Helicobacter pylori and Compositional Patterns of Digestive Tract Microbiome in Children: A Literature Review
Abstract
1. Introduction
1.1. Helicobacter pylori—A Longstanding Medical Challenge
1.2. Transmission Pathways of Helicobacter pylori
1.3. Pathogenesis and Genetic Adaptability of Helicobacter pylori
1.4. Challenges and Side Effects of Antibiotic Therapy
1.5. Alternative and Complementary Therapies
1.6. Microbiota and Personalized Medicine—Material and Methods
1.7. Aim of Current Study and Future Directions
2. Microbiome Maturation and Its Role in Helicobacter pylori Colonization and Treatment Response
2.1. Microbial Development from Infancy to Adolescence
2.2. Implications for H. pylori Colonization
2.3. Treatment Response and Microbial Maturity
3. Helicobacter pylori and Microbiome Study
3.1. Modern Diagnostic Approaches for H. pylori Infection
3.2. Beyond the Stomach: H. pylori Throughout the Digestive Tract
3.3. H. pylori-Induced Dysbiosis and Microbial Imbalance
4. Helicobacter pylori and the Oral Microbiome
4.1. Presence and Survival of H. pylori Inside the Oral Cavity
4.2. Impact of H. pylori on Oral Health and Oral Microbiome Composition
4.3. Effects of H. pylori Eradication Therapy on Oral Microbiota
5. Helicobacter pylori and the Gastric Microbiome
5.1. Gastric Microbiota Alterations in Children with H. pylori Infection
5.2. Immune Response and Gastritis Development in Pediatric H. pylori Infection
5.3. Impact of H. pylori Eradication Therapy on Gastric Microbiota
5.4. Long-Term Microbiota Recovery and Health Outcomes
6. Helicobacter pylori and the Intestinal Microbiome
6.1. Intrafamilial Transmission of H. pylori and Shared Gut Microbiota Patterns
6.2. Gut Microbiota Changes in Symptomatic vs. Asymptomatic Children
6.3. Impact of H. pylori Eradication Therapy on Gut Microbiota
7. Geographic Limitations of Pediatric H. pylori Microbiome Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, X.; Lu, H.; Liu, X.; He, J.; Li, B.; Wang, Z.; Zhao, Y.; Zhang, X.; Yu, X. Unravelling the Enigma of the Human Microbiome: Evolution and Selection of Sequencing Technologies. Microb. Biotechnol. 2024, 17, e14364. [Google Scholar] [CrossRef] [PubMed]
- Procházková, N.; Laursen, M.F.; La Barbera, G.; Tsekitsidi, E.; Jørgensen, M.S.; Rasmussen, M.A.; Raes, J.; Licht, T.R.; Dragsted, L.O.; Roager, H.M. Gut Physiology and Environment Explain Variations in Human Gut Microbiome Composition and Metabolism. Nat. Microbiol. 2024, 9, 3210–3225. [Google Scholar] [CrossRef]
- Yang, H.R. Updates on the Diagnosis of Helicobacter pylori Infection in Children: What Are the Differences between Adults and Children? Pediatr. Gastroenterol. Hepatol. Nutr. 2016, 19, 96–103. [Google Scholar] [CrossRef]
- Barakat, S.H.; Hanafy, H.M.; Guimei, M.; Elsawy, E.H.; Khalil, A.F.M. Different Regimens for Eradication of Helicobacter pylori Infection in Children: A Randomized Controlled Trial. Eur. J. Pediatr. 2024, 184, 13. [Google Scholar] [CrossRef]
- Curado, M.P.; de Oliveira, M.M.; de Araújo Fagundes, M. Prevalence of Helicobacter pylori Infection in Latin America and the Caribbean Populations: A Systematic Review and Meta-Analysis. Cancer Epidemiol. 2019, 60, 141–148. [Google Scholar] [CrossRef]
- Chen, Y.C.; Malfertheiner, P.; Yu, H.T.; Kuo, C.L.; Chang, Y.Y.; Meng, F.T.; Wu, Y.X.; Hsiao, J.L.; Chen, M.J.; Lin, K.P.; et al. Global Prevalence of Helicobacter pylori Infection and Incidence of Gastric Cancer between 1980 and 2022. Gastroenterology 2024, 166, 605–619. [Google Scholar] [CrossRef]
- Yuan, C.; Adeloye, D.; Luk, T.T.; Huang, L.; He, Y.; Xu, Y.; Ye, X.; Yi, Q.; Song, P.; Rudan, I.; et al. The Global Prevalence of and Factors Associated with Helicobacter pylori Infection in Children: A Systematic Review and Meta-Analysis. Lancet Child Adolesc. Health 2022, 6, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Malaty, H.M.; El-Kasabany, A.; Graham, D.Y.; Miller, C.C.; Reddy, S.G.; Srinivasan, S.R.; Yamaoka, Y.; Berenson, G.S. Age at Acquisition of Helicobacter pylori Infection: A Follow-Up Study from Infancy to Adulthood. Lancet 2002, 359, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Kayali, S.; Manfredi, M.; Gaiani, F.; Bianchi, L.; Bizzarri, B.; Leandro, G.; Di Mario, F.; De’ Angelis, G.L. Helicobacter pylori, Transmission Routes and Recurrence of Infection: State of the Art. Acta Biomed. 2018, 89, 72–76. [Google Scholar] [CrossRef]
- Parsonnet, J.; Shmuely, H.; Haggerty, T. Fecal and Oral Shedding of Helicobacter pylori from Healthy Infected Adults. JAMA 1999, 282, 2240–2245. [Google Scholar] [CrossRef]
- Huang, A.F.; He, C.; Sheng, J.W.; Jiang, X.T.; Li, N.S.; Fan, H.Z.; Zhu, Y. The Epidemiological Study of Family-Based Helicobacter pylori Screening and Its Benefits: A Cross-Sectional Study. Sci. Rep. 2025, 15, 5553. [Google Scholar] [CrossRef]
- Weyermann, M.; Rothenbacher, D.; Brenner, H. Acquisition of Helicobacter pylori Infection in Early Childhood: Independent Contributions of Infected Mothers, Fathers, and Siblings. Am. J. Gastroenterol. 2009, 104, 182–189. [Google Scholar] [CrossRef]
- Herrera, P.M.; Mendez, M.; Velapatiño, B.; Santivañez, L.; Balqui, J.; Finger, S.A.; Sherman, J.; Zimic, M.; Cabrera, L.; Watanabe, J.; et al. DNA-Level Diversity and Relatedness of Helicobacter pylori Strains in Shantytown Families in Peru and Transmission in a Developing-Country Setting. J. Clin. Microbiol. 2008, 46, 3912–3918. [Google Scholar] [CrossRef]
- Yokota, S.; Konno, M.; Fujiwara, S.; Toita, N.; Takahashi, M.; Yamamoto, S.; Ogasawara, N.; Shiraishi, T. Intrafamilial, Preferentially Mother-to-Child and Intraspousal, Helicobacter pylori Infection in Japan Determined by Multilocus Sequence Typing and Random Amplified Polymorphic DNA Fingerprinting. Helicobacter 2015, 20, 334–342. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; Sindi, W.; Alzahrani, Y.; Alhifani, S.; Alshehri, T.; Anajirih, N.A.; AlMutairi, T.; Alsaedi, A.; et al. Pivotal Role of Helicobacter pylori Virulence Genes in Pathogenicity and Vaccine Development. Front. Med. 2025, 11, 1523991. [Google Scholar] [CrossRef]
- Jaka, H.; Rhee, J.A.; Östlundh, L.; Smart, L.; Peck, R.; Mueller, A.; Kasang, C.; Mshana, S.E. The Magnitude of Antibiotic Resistance to Helicobacter pylori in Africa and Identified Mutations Which Confer Resistance to Antibiotics: Systematic Review and Meta-Analysis. BMC Infect. Dis. 2018, 18, 193. [Google Scholar] [CrossRef] [PubMed]
- Suerbaum, S.; Ailloud, F. Genome and Population Dynamics during Chronic Infection with Helicobacter pylori. Curr. Opin. Immunol. 2023, 82, 102304. [Google Scholar] [CrossRef]
- Hanada, K.; Yamaoka, Y. Genetic Battle between Helicobacter pylori and Humans: The Mechanism Underlying Homologous Recombination in Bacteria, Which Can Infect Human Cells. Microbes Infect. 2014, 16, 833–839. [Google Scholar] [CrossRef]
