Effects of Glucose and Fructose on Production Traits, Organ Weights and Metabolomic Indices in Rats on Different Energy and Nutrient Dense Diets
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Design of Diets
2.3. Blood, Plasma, and Serum Samples
2.4. Tested Parameters
2.5. Body Weight (BW), Feed Intake (Fi)
2.6. Organ Weights, Eviscerated Body Weight (EVBW)
2.7. Biochemical Parameters
2.8. Hormones
2.9. Statistical Analysis
3. Results and Discussion
3.1. Diet Formulation
3.2. Limitations and Future Perspectives
3.3. Production Measurements
3.3.1. Feed Intake (Fi)
3.3.2. Glucose (G) and Fructose (F) Intake
3.3.3. Energy Intake
3.3.4. Bodyweight (BW) and Bodyweight Gain (BWG)
3.3.5. Feed Conversion Ratio (FCR; Feed/Gain)
3.3.6. Eviscerated Body Weight (EVBW)
3.4. Viscera and Organ Weights
3.4.1. Effect of Glucose or Fructose on Visceral Organ Weights
3.4.2. Epididymal and Retroperitoneal White Adipose Tissues (EWAT and RWAT)
3.4.3. Weight of Liver
3.4.4. Weight of Kidney
3.4.5. Weight of Spleen
3.5. Chemical Composition of Liver
3.5.1. Liver Ash
3.5.2. Liver Protein
3.5.3. Liver Fat (Ether Extract)
3.5.4. Liver N-Free Extract (NfE) Glucose and Glycogen)
3.6. Metabolomic Indices
3.6.1. Serum Glucose
3.6.2. Serum Total Cholesterol (STCh)
3.6.3. Serum Triglyceride (STG)
3.6.4. Triglyceride-Glucose Index (TyG)
3.6.5. Lactate Dehydrogenase (LDH)
3.6.6. Fructosamine
3.7. Effect of Glucose (G) or Fructose (F) on Hormones
3.7.1. Serum Insulin
3.7.2. Serum Glucagon
3.7.3. Serum Glucagon-to-Insulin Ratio (G/I)
3.7.4. Serum Leptin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
| BW | body weight |
| BWG | body weight gain |
| EVBW | eviscerated body weight |
| ED | energy density of the diets |
| EE | ether extract |
| EWAT | epididymal white adipose tissue |
| F | fructose |
| FCR | Feed Conversion Ratio (Feed/Gain) |
| Fi | feed intake |
| G | glucose |
| GE | gross energy |
| L | lard |
| LDH | lactate dehydrogenase |
| NAFLD | non-alcoholic fatty liver disease |
| NfE | N-free extract |
| RWAT | retroperitoneal white adipose tissue |
| SFE | specific fructose effect |
| SPF | Specific-pathogen-free |
| St | starch |
| STCh | Serum total cholesterol |
| STG | Serum triglyceride |
| TyG | Triglyceride-glucose index |
References
- Lozano, I.; Van der Werf, R.; Bietiger, W.; Seyfritz, E.; Peronet, C.; Pinget, M.; Jeandidier, N.; Maillard, E.; Marchioni, E.; Sigrist, S.; et al. High-fructose and high-fat diet-induced disorders in rats: Impact on diabetes risk, hepatic and vascular complications. Nutr. Metab. 2016, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- van Dam, R.M.; Seidell, J.C. Carbohydrate intake and obesity. Eur. J. Clin. Nutr. 2007, 61, S75–S99. [Google Scholar] [CrossRef] [PubMed]
- Tappy, L.; Lê, K.A.; Tran, C.; Paquot, N. Fructose and metabolic diseases: New findings, new questions. Nutrition 2010, 26, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M.H.; Haghighatdoost, F.; Surkan, P.J.; Azadbakht, L. Associations between dietary energy density and obesity: A systematic review and meta-analysis of observational studies. Nutrition 2016, 32, 1037–1047. [Google Scholar] [CrossRef]
- Rolls, B.; Barnett, R.A. Volumetrics: Feel Full on Fewer Calories; HarperCollins: New York, NY, USA, 2000. [Google Scholar]
- Prentice, A.M.; Jebb, S.A. Fast foods, energy density and obesity: A possible mechanistic link. Obes. Rev. 2003, 4, 187–194. [Google Scholar] [CrossRef]
- Schaefer, E.J.; Gleason, J.A.; Dansinger, M.L. Dietary fructose and glucose differentially affect lipid and glucose homeostasis. J. Nutr. 2009, 139, 1257S–1262S. [Google Scholar] [CrossRef] [PubMed]
- Mayes, P.A. Intermediary metabolism of fructose. Am. J. Clin. Nutr. 1993, 58, 754S–765S. [Google Scholar] [CrossRef]
- Parks, E.J.; Skokan, L.E.; Timlin, M.T.; Dingfelder, C.S. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr. 2008, 138, 1039–1046. [Google Scholar] [CrossRef]
- Mendoza, J.A.; Drewnowski, A.; Christakis, D.A. Dietary energy density is associated with obesity and the metabolic syndrome in U.S. adults. Diabetes Care 2007, 30, 974–979. [Google Scholar] [CrossRef]
- Szabó, J.; Maróti, G.; Solymosi, N.; Andrásofszky, E.; Tuboly, T.; Bersényi, A.; Bruckner, G.; Hullár, I. Fructose, glucose and fat interrelationships with metabolic pathway regulation and effects on the gut microbiota. Acta Vet. Hung. 2021, 69, 134–156. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS Statistics. (IBM Corporation, Armonk, New York). Available online: https://www.ibm.com/products/spss (accessed on 14 August 2025).
- yEd Graph Editor. Available online: https://www.yworks.com/products/yed (accessed on 14 August 2025).
