NR4A1 Acts as a Nutrient Sensor That Inhibits the Effects of Aging
Abstract
1. Introduction
2. Orphan Nuclear Receptor 4A1 (NR4A1) and Aging
2.1. Background
2.2. Effects of Aging on NR4A1 Expression
3. Tissue-Specific Functions of NR4A1
3.1. Cardiovascular
3.2. Neuronal
3.3. Muscle Mass and Myofiber Size
3.4. Retina and Eye
3.5. Obesity and Metabolic Disease
3.6. Intestinal Inflammation
3.7. Wound Healing and Angiogenesis
3.8. Bone
3.9. Autoimmunity
3.10. Immune Responses
3.11. Lung
3.12. Kidney
3.13. Bladder
3.14. Liver
3.15. Interactions with ROS
4. NR4A1 Ligands and Their Modulation of NR4A1-Dependent Responses
4.1. Introduction
4.2. Effects of NR4A1 Ligands on Liver, Intestinal, Bladder, and Kidney Damage
4.3. Effects of NR4A1 Ligands on Pulmonary Bone and CNS Damage
Ligand [Ref] | Tissue/Cell Type | Response/Genes |
---|---|---|
CsnB [107] | Liver | PNLPLA3 I148M variant in human hepatic stellate cells increased dysfunction and decreased NR4A1 but this was increased by CsnB |
CsnB [104] | Liver | NR4A1 inhibited TGFβ-induced fibrosis and CsnB enhanced inhibition (also skin, lung, kidney) |
CsnB [99] | Liver | Homocysteine induced hepatic steatosis, which is blocked by CsnB |
CsnB/6-MP [72] | Intestine | Induced smooth muscle cell phenotype enhanced in NR4A−/− mice; decreased by CsnB and 6-MP |
CsnB/6-MP [73] | Intestine | TGFβ-induced fibrogenesis in myofibroblasts enhanced with loss of NR4A1: CsnB and 6-MP decreased response in wild-type cells |
Csn [75] | Intestine | DSS-induced colitis inhibited by CsnB NR4A-TLR-1R via NR4A-TRAF6 interactions |
GPApeptide [122] | Intestine | GPA inhibited NFkB activation and intestinal inflammation in DSS-induced colitis |
CsnB [98] | Bladder | NR4A1 protects against urinary tract infections and CsnB inhibits bacterial infection |
CsnB [97] | Kidney | Induced unilateral ureteral obstruction in mouse UUO-induced kidney fibrosis and NR4A1 and CsnB enhanced the response |
CsnB [94] | Kidney | NR4A1 is protective against UUO-induced fibrosis and CsnB is also protective |
Pterostilbene [123] | Lung | Pterostilbene inhibited LPS-induced inflammation and damage in the rat lung in vivo |
CsnB [93] | Lung | NR4A1 downregulated in pulmonary arterial hypertension (PAH), CsnB inhibits symptoms in hypoxia-induced mouse model |
CsnB [124] | Lung | CsnB inhibits influenza-induced pulmonary damage and is associated with induction of type I interferon |
6-MP [125] | Lung | 6-MP inhibited progression of pulmonary hypertension and was associated with NR4A1 activation of bone morphogenic protein |
CsnB [126] | Bone | NR4A1 elevated in osteoarthritis and CsnB inhibited IL-1β-induced inflammatory genes and decreased osteoarthritis in a rat model |
CsnB [39] | CNS | CsnB inhibited MPP+-mediated inflammatory and oxidative stress genes in rat PC12 pheochromocytoma cells |
CsnB [131] | CNS | CsnB inhibits inflammation/inflammatory genes and reverses MPTP-induced TH positive neurons and Iba-1 positive neurons |
CsnB [132] | CNS (autoimmune) | NR4A1 suppressed cytokine production and NO in mouse microglial cells and NR4A1 alone and in combination inhibited the progress of AEA-induced disease in a model of multiple sclerosis |
CsnB [133] | CNS | Cocaine-induced NR4A1 and cartpl gene expression NR4A1/CsnB modify cocaine-induced behavior |
CsnB [134] | Endometriotic | Csn inhibits TGFβ-induced fibrosis |
DIM-4-OH and DIM-3-CI-4-OH-5-OCH3 [135] | Endometriotic | NR4A1 is pro-endometriotic and DIM compound inhibits mTOR, proliferation, and fibrosis |