- Silva, G.M.; Silva, H.M.; Nascimento, J.; Gonçalves, J.P.; Pereira, F.; Lima, R. Helicobacter pylori Antimicrobial Resistance in a Pediatric Population. Helicobacter 2018, 23, e12528. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, C.; Torres, J.; Serrano, C.A.; Gallardo, P.; Orellana, V.; George, S.; O’Ryan, M.; Lucero, Y. Antimicrobial Resistance of Helicobacter pylori Isolated From Latin American Children and Adolescents (2008–2023): A Systematic Review. Helicobacter 2024, 29, e13101, Erratum in Helicobacter 2024, 29, e13145. [Google Scholar] [CrossRef]
- Strand, D.S.; Kim, D.; Peura, D.A. 25 Years of Proton Pump Inhibitors: A Comprehensive Review. Gut Liver 2017, 11, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Homan, M.; Jones, N.L.; Bontems, P.; Carroll, M.W.; Czinn, S.J.; Gold, B.D.; Goodman, K.; Harris, P.R.; Jerris, R.; Kalach, N.; et al. Updated Joint ESPGHAN/NASPGHAN Guidelines for Management of Helicobacter pylori Infection in Children and Adolescents (2023). J. Pediatr. Gastroenterol. Nutr. 2024, 79, 758–785. [Google Scholar] [CrossRef]
- Dore, M.P.; Sau, R.; Niolu, C.; Abbondio, M.; Tanca, A.; Bibbò, S.; Loria, M.; Pes, G.M.; Uzzau, S. Metagenomic Changes of Gut Microbiota following Treatment of Helicobacter pylori Infection with a Simplified Low-Dose Quadruple Therapy with Bismuth or Lactobacillus reuteri. Nutrients 2022, 14, 2789. [Google Scholar] [CrossRef]
- Bontems, P.; Kalach, N.; Oderda, G.; Salame, A.; Muyshont, L.; Miendje, D.Y.; Raymond, J.; Cadranel, S.; Scaillon, M. Sequential Therapy versus Tailored Triple Therapies for Helicobacter pylori Infection in Children. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Zhu, Z.; Hao, Y.; Li, Q.; Liu, H.; Chen, Q.; Peng, C.; Zhang, C.; Zou, Y.; Jia, J.; et al. 1,3,6-Trigalloylglucose: A Novel Potent Anti-Helicobacter pylori Adhesion Agent Derived from Aqueous Extracts of Terminalia chebula Retz. Molecules 2024, 29, 1161. [Google Scholar] [CrossRef]
- Ou, L.; Hao, Y.; Liu, H.; Zhu, Z.; Li, Q.; Chen, Q.; Wei, R.; Feng, Z.; Zhang, G.; Yao, M. Chebulinic Acid Isolated from Aqueous Extracts of Terminalia chebula Retz Inhibits Helicobacter pylori Infection by Potential Binding to CagA Protein and Regulating Adhesion. Front. Microbiol. 2024, 15, 1416794. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Feng, Z.; Ou, L.; Zou, Y.; Sang, S.; Liu, H.; Zhue, W.; Gane, G.; Zhang, G.; Yao, M. Syzygium aromaticum Enhances Innate Immunity by Triggering Macrophage M1 Polarization and Alleviates Helicobacter pylori-Induced Inflammation. J. Funct. Foods 2023, 107, 105626. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, B.; Zhou, X.; Wang, F.; Xie, Y.; Zheng, H.; Lv, N. Efficacy and Safety of Probiotics as Adjuvant Agents for Helicobacter pylori Infection: A Meta-Analysis. Exp. Ther. Med. 2015, 9, 707–716. [Google Scholar] [CrossRef]
- Zhou, B.G.; Chen, L.X.; Li, B.; Wan, L.Y.; Ai, Y.W. Saccharomyces boulardii as an Adjuvant Therapy for Helicobacter pylori Eradication: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. Helicobacter 2019, 24, e12651. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Meta-Analysis of the Efficacy of Probiotic-Supplemented Therapy on the Eradication of H. pylori and Incidence of Therapy-Associated Side Effects. Microb. Pathog. 2020, 147, 104403. [Google Scholar] [CrossRef]
- Liu, L.H.; Han, B.; Tao, J.; Zhang, K.; Wang, X.K.; Wang, W.Y. The Effect of Saccharomyces boulardii Supplementation on Helicobacter pylori Eradication in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Infect. Dis. 2023, 23, 878. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Han, Z.; He, K.; Zhang, Y.; Wu, D.; Chen, H. The Effects of Probiotics Supplementation on Helicobacter pylori Standard Treatment: An Umbrella Review of Systematic Reviews with Meta-Analyses. Sci. Rep. 2024, 14, 10069. [Google Scholar] [CrossRef]
- Fayed, B.; Jagal, J.; Cagliani, R.; Kedia, R.A.; Elsherbeny, A.; Bayraktutan, H.; Khoder, G.; Haider, M. Co-Administration of Amoxicillin-Loaded Chitosan Nanoparticles and Inulin: A Novel Strategy for Mitigating Antibiotic Resistance and Preserving Microbiota Balance in Helicobacter pylori Treatment. Int. J. Biol. Macromol. 2023, 253 Pt 2, 126706. [Google Scholar] [CrossRef]
- Martín-Núñez, G.M.; Cornejo-Pareja, I.; Coin-Aragüez, L.; Roca-Rodríguez, M.D.M.; Muñoz-Garach, A.; Clemente-Postigo, M.; Cardona, F.; Moreno-Indias, I.; Tinahones, F.J. H. pylori Eradication with Antibiotic Treatment Causes Changes in Glucose Homeostasis Related to Modifications in the Gut Microbiota. PLoS ONE 2019, 14, e0213548. [Google Scholar] [CrossRef] [PubMed]
- Klymiuk, I.; Bilgilier, C.; Stadlmann, A.; Thannesberger, J.; Kastner, M.T.; Högenauer, C.; Püspök, A.; Biowski-Frotz, S.; Schrutka-Kölbl, C.; Thallinger, G.G.; et al. The Human Gastric Microbiome Is Predicated upon Infection with Helicobacter pylori. Front. Microbiol. 2017, 8, 2508. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, T.; Lu, Y.; Wang, C.; Wu, Y.; Li, J.; Tao, Y.; Deng, L.; Zhang, X.; Ma, J. Helicobacter pylori Infection Affects the Human Gastric Microbiome, as Revealed by Metagenomic Sequencing. FEBS Open Bio 2022, 12, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Wan, C.; Wang, Z. The Relationship of Gastric Microbiota and Helicobacter pylori Infection in Pediatrics Population. Helicobacter 2019, 25, e12676. [Google Scholar] [CrossRef]
- Mark Welch, J.L.; Dewhirst, F.E.; Borisy, G.G. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu. Rev. Microbiol. 2019, 73, 335–358. [Google Scholar] [CrossRef]
- Bhandary, R.; Venugopalan, G.; Ramesh, A.; Tartaglia, G.M.; Singhal, I.; Khijmatgar, S. Microbial Symphony: Navigating the Intricacies of the Human Oral Microbiome and Its Impact on Health. Microorganisms 2024, 12, 571. [Google Scholar] [CrossRef]
- Ogunrinola, G.A.; Oyewale, J.O.; Oshamika, O.O.; Olasehinde, G.I. The Human Microbiome and Its Impacts on Health. Int. J. Microbiol. 2020, 2020, 8045646. [Google Scholar] [CrossRef]
- Leviatan, S.; Shoer, S.; Rothschild, D.; Gorodetski, M.; Segal, E. An Expanded Reference Map of the Human Gut Microbiome Reveals Hundreds of Previously Unknown Species. Nat. Commun. 2022, 13, 3863. [Google Scholar] [CrossRef] [PubMed]
- Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 2019, 569, 641–648. [Google Scholar] [CrossRef]
- The MetaHIT Consortium; Ehrlich, S.D. Metahit: The European Union Project on Metagenomics of the Human Intestinal Tract. In Metagenomics of the Human Body; Nelson, K.E., Ed.; Springer: New York, NY, USA, 2011; pp. 307–316. [Google Scholar]
- Burkitt, M.D.; Duckworth, C.A.; Williams, J.M.; Pritchard, D.M. Helicobacter pylori-Induced Gastric Pathology: Insights from In Vivo and Ex Vivo Models. Dis. Model. Mech. 2017, 10, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Chen, K.; Cao, W.; Meng, L.; Yang, B.; Xu, M.; Xing, Y.; Li, P.; Freilich, S.; Chen, C.; et al. Engineering Natural Microbiomes toward Enhanced Bioremediation by Microbiome Modeling. Nat. Commun. 2024, 15, 4694. [Google Scholar] [CrossRef]