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley and Sons: New York, NY, USA, 1973. [Google Scholar]
- Alhaidary, A.; Mohamed, H.E.; Beynen, A.C. Differences between rats and rabbits in their response of feed and energy intake to increasing dietary fat content. Scand. J. Lab. Anim. Sci. 2010, 37, 237–240. [Google Scholar]
- DeWys, W.D. Anorexia in cancer patients. Cancer Res. 1977, 37, 2354–2358. [Google Scholar] [PubMed]
- Marques, C.; Meireles, M.; Norberto, S.; Leite, J.; Freitas, J.; Pestana, D.; Faria, A.; Calhau, C. High-fat diet-induced obesity Rat model: A comparison between Wistar and Sprague-Dawley Rat. Adipocyte 2015, 5, 11–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yin, T.H.; Tsai, C.T. Effects of glucose on feeding in relation to routes of entry in rats. J. Comp. Physiol. Psychol. 1973, 85, 258–264. [Google Scholar] [CrossRef]
- Lavin, J.H.; Wittert, G.; Sun, W.M.; Horowitz, M.; Morley, J.E.; Read, N.W. Appetite regulation by carbohydrate: Role of blood glucose and gastrointestinal hormones. Am. J. Physiol. 1996, 271, E209–E214. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.D.; Cha, S.H. Effect of glucose and fructose on food intake via malonyl-CoA signaling in the brain. Biochem. Biophys. Res. Commun. 2009, 382, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Madlala, H.P.; Maarman, G.J.; Ojuka, E. Fructose impairs mitochondrial respiration and substrate utilization in hepatocytes via the enzyme glutamate oxaloacetate transaminase. Integr. Food Nutr. Metab. 2018, 5, 1–5. [Google Scholar] [CrossRef]
- Szabó, J.; Kósa, E.; Tóth, I.; Bruckner, G. Effect of adenosine and its metabolites on the hypothalamo-pituitary-adrenal axis. J. Nutr. Biochem. 1995, 6, 334–339. [Google Scholar] [CrossRef]
- Dallman, M.F.; le Fleur, S.E.; Pecoraro, N.C.; Gomez, F.; Houshyar, H.; Akana, S.F. Minireview: Glucocorticoids—Food intake, abdominal obesity, and wealthy nations in 2004. Endocrinology 2004, 145, 2633–2638. [Google Scholar] [CrossRef] [PubMed]
- Oliva, L.; Aranda, T.; Caviola, G.; Fernández-Bernal, A.; Alemany, M.; Fernández-López, J.A.; Remesar, X. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: A comparison of a cafeteria and a lipid-supplemented standard diet. PeerJ 2017, 5, e3697. [Google Scholar] [CrossRef]
- Stubbs, J.; Ferres, S.; Horgan, G. Energy Density of Foods: Effects on Energy Intake. Crit. Rev. Food Sci. Nutr. 2000, 40, 481–515. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Cheema, M.A.; Haleem, D.J. Fructose consumption decreases bodyweight gain, reduces anxiety, modulates spatial memory and increases dopaminne but not serotonin metabolism. EC Neurol. 2019, 11, 551–562. [Google Scholar]
- Sievenpiper, J.L.; de Souza, R.J.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Beyene, J.; Chiavaroli, L.; Di Buono, M.; Jenkins, A.L.; Leiter, L.A.; et al. Effect of fructose on body weight in controlled feeding trials: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 156, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.; Hui, S.; Lu, W.; Cowan, A.J.; Morscher, R.J.; Lee, G.; Liu, W.; Tesz, G.J.; Birnbaum, M.J.; Rabinowitz, J.D. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab. 2018, 27, 351–361.e3. [Google Scholar] [CrossRef]
- Diggle, C.P.; Shires, M.; Leitch, D.; Brooke, D.A.; Carr, I.M.; Markham, A.F.; Hayward, B.E.; Asipu, A.; Bonthron, D.T. Ketohexokinase: Expression and localization of the principal fructose-metabolizing enzyme. J. Histochem. Cytochem. 2009, 57, 763–774. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef]
- Crescenzo, R.; Bianco, F.; Coppola, P.; Mazzoli, A.; Valiante, S.; Liverini, G.; Iossa, S. Adipose tissue remodeling in rats exhibiting fructose-induced obesity. Eur. J. Nutr. 2014, 53, 413–419. [Google Scholar] [CrossRef]
- Zubiría, M.G.; Alzamendi, A.; Moreno, G.; Rey, M.A.; Spinedi, E.; Giovambattista, A. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells. Nutrients 2016, 8, 198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bjørndal, B.; Burri, L.; Staalesen, V.; Skorve, J.; Berge, R.K. Different adipose depots: Their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J. Obes. 2011, 2011, 490650. [Google Scholar] [CrossRef]
- Muriel, P.; López-Sánchez, P.; Ramos-Tovar, E. Fructose and the Liver. Int. J. Mol. Sci. 2021, 22, 6969. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hieronimus, B.; Medici, V.; Bremer, A.A.; Lee, V.; Nunez, M.V.; Sigala, D.M.; Keim, N.L.; Havel, P.J.; Stanhope, K.L. Synergistic effects of fructose and glucose on lipoprotein risk factors for cardiovascular disease in young adults. Metabolism 2020, 112, 154256. [Google Scholar] [CrossRef]