CsnB [136] | Cardiovascular | Loss of NR4A1 in hypocholesterolemia enhances IL-6 and MCP-1 and CsnB inhibits cholesterol-induced IL-6 and MCP-1 |
CsnB [137] | Cardiovascular | Hypocholesterolemia induced platelet activation and thrombus inhibited by NR4A1 and CsnB further protects—due, in part, to cAMP phosphorylation of VASP |
CsnB [138] | Cardiovascular | NR4A1 decreases atherosclerotic responses and CsnB enhances their effects in mouse models of hypocholesterolemia |
6-MP [139] | Cardiovascular | NR4A1/6-MP protect from restenosis-induced neointima formation and inhibition of cell proliferation |
Celastrol [140] | Cardiovascular | Development of carotid plaque in wild-type ApoE−/−/NR4A1-KO mice inhibited by NR4A1 and enhanced by celastrol by inhibiting bcat in macrophages |
CsnB [141] | Cardiovascular | Cardiac allograft rejection in mice was decreased by NR4A1 and enhanced by CsnB by targeting by infiltrating CD4+ T cells and inducing Treg cell differentiation |
CsnB [142] | Inflammation | CsnB differentially inhibited LPS-induced NFkB in human macrophages |
CsnB [143] | Inflammation | CsnB inhibited NFkB-mediated inflammation in a mouse model of sepsis |
CsnB [144] | Inflammation | Ly6Chigh monocytes contribute to a mouse model of arthritis and in the presence of Ly6Clow monocytes Csn inhibits progression of arthritis |
AEA [145] DIM-4-CI [145] CsnB [145] | Inflammation | AEA is a dual NR4A1/2 ligand that inhibits IL-1β-induced cytokines (e.g., CCL2) in vascular smooth muscle cells, as do other ligands |
TokinolideB [146] | Inflammation | Tokinolide induces NR4A1 nuclear export and inhibits inflammation in a mouse model of hepatitis through mitochondria autophagy pathways |
Celastrol [147] | Inflammation | Induces nuclear export of NR4A1, which interacts with TRAF2 to inhibit inflammatory signaling |
6-MP [91] | Inflammation | Decreased dendritic cell activation, decreased production of interferonƔ |
CsnB [120] | Metabolic disease /Liver | CsnB elevated blood glucose levels and activated hepatic gluconeogenesis |
TMPA [148] | Metabolic disease /Liver | TMPA decreased blood glucose levels and reversed insulin resistance |
DIM-3,5 analogs [149] | Metabolic disease (muscle) | DIM-3,5 enhanced expression of GLUT4 and glycolytic genes and increased glucose uptake in muscle cells |
CsnB [150] | Eye | Inhibited subretinal fibrosis and macrophage-to-myoblast transition |
4.4. Effects of NR4A1 Ligands on Endometriosis and Cardiovascular Damage
4.5. Effects of NR4A1 Ligands on Inflammation, Metabolic Diseases, and the Eye
5. NR4A1 as Nutrient Sensor for Health-Promoting Polyphenolics
5.1. Introduction
5.2. Flavonoids and Resveratrol Bind NR4A1 and Inhibit Endometriosis
5.3. Quercetin Effects Mimic Those of Synthetic NR4A1 Ligands
5.4. Resveratrol Exhibits NR4A1 Ligand-like Activities
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEA | Anandamide |
BVP | Basal vascular permeability |
CDIMs | Bis-indole compounds |
CsnB | CytosporoneB |
CVH | Chronic vascular hyperpermeability |
DIM-4-OH | 1,1-bis(3′-indolyl)-1-(4-hydroxyphenyl)methane |
DIM-4-OH-3-Cl-5-OCH3 | 1,1-bis(3′-indolyl)-1-(3-chloro-4-hdroxy-5-methoxphenyl)methane |
DSBs | Double-strand breaks |
ECM | Extracellular matrix |
GPA | Gly-pro-ala |
LPS | Lipopolysaccharide |
MMT | Macrophagetomyoblast transition |
6-MP | 6-mexaptopurine |
NR4A | Nuclear receptor 4A |
PAH | Pulmonary arterial hypertension |
PASMCs | Pulmonary artery smooth muscle cells |
TMPA | Ethyl 2-[2,3,4-trimethoxy-6-(octanoyl)phenyl] acetate |
