Combined Fried Frailty Scale and Mini Nutritional Assessment Identifies Cardiovascular Patients with Reduced Protein/Albumin Plasma Levels: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Setting
2.3. Participants
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
2.4. Variables and Measurements
- Slowness was assessed by a reduced gait speed over 5 m at usual pace. The patient must repeat the test three times, and the results were averaged. The results were stratified by gender and height.
- Weakness was assessed via the maximal handgrip strength test in the dominant arm. The EH101 electronic hand dynamometer (VETEK AB, Väddö, Sweden) was used. A patient must repeat the test three times, and the maximal value was recorded. The results were stratified by gender and body mass index.
- The Minnesota Leisure Time Activity questionnaire assesses low physical activity. The result is positive when calorie expenditure is lower than 270 kcal/week in women and <383 kcal/week in men. A Microsoft Excel-based template was prepared for rapid questioning and easy calculation of all activities and respective calorie expenditure. Physical activity over the past 12 months was assessed.
- Exhaustion self-reported by a patient was evaluated by answering two questions from the Center for Epidemiologic Studies Depression Scale Revised (CESD-R) scale. The patient must answer the following questions: “How often did you feel like everything you did was an effort in the past week? How often did you feel you could not get going in the past week?” The possible answers are often (≥3 days) or not (when the feeling is present on 0 to 2 days), with the former being a positive answer.
- Weight loss exceeding 10 pounds (approximately 4.5 kg) unintentionally in the past year.
2.5. Statistical Analysis
3. Results
3.1. Components of the Linda Fried Frailty Definition
3.2. Demographic and Medical Data
3.3. SARC-F, MNA Scales, and Functional Assessment of Patients
3.4. Concentration of Potential Biomarkers
3.5. Stratification Analysis According to Frailty Stage, MNA, and SARC-F Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MNA | Mini Nutritional Assessment |
MNA-SF | Mini Nutritional Assessment Short Form |
FRAPICA | Frailty Syndrome in Daily Practice of Interventional Cardiology Ward |
BMI | Body Mass Index |
FFBM | Fat-Free Body Mass |
PEF | Peak Expiratory Flow |
FEV1 | Forced Expiratory Volume-One Second |
IADLs | Instrumental Activities of Daily Living |
CFS | Clinical Frailty Scale |
COPD | Chronic Obstructive Pulmonary Disease |
MI | Myocardial Infarction |
PCI | Percutaneous Coronary Intervention |
CABG | Coronary Artery Bypass Grafting |
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. A. Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for Clinical Practice and Public Health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Fried, L.P.; Cohen, A.A.; Xue, Q.-L.; Walston, J.; Bandeen-Roche, K.; Varadhan, R. The Physical Frailty Syndrome as a Transition from Homeostatic Symphony to Cacophony. Nat. Aging 2021, 1, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Chang, S.; Ho, H. Adverse Health Effects of Frailty: Systematic Review and Meta-Analysis of Middle-Aged and Older Adults with Implications for Evidence-Based Practice. Worldviews Evid. Based Nurs. 2021, 18, 282–289. [Google Scholar] [CrossRef]