- Youn, J.H.; Youn, M.S.; Bergman, R.N. Synergism of glucose and fructose in net glycogen syntjesis in perfused rat livers. J. Biol. Chem. 1986, 261, 15960–15969. [Google Scholar] [CrossRef]
- Kretowicz, M.; Johnson, R.J.; Ishimoto, T.; Nakagawa, T.; Manitius, J. The impact of fructose on renal function and blood pressure. Int. J. Nephrol. 2011, 2011, 315879. [Google Scholar] [CrossRef]
- Altunkaynak, M.E.; Özbek, E.; Altunkaynak, B.Z.; Can, I.; Unal, D.; Unal, B. The effects os high-fat diet on the renal structure and morphometric parametric of kidneys in rats. J. Anat. 2008, 212, 842–852. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kang, D.H. Fructose in the kidney: From physiology to pathology. Kidney Res. Clin. Pract. 2021, 40, 527–541. [Google Scholar] [CrossRef]
- Do, M.H.; Lee, E.; Oh, M.-J.; Kim, Y.; Park, H.-Y. High-glucose or -fructose diet causes changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 2018, 10, 761. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Meng, Q.-H. Current understanding of the metabolism of micronutrients in chronic alcoholic liver disease. World J. Gastroenterol. 2020, 26, 4567–4578. [Google Scholar] [CrossRef] [PubMed]
- Pickett-Blakely, O.; Young, K.; Carr, R.M. Micronutrients in Nonalcoholic Fatty Liver Disease Pathogenesis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 451–462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwarz, J.-M.; Noworolski, S.M.; Wen, M.J.; Dyachenko, A.; Prior, J.L.; Weinberg, M.E.; Herraiz, L.A.; Tai, V.W.; Bergeron, N.; Bersot, T.P.; et al. Effect of a High-Fructose Weght-Maintaining Diet on Lipogenesis and Liver Fat. J. Clin. Endocrinol. Metab. 2015, 100, 2434–2442. [Google Scholar] [CrossRef]
- Blakemore, S.J.; Aledo, J.C.; James, J.; Campbell, F.C.; Lucocq, J.M.; Hundal, H.S. The GLUT5 hexose transporter is also localized to the basolateral membrane of human jejunum. Biochem. J. 1995, 309, 7–12. [Google Scholar] [CrossRef]
- Fallon, H.J.; Kemp, E.L. Effects of diet on hepatic triglyceride synthesis. J. Clin. Investig. 1968, 47, 712–719. [Google Scholar] [CrossRef]
- Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.-H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol. 2018, 68, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Francey, C.; Cros, J.; Rosset, R.; Crézé, C.; Rey, V.; Stefanoni, N.; Schneiter, P.; Tappy, L.; Seyssel, K. The extra-splanchnic fructose escape after ingestion of a fructose–glucose drink: An exploratory study in healthy humans using a dual fructose isotope method. Clin. Nutr. ESPEN 2019, 29, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.D.; Stephenson, M.C.; Crossland, H.; Cordon, S.M.; Palcidi, E.; Cox, E.F.; Taylor, M.A.; Aithal, G.P.; Macdonald, I.A. No difference between high-fructose and high glucose diets on liver triacylglycerol or biochemistry in healthy overwight men. Gastroenterology 2013, 145, 1016–1025.e2. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Z.; Empie, M.W. Fructose metabolism in humans—What isotopic tracer studies tell us. Nutr. Metab. 2012, 9, 89. [Google Scholar] [CrossRef]
- Liao, Y.; Chen, Q.; Liu, L.; Huang, H.; Sun, J.; Bai, X.; Jin, C.; Li, H.; Sun, F.; Xiao, X.; et al. Amino Acid is a major carbon source for hepatic lipogenesis. Cell Metab. 2024, 36, 2437–2448.e8. [Google Scholar] [CrossRef]
- Sanders, F.W.; Griffin, J.L. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biol. Rev. 2016, 91, 452–468. [Google Scholar] [CrossRef]
- Sidossis, L.S.; Wolfe, R.R. Glucose and insulin-induced inhibition of fatty acid oxidation: The glucose-fatty acid cycle reversed. Am. J. Physiol. Endocrinol. Metab. 1996, 270, E733–E738. [Google Scholar] [CrossRef] [PubMed]
- Thorens, B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 2015, 58, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Krycer, J.R.; Quek, L.-E.; Francis, D.; Zadoorian, A.; Weiss, F.C.; Cooke, K.C.; Nelson, M.E.; Diaz-Vegas, A.; Humphrey, S.J.; Scalzo, R.; et al. Insulin signaling requires glucose to promote lipid anabolism in adipocytes. J. Biol. Chem. 2020, 295, 13250–13266. [Google Scholar] [CrossRef]
- Crofford, O.B.; Felts, P.W.; Lacy, W.W. Effect of Glucose Infusion on the Individual Plasma Free Amino Acids in Man. Proc. Soc. Exp. Biol. Med. 1964, 117, 11–14. [Google Scholar] [CrossRef]