UPEC | Uropathogenic Escherichia coli |
UTI | Urinary tract infection |
UUO | Unilateral ureteral obstruction |
References
- Ferrucci, L.; Gonzalez-Freire, M.; Fabbri, E.; Simonsick, E.; Tanaka, T.; Moore, Z.; Salimi, S.; Sierra, F.; de Cabo, R. Measuring biological aging in humans: A quest. Aging Cell 2020, 19, e13080. [Google Scholar] [CrossRef]
- Kareem, M.A.; Ashwini, A.; Sunil, T. The Role of the Exposome in Aging and Age-Related Diseases: A Comprehensive Review. J. Pharm. Bioallied Sci. 2025, 17 (Suppl. 1), S2–S5. [Google Scholar] [CrossRef]
- Childs, B.G.; Durik, M.; Baker, D.J.; van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015, 21, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Childs, B.G.; Gluscevic, M.; Baker, D.J.; Laberge, R.M.; Marquess, D.; Dananberg, J.; van Deursen, J.M. Senescent cells: An emerging target for diseases of ageing. Nat. Rev. Drug Discov. 2017, 16, 718–735. [Google Scholar] [CrossRef]
- Davinelli, S.; Medoro, A.; Hu, F.B.; Scapagnini, G. Dietary polyphenols as geroprotective compounds: From Blue Zones to hallmarks of ageing. Ageing Res. Rev. 2025, 108, 102733. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, M.; Tu, X.; Mo, X.; Zhang, L.; Yang, B.; Wang, F.; Kim, Y.B.; Huang, C.; Chen, L.; et al. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024, 16, 3305. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Mi, Y.; Meng, Q.; Li, N.; Li, W.; Wang, P.; Hou, Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. Chin. Herb. Med. 2024, 17, 279–291. [Google Scholar] [CrossRef]
- Ristori, S.; Bertoni, G.; Bientinesi, E.; Monti, D. The Role of Nutraceuticals and Functional Foods in Mitigating Cellular Senescence and Its Related Aspects: A Key Strategy for Delaying or Preventing Aging and Neurodegenerative Disorders. Nutrients 2025, 17, 1837. [Google Scholar] [CrossRef]
- Min, M.; Egli, C.; Dulai, A.S.; Sivamani, R.K. Critical review of aging clocks and factors that may influence the pace of aging. Front. Aging 2024, 5, 1487260. [Google Scholar] [CrossRef]
- Liu, Y.; Weng, W.; Gao, R.; Liu, Y. New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. Oxid. Med. Cell Longev. 2019, 2019, 4598167. [Google Scholar] [CrossRef]
- Burris, T.P.; de Vera, I.M.S.; Cote, I.; Flaveny, C.A.; Wanninayake, U.S.; Chatterjee, A.; Walker, J.K.; Steinauer, N.; Zhang, J.; Coons, L.A.; et al. International Union of Basic and Clinical Pharmacology CXIII: Nuclear Receptor Superfamily-Update 2023. Pharmacol. Rev. 2023, 75, 1233–1318. [Google Scholar] [CrossRef]
- Maxwell, M.A.; Muscat, G.E. The NR4A subgroup: Immediate early response genes with pleiotropic physiological roles. Nucl. Recept. Signal. 2006, 4, e002. [Google Scholar] [CrossRef]
- Shi, Y. Orphan nuclear receptors in drug discovery. Drug Discov. Today 2007, 12, 440–445. [Google Scholar] [CrossRef]
- Safe, S.; Karki, K. The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Mol. Cancer Res. 2021, 19, 180–191. [Google Scholar] [CrossRef]
- Perlmann, T.; Jansson, L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes. Dev. 1995, 9, 769–782. [Google Scholar] [CrossRef]
- Zetterström, R.H.; Solomin, L.; Mitsiadis, T.; Olson, L.; Perlmann, T. Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Mol. Endocrinol. 1996, 10, 1656–1666. [Google Scholar] [CrossRef]
- Jiang, L.; Dai, S.; Li, J.; Liang, X.; Qu, L.; Chen, X.; Guo, M.; Chen, Z.; Chen, L.; Wei, H.; et al. Structural basis of binding of homodimers of the nuclear receptor NR4A2 to selective Nur-responsive DNA elements. J. Biol. Chem. 2019, 294, 19795–19803. [Google Scholar] [CrossRef]