- Picca, A.; Coelho-Junior, H.J.; Calvani, R.; Marzetti, E.; Vetrano, D.L. Biomarkers Shared by Frailty and Sarcopenia in Older Adults: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2022, 73, 101530. [Google Scholar] [CrossRef] [PubMed]
- Mailliez, A.; Guilbaud, A.; Puisieux, F.; Dauchet, L.; Boulanger, É. Circulating Biomarkers Characterizing Physical Frailty: CRP, Hemoglobin, Albumin, 25OHD and Free Testosterone as Best Biomarkers. Results of a Meta-Analysis. Exp. Gerontol. 2020, 139, 111014. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.; Collins, P.; Rattray, M. Identifying and Managing Malnutrition, Frailty and Sarcopenia in the Community: A Narrative Review. Nutrients 2021, 13, 2316. [Google Scholar] [CrossRef]
- Gingrich, A.; Volkert, D.; Kiesswetter, E.; Thomanek, M.; Bach, S.; Sieber, C.C.; Zopf, Y. Prevalence and Overlap of Sarcopenia, Frailty, Cachexia and Malnutrition in Older Medical Inpatients. BMC Geriatr. 2019, 19, 120. [Google Scholar] [CrossRef]
- Faxén-Irving, G.; Luiking, Y.; Grönstedt, H.; Franzén, E.; Seiger, Å.; Vikström, S.; Wimo, A.; Boström, A.-M.; Cederholm, T. Do Malnutrition, Sarcopenia and Frailty Overlap in Nursing-Home Residents? J. Frailty Aging 2021, 10, 17–21. [Google Scholar] [CrossRef]
- Feng, Z.; Xia, J.; Yu, J.; Wang, J.; Yin, S.; Yang, J.; Wu, T.; Zhang, Z.; Yan, W.; Wang, S.; et al. Pathophysiological Mechanisms Underlying Sarcopenia and Sarcopenic Obesity: A Systematic Review and Meta-Analysis of Biomarker Evidence. Int. J. Mol. Sci. 2025, 26, 5113. [Google Scholar] [CrossRef]
- Amasene, M.; Besga, A.; Medrano, M.; Urquiza, M.; Rodriguez-Larrad, A.; Tobalina, I.; Barroso, J.; Irazusta, J.; Labayen, I. Nutritional Status and Physical Performance Using Handgrip and SPPB Tests in Hospitalized Older Adults. Clin. Nutr. 2021, 40, 5547–5555. [Google Scholar] [CrossRef]
- Amasene, M.; Medrano, M.; Echeverria, I.; Urquiza, M.; Rodriguez-Larrad, A.; Diez, A.; Labayen, I.; Ariadna, B.-B. Malnutrition and Poor Physical Function Are Associated with Higher Comorbidity Index in Hospitalized Older Adults. Front. Nutr. 2022, 9, 920485. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.M.; Kaiser, M.J.; Anthony, P.; Guigoz, Y.; Sieber, C.C. The Mini Nutritional Assessment®—Its History, Today’s Practice, and Future Perspectives. Nutr. Clin. Pract. 2008, 23, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A Simple Questionnaire to Rapidly Diagnose Sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Li, J.; Ruan, L.; Wu, X.; Zhang, C.; Chen, L. Physical Frailty, Genetic Predisposition, and Incident Arrhythmias. J. Cachexia Sarcopenia Muscle 2024, 15, 1463–1472. [Google Scholar] [CrossRef]
- Shi, Q.; Huang, J.; Wan, J.; Zhong, Z.; Sun, Y.; Zhou, Y.; Li, J.; Tan, X.; Yu, B.; Lu, Y.; et al. Physical Frailty, Genetic Predisposition, and Incident Heart Failure. JACC Asia 2024, 4, 547–556. [Google Scholar] [CrossRef]