- Rang, O.; Qin, X.; Tang, Y.; Cao, L.; Li, G.; Liu, X.; Zhong, J.; Wang, M. The effect of fructose exposure on amino acid metabolism among Chinese community residents and its possible multi-omics mechanisms. Sci. Rep. 2023, 13, 22704. [Google Scholar] [CrossRef]
- Lanaspa, M.A.; Cicerchi, C.; Garcia, G.; Li, N.; Roncal-Jimenez, C.A.; Rivard, C.J.; Hunter, B.; Andrés-Hernando, A.; Ishimoto, T.; Sánchez-Lozada, L.G.; et al. Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver. PLoS ONE 2012, 7, e48801. [Google Scholar] [CrossRef] [PubMed]
- Mäenpää, P.H.; Raivio, K.O.; Kekomäki, M.P. Liver Adenine Nucleotides: Fructose-Induced Depletion and Its Effect on Protein Synthesis. Science 1968, 161, 1253–1254. [Google Scholar] [CrossRef] [PubMed]
- Lubawy, M.; Formanowicz, D. High-Fructose Diet-Induced Hyperuricemia Accompanying Metabolic Syndrome-Mechanisms and Dietary Therapy Proposals. Int. J. Environ. Res. Public Health 2023, 20, 3596. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Conte, A.; Damiano, F.; Siculella, L.; Zara, V. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats. Eur. J. Nutr. 2014, 53, 1103–1114. [Google Scholar] [CrossRef]
- Bruckner, G.; Szabó, J.; Sunvold, G. Implications of nutrition on feline hepatic fatty acid metabolism. In Recent Advances in Canine and Feline Nutrition; Reinhart, G., Carey, D., Eds.; Orange Frazer Press: Wilmington, OH, USA, 1998; pp. 149–164. [Google Scholar]
- Rémésy, C.; Demigné, C.; Aufrère, J. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem. J. 1978, 170, 321–329. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Xiang, X.; Zhu, Y.; Men, J.; He, M. Estimation of the normal range of blood glucose in rats. Wei Sheng Yan Jiu 2010, 39, 133–137. [Google Scholar]
- Amara, K.A.; Goze, B.N.; Bléyéré, M.N.; Yapo, P.A. Blood Parameters in Rats (Rattus norvegicus) Fed a New Food (L3P) Produced in Laboratory of Physiology, Pharmacology and Pharmacopoeia (Abidjan/Cote d’Ivoire). SDRP J. Cell. Mol. Physiol. 2018, 2, 144–153. [Google Scholar]
- Song, G.; Qi, W.; Wang, Y.; Pang, S.; Li, Y. The metabolic effect of fructose on normal rats in a mild dose with glucose and saccharose as control. Food Nutr. Res. 2021, 65, 5589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mamikutty, N.; Thent, Z.C.; Sapri, S.R.; Sahruddin, N.N.; Mohd Yusof, M.R.; Haji Suhaimi, F. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. BioMed Res. Int. 2014, 2014, 263897. [Google Scholar] [CrossRef]
- Jameel, F.; Phang, M.; Wood, L.G.; Garg, M.L. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. Lipids Health Dis. 2014, 13, 195. [Google Scholar] [CrossRef]
- Byers, S.O.; Friedman, M. Site of origin of plasma triglyceride. Am. J. Physiol. 1960, 198, 629–631. [Google Scholar] [CrossRef]
- Basciano, H.; Federico, L.; Adeli, K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab. 2005, 2, 5. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, H.; Sun, W.; An, X.; Lian, F. Triglyceride glucose (TyG) index: A promising biomarker for diagnosis and treatment of different diseases. Eur. J. Intern. Med. 2025, 131, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Angoorani, P.; Heshmat, R.; Ejtahed, H.-S.; Motlagh, M.E.; Ziaodini, H.; Taheri, M.; Aminaee, T.; Goodarzi, A.; Qorbani, M.; Kelishadi, R. Validity of triglyceride-glucose index as an indicator for metabolic syndrome in children and adolescents: The CASPIAN-V study. Eat. Weight Disord. Stud. Anorex. Bulim. Obes. 2018, 23, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Kazumi, T.; Odaka, H.; Hozumi, T.; Ishida, Y.; Amano, N.; Yoshino, G. Effects of dietary fructose or glucose on triglyceride production and lipogenic enzyme activities in the liver of Wistar fatty rats, an animal model of NIDDM. Endocr. J. 1997, 44, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Schumann, G.; Bonora, R.; Ceriotti, F.; Clerc-Renaud, P.; Ferrero, C.A.; Férard, G.; Franck, P.F.H.; Gella, F.J.; Hoelzel, W.; Jørgensen, P.J.; et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase. Clin. Chem. Lab. Med. 2002, 40, 643–648. [Google Scholar] [CrossRef]
- Puri, B.K.; Kingston, M.C.; Monro, J.A. Fructose-associated hepatotoxicity indexed by the lactate dehydrogenase isoenzyme LDH-5. Med. Hypotheses 2019, 124, 40–41. [Google Scholar] [CrossRef]
- Neelofar, K.; Ahmad, J. A comparative analysis of fructosamine with other risk factors for kidney dysfunction in diabetic patients with or without chronic kidney disease. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 240–244. [Google Scholar] [CrossRef]