- Pearen, M.A.; Muscat, G.E. Minireview: Nuclear hormone receptor 4A signaling: Implications for metabolic disease. Mol. Endocrinol. 2010, 24, 1891–1903. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.P.; Crean, D. Molecular Interactions between NR4A Orphan Nuclear Receptors and NF-κB Are Required for Appropriate Inflammatory Responses and Immune Cell Homeostasis. Biomolecules 2015, 5, 1302–1318. [Google Scholar] [CrossRef] [PubMed]
- Lith, S.C.; de Vries, C.J.M. Nuclear receptor Nur77: Its role in chronic inflammatory diseases. Essays Biochem. 2021, 65, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, N.; Guan, W.; Wang, D. Controversy and multiple roles of the solitary nucleus receptor Nur77 in disease and physiology. FASEB J. 2025, 39, e70468. [Google Scholar] [CrossRef]
- Hashida, R.; Kawabata, T. Structural Perspective of NR4A Nuclear Receptor Family and Their Potential Endogenous Ligands. Biol. Pharm. Bull. 2024, 47, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chen, L. Characteristics of Nur77 and its ligands as potential anticancer compounds (Review). Mol. Med. Rep. 2018, 18, 4793–4801. [Google Scholar] [CrossRef] [PubMed]
- Safe, S. Natural products and synthetic analogs as selective orphan nuclear receptor 4A (NR4A) modulators. Histol. Histopathol. 2024, 39, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Hailemariam, A.E.; Mariyam, F.; Hafiz, Z.; Martin, G.; Kothari, J.; Farkas, E.; Sivaram, G.; Bell, L.; Tjalkens, R.; et al. Bis-Indole Derivatives as Dual Nuclear Receptor 4A1 (NR4A1) and NR4A2 Ligands. Biomolecules 2024, 14, 284. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; Liu, Y.; Huang, L.; Liu, Y.; Yang, D.; Bao, X.; Liu, P.; Ge, Y.; Li, Q.; et al. Progressive reduction of nuclear receptor Nr4a1 mediates age-dependent cognitive decline. Alzheimers Dement. 2024, 20, 3504–3524. [Google Scholar] [CrossRef]
- Ma, G.; Chen, F.; Liu, Y.; Zheng, L.; Jiang, X.; Tian, H.; Wang, X.; Song, X.; Yu, Y.; Wang, D. Nur77 ameliorates age-related renal tubulointerstitial fibrosis by suppressing the TGF-β/Smads signaling pathway. FASEB J. 2022, 36, e22124. [Google Scholar] [CrossRef]
- Yu, Y.; Song, X.; Wang, X.; Zheng, L.; Ma, G.; Liu, W.; Su, H.; Liu, X.; Liu, T.; Cao, L.; et al. Oxidative stress impairs the Nur77-SIRT1 axis resulting in a decline in organism homeostasis during aging. Aging Cell 2023, 22, e13812. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, R.; Li, Z.; Liu, T.; Yang, S.; Li, N.; Wang, D. Nur77 alleviates cardiac fibrosis by upregulating GSK-3β transcription during aging. Eur. J. Pharmacol. 2024, 965, 176290. [Google Scholar] [CrossRef]
- Sundaresan, N.R.; Bindu, S.; Pillai, V.B.; Samant, S.; Pan, Y.; Huang, J.Y.; Gupta, M.; Nagalingam, R.S.; Wolfgeher, D.; Verdin, E.; et al. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3β. Mol. Cell Biol. 2015, 36, 678–692. [Google Scholar] [CrossRef]
- Cortez-Toledo, O.; Schnair, C.; Sangngern, P.; Metzger, D.; Chao, L.C. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE 2017, 12, e0171268. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, B.; Yu, K.; Song, J.; Wang, L.; Zhang, X.; Li, Y. Nur77 improves ovarian function in reproductive aging mice by activating mitophagy and inhibiting apoptosis. Reprod. Biol. Endocrinol. 2024, 22, 86. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Bao, H.; Zhu, W.; Tang, Y.; Luo, Q.; Si, Y.; Fu, Q.; Jiang, Z. hUMSCs Transplantation Regulates AMPK/NR4A1 Signaling Axis to Inhibit Ovarian Fibrosis in POI Rats. Stem Cell Rev. Rep. 2023, 19, 1449–1465. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Tang, Y.; Jiang, Z.; Bao, H.; Fu, Q.; Zhang, H. hUCMSCs reduce theca interstitial cells apoptosis and restore ovarian function in premature ovarian insufficiency rats through regulating NR4A1-mediated mitochondrial mechanisms. Reprod. Biol. Endocrinol. 2022, 20, 125. [Google Scholar] [CrossRef]