- Qayyum, S.; Rossington, J.A.; Chelliah, R.; John, J.; Davidson, B.J.; Oliver, R.M.; Ngaage, D.; Loubani, M.; Johnson, M.J.; Hoye, A. Prospective Cohort Study of Elderly Patients with Coronary Artery Disease: Impact of Frailty on Quality of Life and Outcome. Open Heart 2020, 7, e001314. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef]
- Wołoszyn-Horák, E.; Salamon, R.; Chojnacka, K.; Brzosko, A.; Bieda, Ł.; Standera, J.; Płoszaj, K.; Stępień, E.; Nowalany-Kozielska, E.; Tomasik, A. Frailty Syndrome in Daily Practice of Interventional Cardiology Ward—Rationale and Design of the FRAPICA Trial: A STROBE-Compliant Prospective Observational Study. Medicine 2020, 99, e18935. [Google Scholar] [CrossRef] [PubMed]
- Yetkin, N.A.; Akın, S.; Kocaslan, D.; Baran, B.; Rabahoglu, B.; Oymak, F.S.; Tutar, N.; Gulmez, İ. The Role of Diaphragmatic Ultrasound in Identifying Sarcopenia in COPD Patients: A Cross-Sectional Study. Int. J. Chron. Obstruct. Pulmon. Dis. 2025, 20, 1–9. [Google Scholar] [CrossRef]
- Yamamoto, M.; Adachi, H.; Enomoto, M.; Fukami, A.; Nakamura, S.; Nohara, Y.; Sakaue, A.; Morikawa, N.; Hamamura, H.; Toyomasu, K.; et al. Lower Albumin Levels Are Associated with Frailty Measures, Trace Elements, and an Inflammation Marker in a Cross-Sectional Study in Tanushimaru. Environ. Health Prev. Med. 2021, 26, 25. [Google Scholar] [CrossRef]
- Kanapuru, B.; Ershler, W.B. Inflammation, Coagulation, and the Pathway to Frailty. Am. J. Med. 2009, 122, 605–613. [Google Scholar] [CrossRef]
- He, L.; Yang, J.; Fang, Y. Longitudinal Analysis on Inflammatory Markers and Frailty Progression: Based on the English Longitudinal Study of Aging. Eur. Geriatr. Med. 2024, 15, 1323–1330. [Google Scholar] [CrossRef]
- Dilektasli, A.G.; Öztürk, N.A.A.; Kerimoğlu, D.; Odabaş, A.; Yaman, M.T.; Dogan, A.; Demirdogen, E.; Guclu, O.A.; Coşkun, F.; Ursavas, A.; et al. Slow Gait Speed Is Associated with Frailty, Activities of Daily Living and Nutritional Status in in-Patient Pulmonology Patients. Aging Clin. Exp. Res. 2025, 37, 133. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shang, N.; Gao, Q.; Guo, S.; Yang, T. Prevalence of Sarcopenia and Its Association with Frailty and Malnutrition among Older Patients with Sepsis-a Cross-Sectional Study in the Emergency Department. BMC Geriatr. 2025, 25, 377. [Google Scholar] [CrossRef]
- Lengelé, L.; Bruyère, O.; Beaudart, C.; Reginster, J.-Y.; Locquet, M. Malnutrition, Assessed by the Global Leadership Initiative on Malnutrition (GLIM) Criteria but Not by the Mini Nutritional Assessment (MNA), Predicts the Incidence of Sarcopenia over a 5-Year Period in the SarcoPhAge Cohort. Aging Clin. Exp. Res. 2021, 33, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Nyunt, M.-S.-Z.; Gao, Q.; Wee, S.-L.; Yap, K.-B.; Ng, T.-P. Association of Frailty and Malnutrition with Long-Term Functional and Mortality Outcomes Among Community-Dwelling Older Adults: Results from the Singapore Longitudinal Aging Study 1. JAMA Netw. Open 2018, 1, e180650. [Google Scholar] [CrossRef]