- Pedrosa, W.; Sander Diniz, M.d.F.; Barreto, S.M.; Vidigal, P.G. Establishing a blood fructosamine reference range for the Brazilian population based on data from ELSA–Brazil. Pract. Lab. Med. 2019, 13, e00111. [Google Scholar] [CrossRef]
- Levi, B.; Werman, M.J. Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J. Nutr. 1998, 128, 1442–1449. [Google Scholar] [CrossRef]
- Malmström, H.; Wändell, P.E.; Holzmann, M.J.; Ärnlöv, J.; Jungner, I.; Hammar, N.; Walldius, G.; Carlsson, A.C. Low fructosamine and mortality—A long term follow-up of 215,011 nondiabetic subjects in the Swedish AMORIS study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1120–1128. [Google Scholar] [CrossRef]
- Thorburn, A.W.; Storlien, L.H.; Jenkins, A.B.; Khouri, S.; Kraegen, E.W. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am. J. Clin. Nutr. 1989, 49, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Bantle, J.P. Dietary fructose and metabolic syndrome and diabetes. J. Nutr. 2009, 139, 1263S–1268S. [Google Scholar] [CrossRef] [PubMed]
- Ramnanan, C.J.; Edgerton, D.S.; Kraft, G.; Cherrington, A.D. Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes. Metab. 2011, 1, 118–125. [Google Scholar] [CrossRef]
- Gerich, J.E.; Charles, M.A.; Grodsky, G.M. Characterization of the effects of arginine and glucose on glucagon and insulin release from the perfused rat pancreas. J. Clin. Investig. 1974, 54, 833–841. [Google Scholar] [CrossRef]
- Haederstal, S.; Andersen, A.; Knop, F.K.; Vilsboll, T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat. Rev. Endocrinol. 2023, 19, 321–325. [Google Scholar] [CrossRef]
- Goto, Y.; Seino, Y.; Taminato, T.; Imura, H. Fructose: Inhibition of glucagon and stimilation of insulin responses to arginine in the isolated perfused rat pancreas. J. Endocr. 1976, 69, 295–296. [Google Scholar] [CrossRef]
- Sato, Y.; Ito, T.; Udaka, N.; Kanisawa, M.; Noguchi, Y.; Cushman, S.W.; Satoh, S. Immunohistochemical localization of facilitated-diffusion glucose transporters in rat pancreatic islets. Tissue Cell 1996, 28, 637–643. [Google Scholar] [CrossRef]
- Giroix, M.H.; Jijakli, H.; Courtois, P.; Zhang, Y.; Sener, A.; Malaisse, W.J. Fructokinase activity in rat liver, ileum, parotid gland, pancreas, pancreatic islet, B and non-B islet cell homogenates. Int. J. Mol. Med. 2006, 17, 517–522. [Google Scholar] [CrossRef]
- Hong, J.; Abudula, R.; Chen, J.; Jeppesen, P.B.; Dyrskog, S.E.; Xiao, J.; Colombo, M.; Hermansen, K. The short-term effect of fatty acids on glucagon secretion is influenced by their chain length, spatial configuration, and degree of unsaturation: Studies in vitro. Metabolism 2005, 54, 1329–1336. [Google Scholar] [CrossRef]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Saltzman, E.; Wilson, P.W.; Jacques, P.F. Carbohydrate nutrition, insulin resistance and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004, 27, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.S.; Keim, N.L.; Stern, J.S.; Teff, K.; Havel, P.J. Fructose, weight gain and the insulin resistance syndrome. Am. J. Clin. Nutr. 2002, 76, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Honzawa, N.; Fujimoto, K.; Kitamura, T. Cell Autonomous Dysfunction and Insulin Resistance in Pancreatic α Cells. Int. J. Mol. Sci. 2019, 20, 3699. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.C.; Howell, S.L.; Taylor, K.W. Fatty acids as regulators of glucagon secretion. Nature 1969, 224, 808–809. [Google Scholar] [CrossRef]
- Gilon, P.; Cheng-Xue, R.; Lai, B.K.; Chae, H.Y.; Gomez-Ruiz, A. Physiological and pathophysiological control of glucagon secretion by pancreatic alpha cells. In Islets of Langerhans, 2nd ed.; Springer: New York, NY, USA, 2014; pp. 1–69. [Google Scholar]
- Moh, M.A.M.; Jung, C.-H.; Lee, B.; Choi, D.; Kim, B.-Y.; Kim, C.-H.; Kang, S.-K.; Mok, J.-O. Association of glucagon-to-insulin ratio and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Diabetes Vasc. Dis. Res. 2018, 16, 186–195. [Google Scholar] [CrossRef]
- Bang, J.; Lee, S.A.; Koh, G.; Yoo, S. Association of Glucagon to Insulin Ratio and Metabolic Syndrome in Patients with Type 2 Diabetes. J. Clin. Med. 2023, 12, 5806. [Google Scholar] [CrossRef]
- Hannou, S.A.; Haslam, D.E.; McKeown, N.M.; Herman, M.A. Fructose metabolism and metabolic disease. J. Clin. Investig. 2018, 128, 545–555. [Google Scholar] [CrossRef]