- Wilmanski, T.; Diener, C.; Rappaport, N.; Patwardhan, S.; Wiedrick, J.; Lapidus, J.; Earls, J.C.; Zimmer, A.; Glusman, G.; Robinson, M.; et al. Gut Microbiome Pattern Reflects Healthy Ageing and Predicts Survival in Humans. Nat. Metab. 2021, 3, 274–286. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Radjabzadeh, D.; Boer, C.G.; Beth, S.A.; van der Wal, P.; Kiefte-De Jong, J.C.; Jansen, M.A.E.; Konstantinov, S.R.; Peppelenbosch, M.P.; Hays, J.P.; Jaddoe, V.W.V.; et al. Diversity, Compositional and Functional Differences between Gut Microbiota of Children and Adults. Sci. Rep. 2020, 10, 1040. [Google Scholar] [CrossRef]
- Amrousy, D.E.; Ashry, H.E.; Maher, S.; Abdelhai, D.; Hassan, S. Helicobacter pylori Infection and Gut Microbiota in Adolescents: Is There a Relation? J. Biosci. 2024, 49, 7. [Google Scholar] [CrossRef]
- Ozbey, G.; Sproston, E.; Hanafiah, A. Helicobacter pylori Infection and Gastric Microbiota. Euroasian J. Hepatogastroenterol. 2020, 10, 36–41. [Google Scholar] [CrossRef]
- Sitkin, S.; Lazebnik, L.; Avalueva, E.; Kononova, S.; Vakhitov, T. Gastrointestinal Microbiome and Helicobacter pylori: Eradicate, Leave It as It Is, or Take a Personalized Benefit–Risk Approach? World J. Gastroenterol. 2022, 28, 766–774. [Google Scholar] [CrossRef]
- Allali, I.; Abotsi, R.E.; Tow, L.A.; Thabane, L.; Zar, H.J.; Mulder, N.M.; Nicol, M.P. Human Microbiota Research in Africa: A Systematic Review Reveals Gaps and Priorities for Future Research. Microbiome 2021, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Bosques-Padilla, F.J.; Remes-Troche, J.M.; González-Huezo, M.S.; Pérez-Pérez, G.; Torres-López, J.; Abdo-Francis, J.M.; Bielsa-Fernandez, M.V.; Camargo, M.C.; Esquivel-Ayanegui, F.; Garza-González, E.; et al. The Fourth Mexican Consensus on Helicobacter pylori. Rev. Gastroenterol. Mex. 2018, 83, 325–341. [Google Scholar] [CrossRef]
- Fock, K.M.; Graham, D.Y.; Malfertheiner, P. Helicobacter pylori Research: Historical Insights and Future Directions. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 495–500. [Google Scholar] [CrossRef]
- Marshall, B.J.; Warren, J.R. Unidentified Curved Bacilli in the Stomach of Patients with Gastritis and Peptic Ulceration. Lancet 1984, 1, 1311–1315. [Google Scholar] [CrossRef]
- Thorell, K.; Muñoz-Ramírez, Z.Y.; Wang, D.; Sandoval-Motta, S.; Boscolo Agostini, R.; Ghirotto, S.; Torres, R.C.; HpGP Research Network; Falush, D.; Camargo, M.C.; et al. The Helicobacter pylori Genome Project: Insights into H. pylori Population Structure from Analysis of a Worldwide Collection of Complete Genomes. Nat. Commun. 2023, 14, 8184. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.; Osman, O.A.; Bertilsson, S.; Eiler, A. Microbial Community Composition and Diversity via 16S rRNA Gene Amplicons: Evaluating the Illumina Platform. PLoS ONE 2015, 10, e0116955. [Google Scholar] [CrossRef]
- Panek, M.; Čipčić Paljetak, H.; Barešić, A.; Perić, M.; Matijašić, M.; Lojkić, I.; Vranešić Bender, D.; Krznarić, Ž.; Verbanac, D. Methodology Challenges in Studying Human Gut Microbiota—Effects of Collection, Storage, DNA Extraction and Next Generation Sequencing Technologies. Sci. Rep. 2018, 8, 5143. [Google Scholar] [CrossRef]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun Metagenomics, from Sampling to Analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef]
- Aggarwal, N.; Kitano, S.; Puah, G.R.Y.; Kittelmann, S.; Hwang, I.Y.; Chang, M.W. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem. Rev. 2023, 123, 31–72. [Google Scholar] [CrossRef]
- Elghannam, M.T.; Hassanien, M.H.; Ameen, Y.A.; Turky, E.A.; ELattar, G.M.; ELRay, A.A.; ELTalkawy, M.D. Helicobacter pylori and oral-gut microbiome: Clinical implications. Infection 2024, 52, 289–300. [Google Scholar] [CrossRef]
- Ali, A.; AlHussaini, K.I. Helicobacter pylori: A Contemporary Perspective on Pathogenesis, Diagnosis and Treatment Strategies. Microorganisms 2024, 12, 222. [Google Scholar] [CrossRef]
- Xu, W.; Xu, L.; Xu, C. Relationship between Helicobacter pylori infection and gastrointestinal microecology. Front. Cell. Infect. Microbiol. 2022, 12, 938608. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qian, X.; Zhang, Z.; Jiang, Z. Effects of Helicobacter pylori and Helicobacter pylori eradication on the microbiota of tongue coating. BMC Microbiol. 2024, 24, 416. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Xu, J.; Wei, X.; Yang, J.; Liu, Y.; Li, H.; Zhao, C.; Wang, Y.; Zhang, L.; et al. Helicobacter pylori Infection Aggravates Dysbiosis of Gut Microbiome in Children With Gastritis. Front. Cell. Infect. Microbiol. 2019, 9, 375. [Google Scholar] [CrossRef]
- Fiorani, M.; Tohumcu, E.; Del Vecchio, L.E.; Porcari, S.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The Influence of Helicobacter pylori on Human Gastric and Gut Microbiota. Antibiotics 2023, 12, 765. [Google Scholar] [CrossRef] [PubMed]
- Manor, O.; Dai, C.L.; Kornilov, S.A.; Smith, B.; Price, N.D.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 2020, 11, 5206. [Google Scholar] [CrossRef] [PubMed]
- Jakubovics, N.S. Intermicrobial Interactions as a Driver for Community Composition and Stratification of Oral Biofilms. J. Mol. Biol. 2015, 427, 3662–3675. [Google Scholar] [CrossRef]
- Momtaz, H.; Souod, N.; Dabiri, H.; Sarshar, M. Study of Helicobacter pylori genotype status in saliva, dental plaques, stool and gastric biopsy samples. World J. Gastroenterol. 2012, 18, 2105–2111. [Google Scholar] [CrossRef]
- Gisbert, J.P. The recurrence of Helicobacter pylori infection: Incidence and variables influencing it. A critical review. Am. J. Gastroenterol. 2005, 100, 2083–2099. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Ren, B.; Zhou, X.; Cheng, L. Helicobacter pylori in the Oral Cavity: Current Evidence and Potential Survival Strategies. Int. J. Mol. Sci. 2022, 23, 13646. [Google Scholar] [CrossRef]
- Ji, Y.; Liang, X.; Lu, H. Analysis of by high-throughput sequencing: Helicobacter pylori infection and salivary microbiome. BMC Oral Health 2020, 20, 84. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gao, X.; Guo, J.; Yu, D.; Xiao, Y.; Wang, H.; Li, Y. Helicobacter pylori infection alters gastric and tongue coating microbial communities. Helicobacter 2019, 24, e12567. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Cantú, A.; Urrutia-Baca, V.H.; Urbina-Ríos, C.S.; De la Garza-Ramos, M.A.; García-Martínez, M.E.; Torre-Martínez, H.H.H. Prevalence of Helicobacter pylori vacA Genotypes and cagA Gene in Dental Plaque of Asymptomatic Mexican Children. BioMed Res. Int. 2017, 2017, 4923640. [Google Scholar] [CrossRef]