- Verlaan, S.; Ligthart-Melis, G.C.; Wijers, S.L.J.; Cederholm, T.; Maier, A.B.; De Van Der Schueren, M.A.E. High Prevalence of Physical Frailty Among Community-Dwelling Malnourished Older Adults–A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2017, 18, 374–382. [Google Scholar] [CrossRef]
- Atay, K.; Aydin, S.; Canbakan, B. Sarcopenia and Frailty in Cirrhotic Patients: Evaluation of Prevalence and Risk Factors in a Single-Centre Cohort Study. Medicina 2025, 61, 821. [Google Scholar] [CrossRef]
- Joaquín, C.; Alonso, N.; Lupón, J.; De Antonio, M.; Domingo, M.; Moliner, P.; Zamora, E.; Codina, P.; Ramos, A.; González, B.; et al. Mini Nutritional Assessment Short Form Is a Morbi-Mortality Predictor in Outpatients with Heart Failure and Mid-Range Left Ventricular Ejection Fraction. Clin. Nutr. 2020, 39, 3395–3401. [Google Scholar] [CrossRef] [PubMed]
- Moellmann, H.L.; Alhammadi, E.; Boulghoudan, S.; Kuhlmann, J.; Mevissen, A.; Olbrich, P.; Rahm, L.; Frohnhofen, H. Risk of Sarcopenia, Frailty and Malnutrition as Predictors of Postoperative Delirium in Surgery. BMC Geriatr. 2024, 24, 971. [Google Scholar] [CrossRef]
- Mazzola, P.; Ward, L.; Zazzetta, S.; Broggini, V.; Anzuini, A.; Valcarcel, B.; Brathwaite, J.S.; Pasinetti, G.M.; Bellelli, G.; Annoni, G. Association Between Preoperative Malnutrition and Postoperative Delirium After Hip Fracture Surgery in Older Adults. J. Am. Geriatr. Soc. 2017, 65, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Gielen, E.; Beckwée, D.; Delaere, A.; De Breucker, S.; Vandewoude, M.; Bautmans, I.; The Sarcopenia Guidelines Development Group of the Belgian Society of Gerontology and Geriatrics (BSGG); Bautmans, I.; Beaudart, C.; Beckwée, D.; et al. Nutritional Interventions to Improve Muscle Mass, Muscle Strength, and Physical Performance in Older People: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutr. Rev. 2021, 79, 121–147. [Google Scholar] [CrossRef]
- The Sarcopenia Guidelines Development Group of the Belgian Society of Gerontology and Geriatrics (BSGG); De Spiegeleer, A.; Beckwée, D.; Bautmans, I.; Petrovic, M. Pharmacological Interventions to Improve Muscle Mass, Muscle Strength and Physical Performance in Older People: An Umbrella Review of Systematic Reviews and Meta-Analyses. Drugs Aging 2018, 35, 719–734. [Google Scholar] [CrossRef]
- Arıcı, H.; Tor, Y.B.; Altınkaynak, M.; Erten, N.; Saka, B.; Bayramlar, O.F.; Karakuş, Z.N.; Akpınar, T.S. Personalized Diet With or Without Physical Exercise Improves Nutritional Status, Muscle Strength, Physical Performance, and Quality of Life in Malnourished Older Adults: A Prospective Randomized Controlled Study. Nutrients 2025, 17, 675. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Júnior, H.J.; Calvani, R.; Tosato, M.; Landi, F.; Picca, A.; Marzetti, E. Protein Intake and Physical Function in Older Adults: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2022, 81, 101731. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Calvani, R.; Picca, A.; Tosato, M.; Landi, F.; Marzetti, E. Protein Intake and Frailty in Older Adults: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2022, 14, 2767. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Y.; Guo, L.; Chen, Z.; Xia, X.; Chen, F.; Tang, L.; Jiang, H.; Xie, C. Development and External Validation of Machine Learning Models for the Early Prediction of Malnutrition in Critically Ill Patients: A Prospective Observational Study. BMC Med. Inform. Decis. Mak. 2025, 25, 248. [Google Scholar] [CrossRef]
- López-Gómez, J.J.; Estévez-Asensio, L.; Cebriá, Á.; Izaola-Jauregui, O.; Pérez López, P.; González-Gutiérrez, J.; Primo-Martín, D.; Jiménez-Sahagún, R.; Gómez-Hoyos, E.; Rico-Bargues, D.; et al. Artificial Intelligence-Assisted Muscular Ultrasonography for Assessing Inflammation and Muscle Mass in Patients at Risk of Malnutrition. Nutrients 2025, 17, 1620. [Google Scholar] [CrossRef]
- Jing, L.; Hua, P.; Shumei, Z.; Peng, Q.; Wu, W.; Lv, L.; Yue, L.; Jian Zhong, H.; Weihong, H. Development of an Interpretable Machine Learning Model for Frailty Risk Prediction in Older Adult Care Institutions: A Mixed-Methods, Cross-Sectional Study in China. BMJ Open 2025, 15, e095460. [Google Scholar] [CrossRef]
- Buccheri, E.; Dell’Aquila, D.; Russo, M.; Chiaramonte, R.; Musumeci, G.; Vecchio, M. Can Artificial Intelligence Simplify the Screening of Muscle Mass Loss? Heliyon 2023, 9, e16323. [Google Scholar] [CrossRef]
- Yakabi, A.; Ishizaka, M.; Watanabe, M.; Matsumoto, C.; Ito, A.; Endo, Y.; Hara, T.; Igawa, T.; Kubo, A.; Itokazu, M. A Longitudinal Study of Frailty Reversibility through a Multi-Component Dementia Prevention Program. J. Phys. Ther. Sci. 2025, 37, 256–261. [Google Scholar] [CrossRef]
- Faller, J.W.; Pereira, D.D.N.; De Souza, S.; Nampo, F.K.; Orlandi, F.D.S.; Matumoto, S. Instruments for the Detection of Frailty Syndrome in Older Adults: A Systematic Review. PLoS ONE 2019, 14, e0216166. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Li, Y.; Zhu, Y.; Sun, Y. Inflammatory Markers and Clinical Factors as Key Independent Risk Factors for Frailty: A Retrospective Study. BMC Geriatr. 2025, 25, 404. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Jia, Y.; Wang, X.; Huang, H. The Impact of Preoperative Fibrinogen-Albumin Ratio on Mortality in Patients with Acute ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Clin. Chim. Acta 2019, 493, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; He, P.; Zhou, C.; Zhang, Z.; Zhang, Y.; Li, H.; Liu, C.; Nie, J.; Liang, M.; Qin, X. Association of Urinary Albumin:Creatinine Ratio with Incident Frailty in Older Populations. Clin. Kidney J. 2022, 15, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Li, M.; Qiu, J.; Sun, J.; Su, Y.; Cai, S.; Bao, Q.; Cheng, B.; Ma, S.; Zhang, Y.; et al. The Relationship between Urinary Albumin to Creatinine Ratio and All-Cause Mortality in the Elderly Population in the Chinese Community: A 10-Year Follow-up Study. BMC Nephrol. 2022, 23, 16. [Google Scholar] [CrossRef]