- Lu, J.-M.; Wang, C.; Hu, Q.-H.; Kong, L.-D. Fructose induced leptin dysfunction and improvement by quercetin and rutin in rats. Chin. J. Nat. Med. 2008, 6, 466–473. [Google Scholar]
- Shapiro, A.; Mu, W.; Roncal, C.; Cheng, K.-Y.; Johnson, R.J.; Scarpace, P.J. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1370–R1375. [Google Scholar] [CrossRef]
- Teff, K.L.; Elliott, S.S.; Tschöp, M.; Kieffer, T.J.; Rader, D.; Heiman, M.; Townsend, R.R.; Keim, N.L.; D’Alessio, D.; Havel, P.J. Dietary Fructose Reduces Circulating Insulin and Leptin, Attenuates Postprandial Suppression of Ghrelin, and Increases Triglycerides in Women. J. Clin. Endocrinol. Metab. 2004, 89, 2963–2972. [Google Scholar] [CrossRef]
- Luo, L.; Liu, M. Adipose tissue in control of metabolism. J. Endocrinol. 2016, 231, R77–R99. [Google Scholar] [CrossRef]
- Garcia, M.L.; Milanez, M.I.; Nishi, E.E.; Sato, A.Y.; Carvalho, P.M.; Nogueira, F.N.; Campos, R.R.; Oyama, L.M.; Bergamaschi, C.T. Retroperitoneal adipose tissue denervation improves cardiometabolic and autonomic dysfunction in a high fat diet model. Life Sci. 2021, 283, 119841. [Google Scholar] [CrossRef]



















| Treatments | |||||
|---|---|---|---|---|---|
| L6.03 | GL5.28 or FL5.28 | GL4.70 or FL4.70 | GL4.23 or FL4.23 | G3.85 or F3.85 | |
| Casein (%) | 15.65 | 13.71 | 12.20 | 10.99 | 10.00 |
| Milk protein isolate (%) | 15.65 | 13.71 | 12.20 | 10.99 | 10.00 |
| Cellulose (%) | 7.83 | 6.86 | 6.10 | 5.50 | 5.00 |
| Corn oil (%) | 7.83 | 6.86 | 6.10 | 5.50 | 5.00 |
| L (%) | 45.22 | 29.71 | 17.63 | 7.94 | 0.00 |
| G or F (%) | 0.00 | 22.29 | 39.66 | 53.59 | 65.00 |
| AIN93VX mineral premix (%) | 5.48 | 4.80 | 4.27 | 3.85 | 3.50 |
| AIN93VX vitamin premix (%) | 1.57 | 1.37 | 1.22 | 1.10 | 1.00 |
| Cyst, Met, choline (%) | 0.78 | 0.69 | 0.61 | 0.55 | 0.50 |
| Sum (%) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| Calculated GE contents (kcal/100 g diet) | 602.61 | 528.00 | 469.83 | 423.21 | 385.00 |
| Calculated protein content (g/100 g diet) | 31.30 | 27.43 | 24.41 | 21.98 | 20.00 |
| Calculated protein energy ratio (g/kcal) | 19.25 | 19.25 | 19.25 | 19.25 | 19.25 |
| Feed Intake (g/day/100 g BW) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 6.35 ± 0.37 A | 6.85 ± 0.36 * B | 7.28 ± 1.12 BC | 6.57 ± 1.03 BA | 7.53 ± 0.23 C |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 7.59 ± 0.72 * B | 7.74 ± 0.85 B | 7.20 ± 0.93 B | 7.68 ± 0.89 B | |
| Calculated G or F Intake (g/100 g BW/Day) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 0.00 | 1.11 ± 0.06 | 3.20 ± 0.50 | 2.37 ± 0.36 | 4.89 ± 0.15 |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 1.23 ± 0.12 | 3.51 ± 0.45 | 2.52 ± 0.28 | 4.99 ± 0.58 | |
| Calculated GE intake (kcal/day/100 g BW) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 38.88 ± 2.28 A | 36.87 ± 1.96 * A | 34.85 ± 5.36 A | 28.38 ± 4.44 B | 29.38 ± 0.91 B |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 40.86 ± 3.88 * A | 37.08 ± 4.06 A | 31.08 ± 4.00 B | 29.95 ± 3.46 B | |
| BW (g) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 392.63 ± 16.77 A | 379.16 ± 17.71 BA | 365.69 ± 26.30 B | 342.06 ± 22.02 BC | 335.83 ± 13.63 C |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 390.50 ± 25.21 A | 379.44 ± 20.26 A | 343.13 ± 29.98 B | 326.13 ± 28.72 B | |
| BWG (g/day/100 g BW) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 2.11 ± 0.49 A | 1.91 ± 0.29 A | 1.73 ± 0.53 AB | 1.40 ± 0.37 BC | 1.30 ± 0.17 C |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 2.06 ± 0.34 A | 1.91 ± 0.33 A | 1.40 ± 0.27 B | 1.17 ± 0.36 B | |
| SFE | 0.00 | 7.95 | 10.30 | 0.11 |
| FCR (g/g) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 3.01 ± 0.60 A | 3.59 ± 0.49 AC | 4.20 ± 0.87 AB | 4.69 ± 0.85 B | 5.78 ± 0.76 D |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 3.68 ± 0.35 AB | 4.05 ± 0.35 B | 5.13 ± 0.73 C | 5.65 ± 0.79 C | |
| EVBW (g) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 319.99 ± 15.28 A | 311.62 ± 16.67 AB | 300.21 ± 20.53 B | 272.94 ± 13.43 C | 264.46 ± 19.17 C |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 319.21 ± 22.79 A | 307.66 ± 18.61 A | 269.09 ± 29.76 B | 259.70 ± 20.18 B | |
| Viscera (g) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 72.6 ± 26.7 A | 67.5 ± 22.3 A | 65.5 ± 43.3 A | 69.1 ± 29.5 A | 71.4 ± 28.3 A |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 71.3 ± 39.4 A | 71.8 ± 30.1 A | 74.0 ± 34.8 A | 66.4 ± 43.3 A | |