- Ogaya, Y.; Nomura, R.; Watanabe, Y.; Nakano, K. Detection of Helicobacter pylori DNA in inflamed dental pulp specimens from Japanese children and adolescents. J. Med. Microbiol. 2015, 64, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Nomura, R.; Ogaya, Y.; Matayoshi, S.; Morita, Y.; Nakano, K. Molecular and clinical analyses of Helicobacter pylori colonization in inflamed dental pulp. BMC Oral Health 2018, 18, 64. [Google Scholar] [CrossRef]
- Hirsch, C.; Tegtmeyer, N.; Rohde, M.; Rowland, M.; Oyarzabal, O.A.; Backert, S. Live Helicobacter pylori in the root canal of endodontic-infected deciduous teeth. J. Gastroenterol. 2012, 47, 936–940. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Zhang, M.; Hu, B. The Role of Adhesion in Helicobacter pylori Persistent Colonization. Curr. Microbiol. 2023, 80, 185. [Google Scholar] [CrossRef]
- Yee, J.K.C. Are the view of Helicobacter pylori colonized in the oral cavity an illusion? Exp. Mol. Med. 2017, 49, e397. [Google Scholar] [CrossRef]
- Aksit Bıcak, D.; Akyuz, S.; Kıratlı, B.; Usta, M.; Urganci, N.; Alev, B.; Yarat, A.; Sahin, F. The investigation of Helicobacter pylori in the dental biofilm and saliva samples of children with dyspeptic complaints. BMC Oral Health 2017, 17, 67. [Google Scholar] [CrossRef]
- Bürgers, R.; Schneider-Brachert, W.; Reischl, U.; Behr, A.; Hiller, K.A.; Lehn, N.; Schmalz, G.; Ruhl, S. Helicobacter pylori in human oral cavity and stomach. Eur. J. Oral Sci. 2008, 116, 297–304. [Google Scholar] [CrossRef]
- Suzuki, N.; Yoneda, M.; Naito, T.; Iwamoto, T.; Masuo, Y.; Yamada, K.; Hisama, K.; Okada, I.; Hirofuji, T. Detection of Helicobacter pylori DNA in the saliva of patients complaining of halitosis. J. Med. Microbiol. 2008, 57, 1553–1559. [Google Scholar] [CrossRef] [PubMed]
- Tsami, A.; Petropoulou, P.; Kafritsa, Y.; Mentis, Y.A.; Roma-Giannikou, E. The presence of Helicobacter pylori in dental plaque of children and their parents: Is it related to their periodontal status and oral hygiene? Eur. J. Paediatr. Dent. 2011, 12, 225–230. [Google Scholar]
- Boyanova, L.; Panov, V.; Yordanov, D.; Gergova, G.; Mitov, I. Characterization of oral Helicobacter pylori strain by 4 methods. Diagn. Microbiol. Infect. Dis. 2013, 77, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Yee, J.K. Helicobacter pylori colonization of the oral cavity: A milestone discovery. World J. Gastroenterol. 2016, 22, 641–648. [Google Scholar] [CrossRef]
- Sruthi, M.A.; Mani, G.; Ramakrishnan, M.; Selvaraj, J. Dental caries as a source of Helicobacter pylori infection in children: An RT-PCR study. Int. J. Paediatr. Dent. 2023, 33, 82–88. [Google Scholar] [CrossRef]
- Mao, X.; Jakubovics, N.S.; Bächle, M.; Buchalla, W.; Hiller, K.A.; Maisch, T.; Hellwig, E.; Kirschneck, C.; Gessner, A.; Al-Ahmad, A.; et al. Colonization of Helicobacter pylori in the oral cavity—An endless controversy? Crit. Rev. Microbiol. 2021, 47, 612–629. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, R.; Xue, X.; Xu, T.; Luo, Y.; Dong, Q.; Liu, J.; Liu, J.; Pan, Y.; Zhang, D. Periodontal disease and Helicobacter pylori infection in oral cavity: A meta-analysis of 2727 participants mainly based on Asian studies. Clin. Oral Investig. 2020, 24, 2175–2188. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Li, Z.; Yu, Y.; Kang, W.; Han, Y.; Geng, X.; Ge, S.; Sun, Y. Effect of Helicobacter pylori infection on chronic periodontitis by the change of microecology and inflammation. Oncotarget 2016, 7, 66700–66712. [Google Scholar] [CrossRef]
- Miller, D.P.; Scott, D.A. Inherently and conditionally essential protein catabolism genes of Porphyromonas gingivalis. Trends Microbiol. 2021, 29, 54–64. [Google Scholar] [CrossRef]
- Nomura, R.; Kadota, T.; Ogaya, Y.; Matayoshi, S.; Iwashita, N.; Okawa, R.; Nakano, K. Contribution of Streptococcus mutans to Helicobacter pylori colonisation in oral cavity and gastric tissue. Sci. Rep. 2020, 10, 12540. [Google Scholar] [CrossRef] [PubMed]
- Palencia, S.L.; García, A.; Palencia, M. Multiple surface interaction mechanisms direct the anchoring, co-aggregation and formation of dual-species biofilm between Candida albicans and Helicobacter pylori. J. Adv. Res. 2021, 35, 169–185. [Google Scholar] [CrossRef]
- Saniee, P.; Siavoshi, F.; Nikbakht Broujeni, G.; Khormali, M.; Sarrafnejad, A.; Malekzadeh, R. Localization of H. pylori within the vacuole of Candida yeast by direct immunofluorescence technique. Arch. Iran. Med. 2013, 16, 705–710. [Google Scholar]
- Chen, Z.H.; Sun, J.C.; Yang, T.X.; Cui, G.Z. Ability of Helicobacter pylori to internalize into Candida. World J. Gastroenterol. 2024, 30, 2281–2284. [Google Scholar] [CrossRef]
- Ishihara, K.; Miura, T.; Kimizuka, R.; Ebihara, Y.; Mizuno, Y.; Okuda, K. Oral bacteria inhibit Helicobacter pylori growth. FEMS Microbiol. Lett. 1997, 152, 355–361. [Google Scholar] [CrossRef]
- Czesnikiewicz-Guzik, M.; Bielanski, W.; Guzik, T.J.; Loster, B.; Konturek, S.J. Helicobacter pylori in the oral cavity and its implications for gastric infection, periodontal health, immunology and dyspepsia. J. Physiol. Pharmacol. 2005, 56 (Suppl. 6), 77–89. [Google Scholar]
- Kadota, T.; Hamada, M.; Nomura, R.; Ogaya, Y.; Okawa, R.; Uzawa, N.; Nakano, K. Distribution of Helicobacter pylori and periodontopathic bacterial species in the oral cavity. Biomedicines 2020, 8, 161. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.; Nelson, K.E.; Edlund, A. The oral host-microbial interactome: An ecological chronometer of health? Trends Microbiol. 2021, 29, 551–561. [Google Scholar] [CrossRef]
- Schulz, C.; Schütte, K.; Koch, N.; Vilchez-Vargas, R.; Wos-Oxley, M.L.; Oxley, A.P.A.; Vital, M.; Malfertheiner, P.; Pieper, D.H. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection. Gut 2018, 67, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Yin, F.; Wang, S.; Zhao, A.; Li, Y.; Liu, Y. Helicobacter pylori biofilm-related drug resistance and new developments in its anti-biofilm agents. Infect. Drug Resist. 2022, 15, 1561–1571. [Google Scholar] [CrossRef]
- Tawfik, S.A.; Azab, M.; Ramadan, M.; Shabayek, S.; Abdellah, A.; Al Thagfan, S.S.; Salah, M. The eradication of Helicobacter pylori was significantly associated with compositional patterns of orointestinal axis microbiota. Pathogens 2023, 12, 832. [Google Scholar] [CrossRef] [PubMed]
- Mishiro, T.; Oka, K.; Kuroki, Y.; Takahashi, M.; Tatsumi, K.; Saitoh, T.; Tobita, H.; Ishimura, N.; Sato, S.; Ishihara, S.; et al. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. J. Gastroenterol. Hepatol. 2018, 33, 1059–1066. [Google Scholar] [CrossRef]
- Okuda, K.; Kimizuka, R.; Katakura, A.; Nakagawa, T.; Ishihara, K. Ecological and immunopathological implications of oral bacteria in Helicobacter pylori-infected disease. J. Periodontol. 2003, 74, 123–128. [Google Scholar] [CrossRef]
- Dore, M.P.; Pes, G.M. Trained immunity and trained tolerance: The case of Helicobacter pylori infection. Int. J. Mol. Sci. 2024, 25, 5856. [Google Scholar] [CrossRef]
