2 | 243.8 ± 146.7 *** | 311.1 ± 146.6 | 190.6 ± 136.1 *** |
Fiber (g/d) | 7.1 ± 5.2 | 14.7 ± 4.6 *** | 16.3 ± 5.8 | 9.5 ± 4.8 *** |
Vitamins | ||||
Vitamin A (μg/d, RAE) | 235.2 ± 212.6 | 503.3 ± 372.6 *** | 584.3 ± 391 | 300.4 ± 205.1 *** |
β-Carotene (μg/d) | 1151.7 ± 872.3 | 3306.4 ± 1432.0 *** | 3555.9 ± 1588.6 | 1805.6 ± 1125.5 *** |
Thiamin (mg/d) | 0.8 ± 0.4 | 1.0 ± 0.2 *** | 1.2 ± 0.3 | 0.8 ± 0.3 *** |
Riboflavin (mg/d) | 0.9 ± 0.7 | 1.2 ± 0.4 *** | 1.5 ± 0.7 | 0.9 ± 0.5 *** |
Niacin (mg/d) | 11.4 ± 4.9 | 15.3 ± 4.2 *** | 18.2 ± 5.3 | 12.2 ± 4.0 *** |
Vitamin B6 (mg/d) | 1.0 ± 0.6 | 1.7 ± 0.5 *** | 1.9 ± 0.6 | 1.2 ± 0.5 *** |
Vitamin B12 (μg/d) | 4.9 ± 5.2 | 4.1 ± 4.6 *** | 6.4 ± 5.3 | 4.0 ± 4.1 *** |
Folic acid (μg/d) | 184.3 ± 111.4 | 399.8 ± 120.8 | 446.9 ± 141.5 | 248.8 ± 111.8 *** |
Vitamin C (mg/d) | 68.0 ± 44.0 | 164.8 ± 57.0 *** | 179.3 ± 67.9 | 98.6 ± 50.6 *** |
Vitamin D (μg/d) | 1.5 ± 1.4 | 2.3 ± 1.4 *** | 3.0 ± 1.7 | 1.7 ± 1.3 *** |
Vitamin E (mg/d) | 30.5 ± 25.5 | 49.3 ± 16.6 *** | 48.3 ± 19.1 | 37.2 ± 21.2 *** |
Minerals | ||||
Mg (mg/d) | 395.4 ± 195.8 | 457.8 ± 123.5 *** | 569.1 ± 161.9 | 393.0 ± 147.8 *** |
Fe (mg/d) | 16.5 ± 6.6 | 22.8 ± 7.6 *** | 26.7 ± 8.3 | 17.8 ± 6.2 *** |
Zn (mg/d) | 5.7 ± 2.8 | 7.8 ± 2.3 *** | 9.6 ± 3 | 6.0 ± 2.1 *** |
Se (μg/d) | 28.0 ± 14.9 | 32.4 ± 11.2 *** | 42.7 ± 16.5 | 27.7 ± 11.6 *** |
Caffeine (g/d) | 1.2 ± 7.9 | 1.7 ± 8.7 | 1.4 ± 5.8 | 1.2 ± 6.3 |
Alcohol (g/d) | 0.0 ± 0.3 | 0.0 ± 0.0 *** | 0.0 ± 0.0 | 0.0 ± 0.2 |
Isoflavones (mg/d) | 0.7 ± 0.5 | 1.1 ± 0.8 *** | 1.1 ± 0.8 | 0.8 ± 0.6 *** |
Anthocyanidins (mg/d) | 37.6 ± 75.0 | 75.9 ± 90.8 *** | 78.4 ± 95.9 | 50.3 ± 74.1 *** |
Green/black tea (g/d) | 3.3 ± 37.9 | 6.4 ± 43.2 | 4.2 ± 27.9 | 3.5 ± 30.3 |
Onion (g/d) | 2.9 ± 8.8 | 10.1 ± 16.4 *** | 12.5 ± 18.7 | 4.8 ± 9.5 *** |
Garlic (g/d) | 2.2 ± 4 | 5.7 ± 13.7 *** | 5.4 ± 12.0 | 3.6 ± 8.3 ** |
rEDII | Quartile of rEDII | DDS Groups | |||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Adequate | Inadequate | ||
EPDS scores Total n | 2244 | 561 | 561 | 561 | 561 | 443 | 1801 |
Model 1 β (95% CI) | −0.25(−0.38, −0.13) | 1.00(ref) | −0.43(−0.68, −0.18) | −0.59(−0.79, −0.39) | −0.53(−0.88, −0.18) | −0.38(−0.78, 0.03) | 1.00(ref) |
Model 2 β (95% CI) | −0.25(−0.38, −0.12) | 1.00(ref) | −0.43(−0.68, −0.18) | −0.58(−0.79, −0.38) | −0.52(−0.88, −0.17) | −0.38(−0.78, 0.02) | 1.00(ref) |
Model 3 β (95% CI) | −0.25(−0.37, −0.12) | 1.00(ref) | −0.41(−0.66, −0.15) | −0.58(−0.79, −0.37) | −0.50(−0.88, −0.13) | −0.39(−0.81, 0.03) | 1.00(ref) |