| EWAT (g/100 g EVBW) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 1.32 ± 0.41 A | 0.92 ± 0.37 * B | 1.02 ± 0.34 AB | 0.88 ± 0.30 B | 0.84 ± 0.28 B |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 1.34 ± 0.35 * A | 1.26 ± 0.38 AC | 0.96 ± 0.30 BC | 0.91 ± 0.26 C | |
| RWAT (g/100 g EBW) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 1.48 ± 0.56 A | 1.28 ± 0.45 A | 1.28 ± 0.20 A | 0.77 ± 0.36 B | 0.76 ± 0.40 B |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 1.66 ± 0.54 A | 1.25 ± 0.43 AB | 0.94 ± 0.31 B | 0.59 ± 0.27 C | |
| Weight of Liver (g/100 g BW) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 3.50 ± 0.31 A | 3.19 ± 0.15 * C | 3.24 ± 0.24 * AC | 3.51 ± 0.38 * A | 3.95 ± 0.48 B |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 3.52 ± 0.33 * A | 3.97 ± 0.65 * AB | 4.27 ± 0.74 * B | 4.08 ± 0.16 B | |
| Weight of Kidney (g/100 g BW) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 0.63 ± 0.04 A | 0.61 ± 0.05 A | 0.65 ± 0.06 AB | 0.69 ± 0.04 B | 0.68 ± 0.05 * B |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 0.65 ± 0.06 A | 0.69 ± 0.07 AB | 0.74 ± 0.06 BC | 0.77 ± 0.06 * C | |
| Weight of Spleen (g/100 g BW) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 0.28 ± 0.06 A | 0.29 ± 0.03 A | 0.29 ± 0.05 A | 0.27 ± 0.03 A | 0.30 ± 0.04 A |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 0.29 ± 0.04 A | 0.28 ± 0.03 A | 0.29 ± 0.03 A | 0.33 ± 0.02 B | |
| Liver ash (% of DM) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 5.90 ± 1.28 A | 6.55 ± 0.61 AB | 6.47 ± 0.56 AB | 7.00 ± 0.66 B | 7.24 ± 2.24 AB |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 6.74 ± 0.82 A | 6.16 ± 1.17 A | 6.45 ± 0.98 A | 7.13 ± 1.25 A | |
| Liver crude protein (% of DM) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 69.67 ± 4.12 A | 72.34 ± 3.21 A | 73.75 ± 3.64 A | 72.75 ± 4.12 A | 69.50 ± 7.78 A |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 71.51 ± 3.55 A | 71.16 ± 4.11 A | 68.98 ± 6.96 A | 67.53 ± 6.08 A | |
| Liver ether extract (% of DM) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 19.86 ± 4.92 A | 16.12 ± 2.94 A | 11.39 ± 3.19 B | 10.19 ± 1.52 B | 14.53 ± 8.77 AB |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 16.76 ± 4.74 A | 13.83 ± 4.37 A | 15.21 ± 8.09 A | 16.14 ± 8.74 A | |
| Liver NfE (% of DM) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 4.57 ± 3.31 A | 4.99 ± 2.87 A | 8.39 ± 5.24 AB | 10.07 ± 5.33 B | 8.73 ± 7.49 AB |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 4.98 ± 3.24 A | 8.84 ± 4.69 AB | 9.36 ± 5.15 B | 9.21 ± 5.04 B | |
| Serum glucose (mmol/L) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 8.45 ± 1.27 A | 8.00 ± 1.04 A | 7.91 ± 0.68 A | 9.26 ± 3.30 A | 9.82 ± 3.11 A |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 8.10 ± 1.16 A | 7.92 ± 0.56 A | 8.13 ± 1.80 A | 8.36 ± 1.51 A | |
| Serum total cholesterol (mmol/L) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 2.10 ± 0.32 A | 2.04 ± 0.27 A | 1.94 ± 0.28 A | 1.65 ± 0.17 B | 1.27 ± 0.27 * C |
| FL5.38 | FL4.70 | FL4.23 | F3.90 | |
| 2.15 ± 0.23 A | 1.87 ± 0.20 B | 1.76 ± 0.33 B | 1.61 ± 0.28 * B | |
| Serum triglyceride (mmol/L) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 0.93 ± 0.21 A | 0.81 ± 0.33 A * | 1.13 ± 0.52 AB * | 1.19 ± 0.50 AB * | 1.44 ± 0.54 * B |
| FL5.38 | FL4.79 | FL4.32 | F3.90 | |
| 1.33 ± 0.49 * B | 2.12 ± 0.96 * C | 2.13 ± 0.84 * C | 2.06 ± 0.38 * C | |
| Serum LDH (U/mL) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 1.53 ± 37 A | 1.56 ± 0.45 A | 1.83 ± 0.38 A | 1.40 ± 0.50 A | 1.64 ± 0.84 A |
| FL5.38 | FL4.79 | FL4.32 | F3.90 | |
| 1.75 ± 0.45 A | 1.70 ± 0.18 A | 1.93 ± 0.91 A | 1.84 ± 0.78 A | |
| Serum fructosamine (μmol/L) | ||||
| L6.13 | FL5.38 | FL4.79 | FL4.32 | F3.90 |
| 464.38 ± 37.64 A | 463.13 ± 38.07 A | 454.63 ± 33.61 A | 451.50 ± 71.27 A | 488.29 ± 88.00 A * |
| FL5.38 | FL4.79 | FL4.32 | F3.90 | |
| 424.75 ± 53.07 AB | 431.50 ± 41.24 AB | 400.00 ± 33.08 AB | 398.38 ± 38.18 B * | |
| Serum insulin (μg/L) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 1.94 ± 0.83 A | 2.16 ± 1.29 A | 1.84 ± 0.59 A | 2.27 ± 1.69 A | 1.97 ± 0.74 A |
| FL5.38 | FL4.79 | FL4.32 | F3.90 | |
| 2.35 ± 0.83 A | 2.26 ± 0.46 A | 2.32 ± 1.70 A | 2.74 ± 1.85 A | |
| Serum glucagon (μg/L) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 5.73 ± 2.03 A | 3.19 ± 1.43 B | 2.90 ± 1.59 * B | 3.48 ± 2.05 * B | 2.94 ± 1.90 B |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 3.15 ± 0.48 B | 13.94 ± 6.52 * C | 13.77 ± 5.53 * C | 5.14 ± 4.20 A | |