- Delgado, S.; Cabrera-Rubio, R.; Mira, A.; Suárez, A.; Mayo, B. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. Microb. Ecol. 2013, 65, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhauer, M.R.; Kupcinskas, J.; Johannesen, T.B.; Urba, M.; Skieceviciene, J.; Jonaitis, L.; Frandsen, T.H.; Kupcinskas, L.; Fuursted, K.; Andersen, L.P. Transient and Persistent Gastric Microbiome: Adherence of Bacteria in Gastric Cancer and Dyspeptic Patient Biopsies after Washing. J. Clin. Med. 2020, 9, 1882. [Google Scholar] [CrossRef] [PubMed]
- Ndegwa, N.; Ploner, A.; Andersson, A.F.; Zagai, U.; Andreasson, A.; Vieth, M.; Talley, N.J.; Agreus, L.; Ye, W. Gastric Microbiota in a Low-Helicobacter pylori Prevalence General Population and Their Associations with Gastric Lesions. Clin. Transl. Gastroenterol. 2020, 11, e00191. [Google Scholar] [CrossRef]
- Troncoso, C.; Pavez, M.; Cerda, A.; Oporto, M.; Villarroel, D.; Hofmann, E.; Rios, E.; Sierralta, A.; Copelli, L.; Barrientos, L. MALDI-TOF MS and 16S RNA Identification of Culturable Gastric Microbiota: Variability Associated with the Presence of Helicobacter pylori. Microorganisms 2020, 8, 1763. [Google Scholar] [CrossRef]
- Llorca, L.; Pérez-Pérez, G.; Urruzuno, P.; Martinez, M.J.; Iizumi, T.; Gao, Z.; Sohn, J.; Chung, J.; Cox, L.; Simón-Soro, A.; et al. Characterization of the Gastric Microbiota in a Pediatric Population According to Helicobacter pylori Status. Pediatr. Infect. Dis. J. 2017, 36, 173–178. [Google Scholar] [CrossRef]
- Zheng, W.; Miao, J.; Luo, L.; Long, G.; Chen, B.; Shu, X.; Gu, W.; Peng, K.; Li, F.; Zhao, H.; et al. The Effects of Helicobacter pylori Infection on Microbiota Associated with Gastric Mucosa and Immune Factors in Children. Front. Immunol. 2021, 12, 625586. [Google Scholar] [CrossRef]
- Zheng, W.; Zhu, Z.; Ying, J.; Long, G.; Chen, B.; Peng, K.; Li, F.; Zhao, H.; Jiang, M. The Effects of Helicobacter pylori Infection on Gastric Microbiota in Children with Duodenal Ulcer. Front. Microbiol. 2022, 13, 853184. [Google Scholar] [CrossRef]
- Brawner, K.M.; Kumar, R.; Serrano, C.A.; Ptacek, T.; Lefkowitz, E.; Morrow, C.D.; Zhi, D.; Kyanam-Kabir-Baig, K.R.; Smythies, L.E.; Harris, P.R.; et al. Helicobacter pylori Infection Is Associated with an Altered Gastric Microbiota in Children. Mucosal Immunol. 2017, 10, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Gan, Y.; Yang, Y.; Peng, K.; Li, F.; Zhao, H.; Gu, W.; Jiang, M. Clinicopathological Features and Mucosal Microbiota in Gastric Mucosal Damage between Nodular and Non-Nodular Gastritis in Children with Helicobacter pylori Infection. Int. Immunopharmacol. 2024, 131, 111813. [Google Scholar] [CrossRef]
- Brawner, K. Immunobiology of the Mucosal Response to Helicobacter pylori in Children. Ph.D. Thesis, The University of Alabama at Birmingham, Birmingham, AL, USA, 2017. [Google Scholar]
- Scarpignato, C.; Gatta, L.; Zullo, A.; Blandizzi, C.; SIF-AIGO-FIMMG Group; Italian Society of Pharmacology; Italian Association of Hospital Gastroenterologists; Italian Federation of General Practitioners. Effective and Safe Proton Pump Inhibitor Therapy in Acid-Related Diseases—A Position Paper Addressing Benefits and Potential Harms of Acid Suppression. BMC Med. 2016, 14, 179. [Google Scholar] [CrossRef]
- Huang, J.Q.; Hunt, R.H. Pharmacological and Pharmacodynamic Essentials of H2-Receptor Antagonists and Proton Pump Inhibitors for the Practising Physician. Best Pract. Res. Clin. Gastroenterol. 2001, 15, 355–370. [Google Scholar] [CrossRef]
- Paroni Sterbini, F.; Palladini, A.; Masucci, L.; Cannistraci, C.V.; Pastorino, R.; Ianiro, G.; Bugli, F.; Martini, C.; Ricciardi, W.; Gasbarrini, A.; et al. Effects of Proton Pump Inhibitors on the Gastric Mucosa-Associated Microbiota in Dyspeptic Patients. Appl. Environ. Microbiol. 2016, 82, 6633–6644. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric Microbial Community Profiling Reveals a Dysbiotic Cancer-Associated Microbiota. Gut 2018, 67, 226–236. [Google Scholar] [CrossRef]
- Coker, O.O.; Dai, Z.; Nie, Y.; Zhao, G.; Cao, L.; Nakatsu, G.; Wu, W.K.; Wong, S.H.; Chen, Z.; Sung, J.J.Y.; et al. Mucosal Microbiome Dysbiosis in Gastric Carcinogenesis. Gut 2018, 67, 1024–1032. [Google Scholar] [CrossRef]
- Ou, L.; Liu, H.; Peng, C.; Zou, Y.; Jia, J.; Li, H.; Feng, Z.; Zhang, G.; Yao, M. Helicobacter pylori Infection Facilitates Cell Migration and Potentially Impact Clinical Outcomes in Gastric Cancer. Heliyon 2024, 10, e37046. [Google Scholar] [CrossRef] [PubMed]
- Kakiuchi, T.; Yamamoto, K.; Imamura, I.; Hashiguchi, K.; Kawakubo, H.; Yamaguchi, D.; Fujioka, Y.; Okuda, M. Gut microbiota changes related to Helicobacter pylori eradication with vonoprazan containing triple therapy among adolescents: A prospective multi-center study. Sci. Rep. 2021, 11, 755. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Peng, C.; Wang, H.; Ouyang, Y.; Zhu, Z.; Shu, X.; Zhu, Y.; Lu, N. The eradication of Helicobacter pylori restores rather than disturbs the gastrointestinal microbiota in asymptomatic young adults. Helicobacter 2019, 24, e12590. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, Z.; Wang, Y.; Huang, Z.; Zheng, C.; Shi, J.; Tang, W.; Zhang, P.; Wang, S.; Huang, Y. Long-term changes in the gut microbiota after triple therapy, sequential therapy, bismuth quadruple therapy and concomitant therapy for Helicobacter pylori eradication in Chinese children. Helicobacter 2021, 26, e12809. [Google Scholar] [CrossRef]
- Mao, L.Q.; Zhou, Y.L.; Wang, S.S.; Chen, L.; Hu, Y.; Yu, L.M.; Xu, J.M.; Lyu, B. Impact of Helicobacter pylori eradication on the gastric microbiome. Gut Pathog. 2021, 13, 60. [Google Scholar] [CrossRef]
- Yang, I.; Woltemate, S.; Piazuelo, M.; Bravo, L.E.; Yepez, M.C.; Romero-Gallo, J.; Delgado, A.G.; Wilson, K.T.; Peek, R.M.; Correa, P.; et al. Different Gastric Microbiota Compositions in Two Human Populations with High and Low Gastric Cancer Risk in Colombia. Sci. Rep. 2016, 6, 18594. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Y.; Zhan, X.; Song, Y.; Xu, M.; Wang, S.; Huang, X.; Xu, Z.Z. Meta-analysis reveals Helicobacter pylori mutual exclusivity and reproducible gastric microbiome alterations during gastric carcinoma progression. Gut Microbes 2023, 15, 2197835. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, S.Y.; Ru, F.X.; Feng, J.J.; Tao, J.; Wei, Z.Y.; Li, X.; Qian, C.; Lin, Q.; Chen, J.H. Gastric juice microbiota in pediatric chronic gastritis that clinically tested positive and negative for Helicobacter pylori. Front. Microbiol. 2023, 14, 1112709. [Google Scholar] [CrossRef]
- Osaki, T.; Zaman, C.; Yonezawa, H.; Lin, Y.; Okuda, M.; Nozaki, E.; Hojo, F.; Kurata, S.; Hanawa, T.; Kikuchi, S.; et al. Influence of intestinal indigenous microbiota on intrafamilial infection by Helicobacter pylori in Japan. Front. Immunol. 2018, 9, 287. [Google Scholar] [CrossRef]