- Jiang, J.; Miao, P.; Xin, G. Prognostic Value of Albumin-Based Indices for Mortality after Heart Failure: A Systematic Review and Meta-Analysis. BMC Cardiovasc. Disord. 2024, 24, 570. [Google Scholar] [CrossRef]
General n = 170 | Robust n = 53 R | Prefrail n = 96 P | Frail n = 21 F | Significance | |
---|---|---|---|---|---|
Age (years) | 73.8 ± 5.6 | 72.8 ± 5.2 | 73.8 ± 5.5 | 76.3 ± 6.7 | NS |
Men, n (%) | 113 (66.5) | 42 (79.2) | 59 (61.5) | 12 (57.1) | p < 0.05 (R vs. P) |
Weight (kg) | 82.6 ± 13.4 | 82.8 ± 11.0 | 82.7 ± 14.6 | 81.8 ± 13.1 | NS |
Height (cm) | 168.6 ± 7.9 | 170.6 ± 6.5 | 168.3 ± 8.0 | 165.3 ± 9.2 | p < 0.05 (R vs. F) |
BMI (kg/cm2) | 29.1 ± 4.7 | 28.5 ± 3.7 | 29.1 ± 4.6 | 30.5 ± 6.7 | NS |
FFBM (kg) | 56.2 ± 9.2 | 57.3 ± 8.9 | 55.8 ± 9.7 | 55.1 ± 7.2 | NS |
Diaphragm thickness (mm) | 3.7 ± 0.9 | 3.7 ± 0.8 | 3.7 ± 0.9 | 3.5 ± 0.93 | NS |
PEF (L/min) | 316.3 ± 130.1 | 345.2 ± 135.7 | 311.9 ± 128.1 | 266.0 ± 117.0 | p < 0.05 (R vs. F) |
FEV1 (L) | 1.95 ± 0.7 | 2.1 ± 0.7 | 1.9 ± 0.7 | 1.5 ± 0.6 | p < 0.05 (R vs. F, P vs. F) |
Hypertension | 139 (82%) | 46 (87%) | 76 (79%) | 17 (81%) | NS |
Hypercholesterolemia | 126 (74%) | 41 (77%) | 75 (78%) | 10 (48%) | p < 0.05 (R vs. F, P vs. F) |
Diabetes | 74 (44%) | 21 (40%) | 44 (46%) | 9 (43%) | NS |
Atrial fibrillation | 40 (24%) | 8 (15%) | 24 (25%) | 8 (38%) | NS |
Renal failure | 15 (9%) | 4 (8%) | 7 (7%) | 4 (19%) | NS |
COPD/Asthma | 25 (15%) | 7 (13%) | 16 (17%) | 2 (1%) | NS |
Malignancy | 19 (11%) | 10 (19%) | 7 (7%) | 2 (10%) | NS |
History of MI | 45 (27%) | 16 (30%) | 24 (25%) | 5 (24%) | NS |
History of PCI | 67 (39%) | 23 (43%) | 38 (40%) | 6 (29%) | NS |
History of CABG | 18 (11%) | 7 (13%) | 9 (9%) | 2 (10%) | NS |
General n = 170 | Robust n = 53 (R) | Prefrail n = 96 (P) | Frail n = 21 (F) | Significance | |
---|---|---|---|---|---|
SARC-F | 0 (0–2) | 0 (0–0) | 0 (0–0) | 3 (2–4) | p < 0.001 (R vs. P, R vs. F, P vs. F) |
MNA | 26.5 (24.5–27.5) | 27 (26–28) | 26 (24.5–27.5) | 23.5 (20–27.2) | p < 0.001 (R vs. F, P vs. F) |
CFS | 3 (2–3) | 3 (2–3) | 3 (2–3) | 4 (3–5) | p < 0.001 (R vs. F, P vs. F) |
IADL | 24 (24–24) | 24 (24–24) | 24 (24–24) | 23 (21–24) | p < 0.001 (R vs. F, P vs. F) |
Robust | Prefrail | Frail | Significance | ||
---|---|---|---|---|---|
Total protein, g/L (X ± SEM) | SARC-F 0–3 | 66.7 ± 0.7 (n = 49) | 66.7 ± 0.5 (n = 86) | 65.9 ± 1.4 (n = 13) | NS (frailty) p < 0.01 (SARC-F) |
SARC-F 4–10 | 64.3 ± 2.2 (n = 5) | 62.5 ± 1.6 (n = 10) | 62.6 ± 1.7 (n = 8) | ||
Albumin, g/L (X ± SEM) | SARC-F 0–3 | 42.9 ± 0.5 (n = 49) | 42.1 ± 0.4 (n = 85) | 40.6 ± 1.0 (n = 13) | NS (frailty) p < 0.01 (SARC-F) |
SARC-F 4–10 | 39.5 ± 1.7 (n = 5) | 39.5 ± 1.2 (n = 10) | 37.6 ± (n = 8) | ||
Fibrinogen, g/L (X ± SEM) | SARC-F 0–3 | 3.1 ± 0.1 (n = 49) | 3.1 ± 0.1 (n = 85) | 3.4 ± 0.2 (n = 13) | p < 0.05 (frailty) NS (SARC-F) |
SARC-F 4–10 | 3.3 ± 0.3 (n = 5) | 3.1 ± 0.2 (n = 10) | 3.8 ± 0.2 (n = 8) |
Robust | Prefrail | Frail | Significance | ||
---|---|---|---|---|---|
Total protein, g/L (X ± SEM) | MNA ≥ 24 | 66.5 ± 0.7 (n = 48) | 66.6 ± 0.6 (n = 75) | 65.7 ± 1.6 (n = 10) | NS (frailty) NS (MNA) |