Depressive symptoms n/Total n | 237/2244 | 71/561 | 56/561 | 59/561 | 51/561 | 38/443 | 199/1801 |
Model 1 RR (95% CI) | 0.86(0.80, 0.92) | 1.00(ref) | 0.79(0.61, 1.01) | 0.83(0.69, 1.00) | 0.72(0.56, 0.92) | 0.78(0.65, 0.93) | 1.00(ref) |
Model 2 RR (95% CI) | 0.86(0.80,0.92) | 1.00(ref) | 0.80(0.62, 1.02) | 0.84(0.69, 1.02) | 0.72(0.57, 0.92) | 0.77(0.65, 0.92) | 1.00(ref) |
Model 3 RR (95% CI) | 0.87(0.81,0.93) | 1.00(ref) | 0.81(0.64, 1.03) | 0.85(0.71, 1.02) | 0.75(0.58, 0.97) | 0.78(0.64, 0.95) | 1.00(ref) |
β or RR (95% CI) | p | |
---|---|---|
EPDS scores | ||
Interaction Model 1 | ||
rEDII | −0.25(−0.33, −0.16) | <0.001 |
DDS group | −0.28(−0.61, 0.05) | <0.095 |
rEDII × DDS group | 0.16(0.13, 0.19) | <0.001 |
Depressive symptoms | ||
Interaction Model 1 | ||
rEDII | 0.84(0.80, 0.89) | <0.001 |
DDS group | 0.72(0.69, 0.75) | <0.001 |
rEDII × DDS group | 1.39(1.11, 1.75) | 0.004 |
Total | Adequate DDS | Inadequate DDS | |
---|---|---|---|
β or RR (95% CI) | β or RR (95% CI) | β or RR (95% CI) | |
EPDS scores | |||
Total n | 2244 | 443 | 1801 |
rEDII | −0.25(−0.37, −0.12) | ||
By DDS group | −0.10(−0.14, −0.05) | −0.24(−0.32, −0.16) | |
Depressive symptoms | |||
n/Total n | 237/2244 | 38/443 | 199/1801 |
rEDII | 0.87(0.81, 0.93) | ||
By DDS group | 1.20(0.97, 1.50) | 0.85(0.80, 0.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Men, K.; Li, C.; Xu, K.; Mi, B.; Cai, J.; Pei, L.; Zhang, S.; Ma, Y.; Li, Y.; et al. Association Between Anti-Inflammatory Diet, Dietary Diversity, and Depressive Symptoms Among Chinese Pregnant Women. Nutrients 2025, 17, 2823. https://doi.org/10.3390/nu17172823
Zhang B, Men K, Li C, Xu K, Mi B, Cai J, Pei L, Zhang S, Ma Y, Li Y, et al. Association Between Anti-Inflammatory Diet, Dietary Diversity, and Depressive Symptoms Among Chinese Pregnant Women. Nutrients. 2025; 17(17):2823. https://doi.org/10.3390/nu17172823
Chicago/Turabian StyleZhang, Binyan, Ke Men, Chao Li, Kun Xu, Baibing Mi, Jiaxin Cai, Leilei Pei, Shunming Zhang, Yonghong Ma, Ying Li, and et al. 2025. "Association Between Anti-Inflammatory Diet, Dietary Diversity, and Depressive Symptoms Among Chinese Pregnant Women" Nutrients 17, no. 17: 2823. https://doi.org/10.3390/nu17172823
APA StyleZhang, B., Men, K., Li, C., Xu, K., Mi, B., Cai, J., Pei, L., Zhang, S., Ma, Y., Li, Y., Dang, S., & Yan, H. (2025). Association Between Anti-Inflammatory Diet, Dietary Diversity, and Depressive Symptoms Among Chinese Pregnant Women. Nutrients, 17(17), 2823. https://doi.org/10.3390/nu17172823