- Benavides-Ward, A.; Vasquez-Achaya, F.; Silva-Caso, W.; Aguilar-Luis, M.A.; Mazulis, F.; Urteaga, N.; Del Valle-Mendoza, J. Helicobacter pylori and its relationship with variations of gut microbiota in asymptomatic children between 6 and 12 years. BMC Res. Notes 2018, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, Y.; Reshef, L.; Cohen, D.; Muhsen, K. Helicobacter pylori and the intestinal microbiome among healthy school-age children. Helicobacter 2021, 26, e12854. [Google Scholar] [CrossRef] [PubMed]
- Gotoda, T.; Takano, C.; Kusano, C.; Suzuki, S.; Ikehara, H.; Hayakawa, S.; Andoh, A. Gut microbiome can be restored without adverse events after Helicobacter pylori eradication therapy in teenagers. Helicobacter 2018, 23, e12541. [Google Scholar] [CrossRef]
- Kakiuchi, T.; Mizoe, A.; Yamamoto, K.; Imamura, I.; Hashiguchi, K.; Kawakubo, H.; Yamaguchi, D.; Fujioka, Y.; Nakayama, A.; Okuda, M.; et al. Effect of probiotics during vonoprazan-containing triple therapy on gut microbiota in Helicobacter pylori infection: A randomized controlled trial. Helicobacter 2020, 25, e12690. [Google Scholar] [CrossRef] [PubMed]
- Gudra, D.; Pupola, D.; Skenders, G.; Leja, M.; Radovica-Spalvina, I.; Gorskis, H.; Vangravs, R.; Fridmanis, D. Lack of significant differences between gastrointestinal tract microbial population structure of Helicobacter pylori-infected subjects before and 2 years after a single eradication event. Helicobacter 2020, 25, e12748. [Google Scholar] [CrossRef] [PubMed]
- Iino, C.; Shimoyama, T.; Chinda, D.; Arai, T.; Chiba, D.; Nakaji, S.; Fukuda, S. Infection of Helicobacter pylori and atrophic gastritis influence Lactobacillus in gut microbiota in a Japanese population. Front. Immunol. 2018, 9, 712. [Google Scholar] [CrossRef] [PubMed]
- Michalkiewicz, J.; Helmin-Basa, A.; Grzywa, R.; Czerwionka-Szaflarska, M.; Szaflarska-Poplawska, A.; Mierzwa, G.; Marszalek, A.; Bodnar, M.; Nowak, M.; Dzierzanowska-Fangrat, K. Innate immunity components and cytokines in gastric mucosa in children with Helicobacter pylori infection. Mediat. Inflamm. 2015, 2015, 176726. [Google Scholar] [CrossRef]
- Hsu, P.I.; Pan, C.Y.; Kao, J.Y.; Tsay, F.W.; Peng, N.J.; Kao, S.S.; Wang, H.M.; Tsai, T.J.; Wu, D.C.; Chen, C.L.; et al. Helicobacter pylori eradication with bismuth quadruple therapy leads to dysbiosis of gut microbiota with an increased relative abundance of Proteobacteria and decreased relative abundances of Bacteroidetes and Actinobacteria. Helicobacter 2018, 23, e12498. [Google Scholar] [CrossRef]
- Sung, J.J.Y.; Coker, O.O.; Chu, E.; Szeto, C.H.; Luk, S.T.Y.; Lau, H.C.H.; Yu, J. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut 2020, 69, 1572–1580. [Google Scholar] [CrossRef]
- Martin-Nuñez, G.M.; Cornejo-Pareja, I.; Clemente-Postigo, M.; Tinahones, F.J. Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders? Front. Endocrinol. 2021, 12, 639856. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, X.; Ouyang, Y.B.; He, C.; Li, N.S.; Xie, C.; Peng, C.; Zhu, Z.H.; Shu, X.; Xie, Y.; et al. Altered Gut Microbiota and Short-Chain Fatty Acids after Vonoprazan-Amoxicillin Dual Therapy for Helicobacter pylori Eradication. Front. Cell. Infect. Microbiol. 2022, 12, 881968. [Google Scholar] [CrossRef]
- Smith, S.I.; Schulz, C.; Ugiagbe, R.; Ndip, R.; Dieye, Y.; Leja, M.; Onyekwere, C.; Ndububa, D.; Ajayi, A.; Jolaiya, T.F.; et al. Helicobacter pylori Diagnosis and Treatment in Africa: The First Lagos Consensus Statement of the African Helicobacter and Microbiota Study Group. Dig. Dis. 2024, 42, 240–256. [Google Scholar] [CrossRef]
Study | Subjects/Methods | Study Type, Samples, and Techniques | Gastric Microbiota Before Eradication Therapy | Gastric Microbiota After Eradication Therapy | Other Findings | Study Limitations |
---|---|---|---|---|---|---|
Miao et al., 2019 [38] | -37 symptomatic children H. pylori-positive (23 nonpeptic ulcer and 14 peptic ulcer) -18 symptomatic children H. pylori-negative | -cross-sectional, observational study -16S rRNA amplification -gastric mucosa | H. pylori-positive -Helicobacter genus 95.43% -microbiota richness and diversity lower than that of H. pylori-negative children ↓ Bacteroidetes Firmicutes Fusobacteria Actinobacteria ↑ Proteobacteria -no difference in microbiota structure between H. pylori-positive children with or without peptic ulcer H. pylori-negative ↑ Bacteroidetes Firmicutes Fusobacteria Actinobacteria | H. pylori-positive 4 weeks after treatment lower community richness -similar community diversity compared to H. pylori-negative ↑Bacteroidetes Firmicutes Fusobacteria Actinobacteria | -the pathways of infection diseases and cancer were of higher abundance in H. pylori-positive group -the pathways of metabolic diseases were lower than H. pylori-negative group -the abundance in the pathways of amino acid metabolism, lipid metabolism, and carbohydrate metabolism was lower in H. pylori-positive group than H. pylori-negative group | -small cohort, which may limit statistical power and generalizability -a cross-sectional design cannot establish causality between H. pylori infection and microbiota alterations -single-center study results may not be representative of broader pediatric populations or different geographic/ethnic groups |
Llorca et al., 2017 [110] | 51 children with dyspeptic symptoms (18 H. pylori-positive, 33 H. pylori-negative) | -cross-sectional, observational study -16S rRNA bacterial gene sequencing -gastric mucosa | H. pylori-positive children vs. -negative children lower bacterial richness and diversity ↑ Proteobacteria phylum Helicobacter genus ↓ Firmicutes | -children with H. pylori infection associated with a lower body mass index -Serratia—1st Pseudomonas—2nd Staphylococcus—3rd most abundant genus in all patients | -small cohort, which may limit statistical power and generalizability -a cross-sectional design cannot establish causality between H. pylori infection and microbiota alterations -single-center study results may not be representative of broader pediatric populations or different geographic/ethnic groups | |
Zheng et al., 2021 [111] | 122 children with GI symptoms (57 H. pylori-positive, 65 H. pylori-negative) | -cross-sectional, observational study -16S rRNA bacterial gene sequencing -gastric mucosa | H. pylori-positive ↑ Helicobacter taxa H. pylori-negative ↑ Achromobacter Devosia Halomonas Mycobacterium Pseudomonas Serratia Sphingopyxis Stenotrophomonas | H. pylori-positive children vs. -negative children ↑ expression of FOXP3, IL-10, TGF-b1, and IL-17A ↑ CD4+T cell and macrophages | -relatively small cohort, which may limit statistical power and generalizability -a cross-sectional design cannot establish causality between H. pylori infection and microbiota alterations -single-center study results may not be representative of broader pediatric populations or different geographic/ethnic groups -immune analysis limited to mucosal markers—systemic immune responses were not assessed, which may underestimate host–microbe interactions | |