MNA < 24 | 66.3 ± 2.1 (n = 6) | 64.9 ± 1.1 (n = 20) | 63.7 ± 1.5 (n = 11) | ||
Albumin, g/L (X ± SEM) | MNA ≥ 24 | 42.6 ± 0.5 (n = 48) | 42.5 ± 0.4 (n = 74) | 42.2 ± 1.2 (n = 10) | p < 0.05 (frailty) p < 0.01 (MNA) |
MNA < 24 | 42.5 ± 1.5 (n = 6) | 39.5 ± 0.8 (n = 20) | 37.8 ± 1.1 (n = 11) | ||
Fibrinogen, g/L (X ± SEM) | MNA ≥ 24 | 3.1 ± 0.1 (n = 48) | 3.1 ± 0.1 (n = 74) | 3.7 ± 0.2 (n = 10) | p < 0.05 (frailty) NS (MNA) |
MNA < 24 | 3.2 ± 0.3 (n = 6) | 3.1 ± 0.2 (n = 20) | 3.5 ± 0.2 (n = 11) |
Robust | Prefrail | Frail | Significance | ||
---|---|---|---|---|---|
Body weight, kg (X ± SEM) | SARC-F 0–3 | 85.0 ± 2.1 (n = 49) | 82.2 ± 0.5 (n = 86) | 81.6 ± 4.2 (n = 13) | NS (frailty) NS (SARC-F) |
SARC-F 4–10 | 77.0 ± 6.7 (n = 5) | 86.8 ± 4.7 (n = 10) | 82.0 ± 5.3 (n = 8) | ||
Fat-free body mass, kg (X ± SEM) | SARC 0–3 | 57.9 ± 1.3 (n = 49) | 55.3 ± 1.0 (n = 85) | 55.1 ± 2.5 (n = 13) | NS (frailty) NS (SARC-F) |
SARC 4–10 | 50.8 ± 4.1 (n = 5) | 60.0 ± 2.9 (n = 10) | 55.1 ± 3.2 (n = 8) | ||
Diaphragm thickness, mm (X ± SEM) | SARC 0–3 | 3.7 ± 0.1 (n = 49) | 3.8 ± 0.1 (n = 85) | 3.6 ± 0.2 (n = 13) | NS (frailty) NS (SARC-F) |
SARC 4–10 | 4.1 ± 0.4 (n = 5) | 3.0 ± 0.3 (n = 10) | 3.2 ± 0.3 (n = 8) | ||
Gait speed, s/5 m (X ± SEM) | SARC-F 0–3 | 3.7 ± 0.6 (n = 49) | 4.4 ± 0.5 (n = 49) | 10.9 ± 1.2 (n = 49) | p < 0.01 (frailty) NS (SARC-F) |
SARC-F 4–10 | 5.2 ± 1.9 (n = 5) | 7.1 ± 1.4 (n = 5) | 7.6 ± 1.5 (n = 5) | ||
Handgrip strength, kg (X ± SEM) | SARC-F 0–3 | 36.3 ± 1.3 (n = 49) | 29.1 ± 1.0 (n = 86) | 23.7 ± 2.5 (n = 13) | p < 0.05 (frailty) p < 0.05 (SARC-F) |
SARC-F 4–10 | 26.2 ± 4.0 (n = 5) | 27.2 ± 2.9 (n = 10) | 22.3 ± 3.2 (n = 8) | ||
PEF, L/min (X ± SEM) | SARC-F 0–3 | 355.0 ± 18.9 (n = 46) | 311.1 ± 14.2 (n = 82) | 301.0 ± 35.6 (n = 13) | NS (frailty) NS (SARC-F) |
SARC-F 4–10 | 261.0 ± 57.4 (n = 5) | 331.5 ± 45.4 (n = 8) | 209.0 ± 45.4 (n = 8) | ||
FEV1, L/sec (X ± SEM) | SARC-F 0–3 | 2.1 ± 0.1 (n = 46) | 1.9 ± 0.1 (n = 82) | 1.7 ± 0.2 (n = 13) | p < 0.01 (frailty) NS (SARC-F) |
SARC-F 4–10 | 1.9 ± 0.3 (n = 5) | 2.3 ± 0.2 (n = 8) | 1.3 ± 0.3 (n = 8) |
Robust | Prefrail | Frail | Significance | ||
---|---|---|---|---|---|
Body weight, kg (X ± SEM) | MNA ≥ 24 | 82.7 ± 2.1 (n = 48) | 83.4 ± 1.7 (n = 75) | 85.8 ± 4.7 (n = 10) | NS (frailty) NS (MNA) |
MNA < 24 | 96.7 ± 6.1 (n = 6) | 79.7 ± 3.3 (n = 20) | 78.1 ± 4.5 (n = 11) | ||
Fat-free body mass, kg (X ± SEM) | MNA ≥ 24 | 57.4 ± 1.3 (n = 48) | 56.1 ± 1.1 (n = 75) | 56.9 ± 2.9 (n = 10) | NS (frailty) NS (MNA) |
MNA < 24 | 55.9 ± 3.8 (n = 6) | 54.6 ± 2.1 (n = 20) | 53.5 ± 2.8 (n = 11) | ||
Diaphragm thickness, mm (X ± SEM) | MNA ≥ 24 | 3.7 ± 0.1 (n = 48) | 3.7 ± 0.1 (n = 73) | 3.2 ± 0.3 (n = 10) | NS (frailty) NS (MNA) |
MNA < 24 | 3.8 ± 0.3 (n = 6) | 3.6 ± 0.2 (n = 20) | 3.7 ± 0.3 (n = 11) | ||
Gait speed, s/5 m (X ± SEM) | MNA ≥ 24 | 3.8 ± 0.6 (n = 48) | 4.3 ± 0.5 (n = 75) | 13.1 ± 1.3 (n = 10) | p < 0.001 (frailty) NS (MNA) |
MNA < 24 | 4.0 ± 1.7 (n = 6) | 6.0 ± 0.9 (n = 20) | 6.5 ± 1.3 (n = 11) | ||
Handgrip strength, kg (X ± SEM) | MNA ≥ 24 | 35.8 ± 1.3 (n = 48) | 29.3 ± 1.1 (n = 75) | 22.2 ± 2.9 (n = 10) | p < 0.001 (frailty) NS (MNA) |