| Glucagon to Insulin Ratio | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 2.95 ± 0.53 A | 1.48 ± 0.47 B | 1.57 ± 0.40 B | 1.53 ± 0.44 B | 1.40 ± 0.29 B |
| FL5.38 | FL4.79 | FL4.32 | F3.90 | |
| 1.34 ± 0.20 B | 6.17 ± 1.91 * C | 5.22 ± 2.42 * C | 1.87 ± 0.56 B | |
| Serum leptin (ng/mL) | ||||
| L6.03 | GL5.28 | GL4.70 | GL4.23 | G3.85 |
| 2.71 ± 1.33 AC | 2.83 ± 1.03 A | 2.32 ± 0.50 AC | 1.88 ± 0.47 CB | 2.62 ± 0.97 AB |
| FL5.28 | FL4.70 | FL4.23 | F3.85 | |
| 3.10 ± 0.84 A | 3.03 ± 0.71 * A | 3.25 ± 1.45 * A | 1.40 ± 0.36 * A | |
| Dietary carbohydrate energy to lipid energy ratio (%) | Significant effects (F versus G) | |||||||||
| 86/14 | 86/14 | 5/95 | 5/95 | 23/77 | 43/57 | 64/36 | 86/14 | |||
| Treatment groups | Pooled data | SFE | ||||||||
| Relative change (%) Data from Szabó et al. [11] | Relative change (%) (Data from the present experiment) | |||||||||
| G3.85 versus St3.85 | F3.90 versus St3.85 | L6.03 versus St3.85 | L6.03 versus G3.85 | FL5.28 versus GL5.28 | FL4.70 versus GL4.70 | FL4.23 versus GL4.23 | F3.85 versus G3.85 | |||
| Feed intake | −3.46 | −1.54 | −18.59 | −15.73 | 10.81 | 6.38 | 9.52 | 1.95 | * | |
| Energy intake | −1.35 | 1.01 | 30.98 | 32.34 | 10.81 | 6.38 | 9.52 | 1.95 | * | |
| BWG | −2.26 | −12.03 | 58.65 | 61.72 | 7.95 | 10.30 | 0.11 | −10.20 | * | |
| FCR (Feed/gain) | −1.37 | 11.95 | −48.63 | −44.31 | 2.13 | −6.88 | 7.70 | 2.44 | ||
| EVSCBW | −4.89 | −6.62 | 15.07 | 20.98 | 2.44 | 2.48 | −1.41 | −1.80 | ||
| Weight of viscera | 5.40 | −1.91 | 5.33 | 1.77 | 5.54 | 9.63 | 7.10 | −6.94 | * | |
| EWAT | 2.44 | 10.98 | 60.98 | 57.83 | 45.80 | 22.91 | 13.04 | 8.44 | * | * |
| RWAT | −7.32 | −28.05 | 80.49 | 94.70 | 30.11 | −2.52 | 21.60 | −21.93 | ||
| Liver weight | 13.83 | 23.92 | 0.86 | −11.37 | 10.38 | 22.68 | 21.51 | 8.76 | * | * |
| Kidney weight | 0.00 | 13.24 | −7.35 | −7.79 | 7.55 | 6.36 | 7.34 | 13.28 | * | * |
| Spleen weight | 11.11 | 25.93 | 3.70 | −6.78 | −1.21 | −1.75 | 5.27 | 15.85 | ||
| Liver ash | 8.55 | 6.90 | −11.54 | −18.47 | 3.02 | −4.71 | −7.75 | −1.53 | ||
| Liver ether extract | 107.28 | 138.66 | 183.31 | 36.69 | 3.98 | 21.42 | 49.20 | 11.05 | * | |
| Liver protein | −8.00 | −10.06 | −7.25 | 0.24 | −1.14 | −3.51 | −5.18 | −2.84 | ||
| Liver N-free extract | −24.94 | −17.21 | −59.59 | −47.68 | −0.22 | 5.41 | −6.97 | 5.45 | ||
| Serum glucose | 29.55 | 10.29 | 11.48 | −13.92 | 1.25 | 0.05 | −12.19 | −14.87 | ||
| Serum total cholesterol | −26.13 | 1.26 | 32.08 | 65.17 | 5.52 | −3.66 | 6.82 | 26.83 | ||
| Serum TG | 29.73 | 72.07 | −16.22 | −35.64 | 63.08 | 88.15 | 79.25 | 42.60 | * | * |
| Serum fructosamine | 7.22 | −12.52 | −16.22 | −4.90 | −8.29 | −5.09 | −4.26 | −18.41 | * | |
| Serum LDH | −6.29 | 5.14 | −12.57 | −7.12 | 12.31 | −7.45 | 38.00 | 12.11 | ||
| Serum insulin | 5.91 | 47.31 | −9.14 | 1.37 | 8.68 | 22.49 | 2.10 | 39.61 | ||
| Serum glucagon | −41.91 | 26.02 | 40.44 | 94.71 | −1.20 | 380.16 | 248.24 | 74.75 | * | * |
| Glucagon/Insulin ratio | −45.16 | −14.79 | 54.57 | 110.84 | −9.09 | 292.01 | 241.08 | 33.68 | * | * |
| Serum leptin | 25.17 | −40.15 | 44.93 | 15.90 | 9.59 | 30.53 | 53.45 | −40.15 | * | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, J.; Maróti, G.; Solymosi, N.; Andrásofszky, E.; Bersényi, A.; Bruckner, G.; Hullár, I. Effects of Glucose and Fructose on Production Traits, Organ Weights and Metabolomic Indices in Rats on Different Energy and Nutrient Dense Diets. Nutrients 2025, 17, 2746. https://doi.org/10.3390/nu17172746
Szabó J, Maróti G, Solymosi N, Andrásofszky E, Bersényi A, Bruckner G, Hullár I. Effects of Glucose and Fructose on Production Traits, Organ Weights and Metabolomic Indices in Rats on Different Energy and Nutrient Dense Diets. Nutrients. 2025; 17(17):2746. https://doi.org/10.3390/nu17172746
Chicago/Turabian StyleSzabó, József, Gergely Maróti, Norbert Solymosi, Emese Andrásofszky, András Bersényi, Geza Bruckner, and István Hullár. 2025. "Effects of Glucose and Fructose on Production Traits, Organ Weights and Metabolomic Indices in Rats on Different Energy and Nutrient Dense Diets" Nutrients 17, no. 17: 2746. https://doi.org/10.3390/nu17172746
APA StyleSzabó, J., Maróti, G., Solymosi, N., Andrásofszky, E., Bersényi, A., Bruckner, G., & Hullár, I. (2025). Effects of Glucose and Fructose on Production Traits, Organ Weights and Metabolomic Indices in Rats on Different Energy and Nutrient Dense Diets. Nutrients, 17(17), 2746. https://doi.org/10.3390/nu17172746