Zheng et al., 2022 [112] | 23 children with duodenal ulcer (15 H. pylori-positive, 8 H. pylori-negative) | -cross-sectional, observational study -16S rRNA bacterial gene sequencing -gastric mucosa | H. pylori-positive children vs. -negative children ↓ bacterial richness and diversity of gastric microbiota ↑ Helicobacter taxa | H. pylori-positive children vs. -negative children ↓ pathways of carbohydrate metabolism, amino acid metabolism, lipid metabolism, and signal transduction | -small cohort, which may limit statistical power and generalizability -a cross-sectional design cannot determine causality between H. pylori infection, microbiota shifts, and duodenal ulcer pathology -niche population (only duodenal ulcer patients)—findings may not generalize to asymptomatic or non-ulcer pediatric populations -single-center study—regional/ethnic specificity reduces generalizability -lack of longitudinal data—no follow-up to assess whether microbiota changes persist after H. pylori eradication or ulcer healing | |
Brawner et al., 2017 [113] | 26 symptomatic patients H. pylori-positive (12 children; 14 adults) 60 symptomatic patients H. pylori-negative (33 children; 27 adults) | -cross-sectional, observational study -16S rRNA bacterial gene sequencing -gastric fluid | H. pylori-positive children vs. -negative children ↓ Actinobacteria class ↓ Streptococcaceae Actinomycetales Moraxellaceae Carneobacteriaceae family ↑ Helicobacter genus H. pylori-positive adults vs. -negative adults N Actinobacteria class ↑ Helicobacter genus | -children with H. pylori infection were associated with reorganized stomach microbiota at several taxonomic levels -H. pylori-positive children vs. -positive adults: ↓ Firmicutes ↑ non-Helicobacter Proteobacteria -H. pylori-positive adults have a similar composition of the gastric bacterial communities to that of -negative adults -H. pylori-positive children, when compared with non-infected children and infected adults, expressed significantly more FOXP3 transcripts and increased TGFb expression and levels of IL10 in their gastric mucosa | -small cohort, limiting statistical power to detect subtle microbial shifts -single geographic region (Chile)—findings may not generalize to other populations with different diets, genetics, or H. pylori strain distributions -potential confounders—limited control for prior antibiotic exposure, dietary factors, or socioeconomic influences that may affect microbiota |
Study | Subjects/Methods | Study Type, Samples, and Techniques | Gut Microbiota Before Eradication Therapy | Gut Microbiota After Eradication Therapy | Other Findings | Study Limitations |
---|---|---|---|---|---|---|
Yang et al., 2019 [66] | 50 children with H. pylori-induced gastritis 42 children with H. pylori-negative gastritis 62 healthy controls | -cross-sectional, observational study -16S rRNA bacterial gene sequencing -fecal sample | H. pylori-positive gastritis ↑ Bacteroidaceae Enterobacteriaceae ↓ Firmicutes/Bacteroidetes ratio H. pylori-negative gastritis ↑ Bacteroidaceae Enterobacteriaceae ↓ Firmicutes/Bacteroidetes ratio Healthy controls ↑ Lachnospiraceae Bifidobacteriaceae Lactobacillaceae | -compared to healthy controls, the fecal microbiome of children with gastritis alone and gastritis related to H. pylori was different, indicating that gastric inflammation may influence the gut microbiota | -cross-sectional design—cannot establish temporal or causal links between H. pylori infection, gastritis, and gut microbiota dysbiosis -niche cohort—only children with gastritis were included; findings may not apply to healthy or asymptomatic children -sample size—relatively limited, reducing power to detect subtle differences -stool samples only—gut microbiota may not fully reflect gastric mucosal microbiota, limiting direct relevance to gastric pathophysiology | |
Amrousy, D.E. et al., 2023 [50] | 50 H. pylori-positive adolescents 50 healthy controls | -cross-sectional, observational study -RT-PCR -fecal sample | H. pylori-positive children vs. controls ↑ Clostridium difficile Salmonella spp. ↓ Bacteroides fragilis Lactobacillus spp. Escherichia coli Methanobrevibacter smithii | -predictive of H. pylori infection is an increased abundance of Salmonella spp. and Bifidobacterium spp., a greater prevalence of C. difficile, and a decreased abundance of Lactobacillus spp. | -cross-sectional design—does not allow inference about causality or temporal relationships between H. pylori infection and gut microbiota changes-sample size—relatively small, limiting statistical power and ability to detect subtle microbial differences-single-country, single-center cohort (Egypt)—findings may not generalize to other adolescent populations with different diets, environments, or H. pylori strains-stool-based microbiota analysis only—gut microbiota may not fully reflect gastric or duodenal microbiota relevant to H. pylori pathogenesis | |
Osaki et al., 2018 [129] | 5 H. pylori-positive children and the members of their families (4 H. pylori-positive mothers, 3 H. pylori-positive fathers, 1 H. pylori-negative mother, 2 H. pylori-negative fathers, 4 H. pylori-negative siblings) | -cross-sectional, observational study -16S rRNA sequencing -18 fecal samples | H. pylori-positive children ↑ Parasutterella H. pylori-negative group ↑ Erysipelotrichaceae family Clostridiaceae Ruminococcaceae H. pylori-negative parents ↑ Ruminococcus Faecalibacterium | -despite the limited sample size, results suggested that members of the same family had comparable gut bacterial community composition | -small sample size -lack of longitudinal data -the study design cannot conclusively determine whether similarity in microbiota facilitates transmission, or whether H. pylori infection itself alters the microbiota, leading to the observed similarities | |
Kakiuchi et al., 2021 [122] | 16 H. pylori-positive adolescents | -prospective, longitudinal, multicenter observational study -16S rRNA gene/DNA/amplicon sequencing -fecal sample | 1–2 days after eradication therapy alpha-diversity was lost immediately after eradication therapy ↓Actinobacteria 3 months after eradication therapy α-diversity recovered to pretreatment levels | -adolescents receiving vonoprazan fumarate-containing triple therapy for H. pylori eradication experienced an immediate dysbiosis following treatment; however, three months later, the gut microbiota restored to pretreatment levels -regarding unfavorable outcomes, triple treatment was determined to be safe for adolescents | -small sample size -no control group—the study lacked a placebo or healthy non-infected adolescent comparator group, which limits contextual interpretation of the microbiota changes -no antibiotic susceptibility data—the study did not conduct H. pylori antibiotic resistance or treatment susceptibility testing, which could influence eradication outcomes | |