MNA < 24 | 32.0 ± 3.7 (n = 6) | 27.9 ± 2.1 (n = 20) | 24.0 ± 2.8 (n = 11) | ||
PEF, L/min (X ± SEM) | MNA ≥ 24 | 348.6 ± 19.0 (n = 45) | 326.3 ± 15.1 (n = 71) | 206.6 ± 40.2 (n = 10) | NS (frailty) NS (MNA) |
MNA < 24 | 324.8 ± 52.0 (n = 6) | 270.0 ± 30.0 (n = 18) | 319.9 ± 38.4 (n = 11) | ||
FEV1, L/s (X ± SEM) | MNA ≥ 24 | 2.1 ± 0.1 (n = 45) | 2.0 ± 0.1 (n = 71) | 1.3 ± 0.2 (n = 10) | p < 0.05 (frailty) NS (MNA) |
MNA < 24 | 1.6 ± 0.3 (n = 6) | 1.9 ± 0.2 (n = 18) | 1.8 ± 0.2 (n = 11) |
Weight (kg) | Total Protein (g/L) | Albumin (g/L) | Fibrinogen (g/L) | Fat-Free Body Mass (kg) | Gait Speed (s/5 m) | Handgrip Strength (kg) | PEF (L/min) | FEV1 (L) | |
---|---|---|---|---|---|---|---|---|---|
Weight (kg) | 1.000 | ||||||||
Total Protein (g/L) | 0.191 * | 1.000 | |||||||
Albumin (g/L) | 0.247 * | 0.660 * | 1.000 | ||||||
Fibrinogen (g/L) | −0.023 | −0.060 | −0.190 * | 1.000 | |||||
Fat-Free Body Mass (kg) | 0.664 * | 0.118 | 0.093 | −0.077 | 1.000 | ||||
Gait Speed (s/5 m) | 0.049 | 0.070 | 0.012 | 0.182 * | 0.013 | 1.000 | |||
Handgrip Strength (kg) | 0.269 * | 0.167 * | 0.190 * | −0.147 | 0.604 * | −0.134 | 1.000 | ||
PEF (L/min) | 0.214 * | 0.070 | 0.051 | −0.184 * | 0.402 * | −0.128 | 0.528 * | 1.000 | |
FEV1 (L) | 0.149 | 0.065 | 0.106 | −0.229 * | 0.404 * | −0.111 | 0.549 * | 0.749 * | 1.000 |
Diaphragm Thickness (mm) | 0.115 | 0.237 * | 0.207 * | −0.075 | 0.050 | −0.128 | 0.152 | 0.159 * | 0.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieśla, J.; Schulz, M.; Krawiec, M.; Janik, M.; Wojciechowski, P.; Dajnowska, I.; Szablewska, D.; Bartoszek, J.; Przywara-Chowaniec, B.; Tomasik, A. Combined Fried Frailty Scale and Mini Nutritional Assessment Identifies Cardiovascular Patients with Reduced Protein/Albumin Plasma Levels: A Cross-Sectional Study. Nutrients 2025, 17, 2786. https://doi.org/10.3390/nu17172786
Cieśla J, Schulz M, Krawiec M, Janik M, Wojciechowski P, Dajnowska I, Szablewska D, Bartoszek J, Przywara-Chowaniec B, Tomasik A. Combined Fried Frailty Scale and Mini Nutritional Assessment Identifies Cardiovascular Patients with Reduced Protein/Albumin Plasma Levels: A Cross-Sectional Study. Nutrients. 2025; 17(17):2786. https://doi.org/10.3390/nu17172786
Chicago/Turabian StyleCieśla, Julia, Marcin Schulz, Michał Krawiec, Michał Janik, Paweł Wojciechowski, Iga Dajnowska, Dominika Szablewska, Jakub Bartoszek, Brygida Przywara-Chowaniec, and Andrzej Tomasik. 2025. "Combined Fried Frailty Scale and Mini Nutritional Assessment Identifies Cardiovascular Patients with Reduced Protein/Albumin Plasma Levels: A Cross-Sectional Study" Nutrients 17, no. 17: 2786. https://doi.org/10.3390/nu17172786
APA StyleCieśla, J., Schulz, M., Krawiec, M., Janik, M., Wojciechowski, P., Dajnowska, I., Szablewska, D., Bartoszek, J., Przywara-Chowaniec, B., & Tomasik, A. (2025). Combined Fried Frailty Scale and Mini Nutritional Assessment Identifies Cardiovascular Patients with Reduced Protein/Albumin Plasma Levels: A Cross-Sectional Study. Nutrients, 17(17), 2786. https://doi.org/10.3390/nu17172786