Zhou et al., 2021 [124] | 16 H. pylori-positive children receiving standard triple therapy (TT) 15 H. pylori-positive children receiving sequential therapy (ST) 16 H. pylori-positive children receiving bismuth-based quadruple therapy (BT) 15 H. pylori-positive children receiving concomitant therapy (CT) | -prospective, comparative cohort study -16S rRNA sequencing -fecal samples | 2 weeks after eradication marked decline in the alpha diversity in all groups ↑ Proteobacteria in ST, BT, CT ↑ Escherichia Shigella Klebsiella Enterococcus Streptococcus in all groups 1 year after eradication relative abundance of all phyla in all groups did not differ from those at baseline | 2 weeks after eradication ↓ SCFA-producing bacteria, such as Bacteroides, Faecalibacterium, and Phascolarctobacterium -gut microbiota was less perturbed by TT and ST -all 4 current therapies lead to transient dysbiosis of the gut microbiota, but these changes returned to almost the pre-eradication level 1 year post-eradication | -comparative, non-randomized allocation—participants were assigned to treatment arms per physician’s decision—not randomized—raising potential selection bias -no healthy (non-infected) or untreated control group was included to contextualize microbiota changes attributable to H. pylori infection versus antibiotic impact | |
Benavides-Ward et al., 2018 [130] | 28 asymptomatic children H. pylori-positive 28 healthy children | -cross-sectional observational study -16S rDNA sequencing -fecal samples | H. pylori-positive children vs. -negative children ↑ Proteobacteria, Clostridium Firmicutes Prevotella ↓ Bacteroides | -H. pylori-positive children had twice as many chances of having an elevated variety and number of bacterial communities in their colon -growth stunting was more frequent in H. pylori-infected children compared to non-infected peers -despite being clinically asymptomatic, infected children still showed microbiota disruption and nutritional impact, highlighting subclinical effects of H. pylori infection | -small sample size -cross-sectional observational study cannot determine causality or temporal relationships between H. pylori infection and microbiota changes -conducted in a specific population (Peruvian children), possibly limiting ability to generalize findings to broader or diverse populations -potential influences such as diet, environmental factors, antibiotic exposure, socioeconomic status, or other health variables were not controlled for or adjusted | |
Lapidot et al., 2021 [131] | 93 asymptomatic children H. pylori-positive 70 healthy children | -cross-sectional observational study -16S rRNA gene sequencing -fecal sample | H. pylori-positive children vs. controls ↑ Prevotella copri Eubacterium biforme Coriobacteriaceae ↓ Clostridium spp. Coprococcus spp. Ruminococcus spp. | -intestinal microbiome diversity, including bacterial abundance and richness, did not significantly correlate with H. pylori infection | -potential socioeconomic confounding as the authors acknowledge that socioeconomic status (SES) is both strongly linked to H. pylori infection and gut microbiome composition, complicating the interpretation of any direct effects -though controls were included, controlling fully for lifestyle differences (beyond measured SES) remains a challenge in observational cross-sectional assessments | |
Gotoda et al., 2018 [132] | 8 teenagers H. pylori-positive | -prospective, longitudinal, observational study -16S rDNA sequencing -fecal samples | 1 week after eradication therapy ↑ Bacteroidetes ↓ Actinobacteria Bifidobacteriales 2 months after eradication therapy taxonomic composition was similar to that pre-eradication | -one week after starting treatment, alpha diversity decreased, and two months later, it nearly returned to pre-treatment levels -the number of bacterial species at different times did not significantly change in terms of beta diversity | -small sample size -short follow-up period as longer-term recovery beyond that remains unexplored -absence of an untreated or uninfected control group makes it difficult to distinguish therapy effects from normal microbiome fluctuations | |
Kakiuchi et al., 2020 [133] | BFR− group 31 H. pylori-positive adolescents receiving VPZ-containing triple therapy BFR+ group 35 H. pylori-positive adolescents receiving VPZ-containing triple therapy + Biofermin-R (BFR-Enterococcus faecium 129 BIO 3B-R) | -randomized controlled trial -16S rDNA sequencing -fecal samples | BFR− group ↓ alpha diversity Collinsella spp. Bifidobacterium spp. BFR+ group ↑ Blautia microbial species richness -less drastic shifts in beta-diversity and retained more stable microbial community structures ↓ incidence of diarrhea | -during H. pylori eradication therapy, biofermin-R in combination with VPZ-based therapy resulted in decreased stool softness and increased microbial α-strain diversity | -small sample size -short follow-up window—microbiota was assessed only before treatment and immediately after the 7-day therapy. No long-term follow-up samples were collected to evaluate whether observed changes persisted or normalized over time -clinical outcome scope: while diarrhea incidence was tracked, other outcomes—like H. pylori eradication rate or long-term gut health—are not described in available summaries |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupu, A.; Adam-Raileanu, A.; Bozomitu, L.I.; Gimiga, N.; Forna, L.; Anton, C.R.; Sasaran, M.O.; Nedelcu, A.H.; Ghica, D.C.; Anton, E.; et al. Helicobacter pylori and Compositional Patterns of Digestive Tract Microbiome in Children: A Literature Review. Nutrients 2025, 17, 2711. https://doi.org/10.3390/nu17162711
Lupu A, Adam-Raileanu A, Bozomitu LI, Gimiga N, Forna L, Anton CR, Sasaran MO, Nedelcu AH, Ghica DC, Anton E, et al. Helicobacter pylori and Compositional Patterns of Digestive Tract Microbiome in Children: A Literature Review. Nutrients. 2025; 17(16):2711. https://doi.org/10.3390/nu17162711
Chicago/Turabian StyleLupu, Ancuta, Anca Adam-Raileanu, Laura Iulia Bozomitu, Nicoleta Gimiga, Lorenza Forna, Carmen Rodica Anton, Maria Oana Sasaran, Alin Horatiu Nedelcu, Dragos Catalin Ghica, Emil Anton, and et al. 2025. "Helicobacter pylori and Compositional Patterns of Digestive Tract Microbiome in Children: A Literature Review" Nutrients 17, no. 16: 2711. https://doi.org/10.3390/nu17162711
APA StyleLupu, A., Adam-Raileanu, A., Bozomitu, L. I., Gimiga, N., Forna, L., Anton, C. R., Sasaran, M. O., Nedelcu, A. H., Ghica, D. C., Anton, E., Morariu, I. D., Fotea, S., Beser, O. F., & Lupu, V. V. (2025). Helicobacter pylori and Compositional Patterns of Digestive Tract Microbiome in Children: A Literature Review. Nutrients, 17(16), 2711. https://doi.org/10.3390/nu17162711