- Malewicz, M.; Kadkhodaei, B.; Kee, N.; Volakakis, N.; Hellman, U.; Viktorsson, K.; Leung, C.Y.; Chen, B.; Lewensohn, R.; van Gent, D.C.; et al. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair. Genes. Dev. 2011, 25, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Munnur, D.; Somers, J.; Skalka, G.; Weston, R.; Jukes-Jones, R.; Bhogadia, M.; Dominguez, C.; Cain, K.; Ahel, I.; Malewicz, M. NR4A Nuclear Receptors Target Poly-ADP-Ribosylated DNA-PKcs Protein to Promote DNA Repair. Cell Rep. 2019, 26, 2028–2036.e6. [Google Scholar] [CrossRef]
- Wang, R.H.; He, J.P.; Su, M.L.; Luo, J.; Xu, M.; Du, X.D.; Chen, H.Z.; Wang, W.J.; Wang, Y.; Zhang, N.; et al. The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling. EMBO Mol. Med. 2013, 5, 137–148. [Google Scholar] [CrossRef]
- Tontonoz, P.; Cortez-Toledo, O.; Wroblewski, K.; Hong, C.; Lim, L.; Carranza, R.; Conneely, O.; Metzger, D.; Chao, L.C. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol. Cell Biol. 2015, 35, 1125–1138. [Google Scholar] [CrossRef]
- Yan, J.; Huang, J.; Wu, J.; Fan, H.; Liu, A.; Qiao, L.; Shen, M.; Lai, X. Nur77 attenuates inflammatory responses and oxidative stress by inhibiting phosphorylated IκB-α in Parkinson’s disease cell model. Aging 2020, 12, 8107–8119. [Google Scholar] [CrossRef]
- Liang, C.Q.; Zhou, D.C.; Peng, W.T.; Chen, W.Y.; Wu, H.Y.; Zhou, Y.M.; Gu, W.L.; Park, K.S.; Zhao, H.; Pi, L.Q.; et al. FoxO3 restricts liver regeneration by suppressing the proliferation of hepatocytes. npj Regen. Med. 2022, 7, 33. [Google Scholar] [CrossRef]
- Liu, D.; Jia, H.; Holmes, D.I.; Stannard, A.; Zachary, I. Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1. Arter. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 2002–2007. [Google Scholar] [CrossRef]
- Zhao, D.; Qin, L.; Bourbon, P.M.; James, L.; Dvorak, H.F.; Zeng, H. Orphan nuclear transcription factor TR3/Nur77 regulates microvessel permeability by targeting endothelial nitric oxide synthase and destabilizing endothelial junctions. Proc. Natl. Acad. Sci. USA 2011, 108, 12066–12071. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhao, D.; Xu, J.; Ren, X.; Terwilliger, E.F.; Parangi, S.; Lawler, J.; Dvorak, H.F.; Zeng, H. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1. Blood 2013, 121, 2154–2164. [Google Scholar] [CrossRef]
- Medzikovic, L.; Schumacher, C.A.; Verkerk, A.O.; van Deel, E.D.; Wolswinkel, R.; van der Made, I.; Bleeker, N.; Cakici, D.; van den Hoogenhof, M.M.; Meggouh, F.; et al. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling. Sci. Rep. 2015, 5, 15404. [Google Scholar] [CrossRef] [PubMed]
- Medzikovic, L.; van Roomen, C.; Baartscheer, A.; van Loenen, P.B.; de Vos, J.; Bakker, E.N.T.P.; Koenis, D.S.; Damanafshan, A.; Creemers, E.E.; Arkenbout, E.K.; et al. Nur77 protects against adverse cardiac remodelling by limiting neuropeptide Y signalling in the sympathoadrenal-cardiac axis. Cardiovasc. Res. 2018, 114, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Hilgendorf, I.; Gerhardt, L.M.; Tan, T.C.; Winter, C.; Holderried, T.A.; Chousterman, B.G.; Iwamoto, Y.; Liao, R.; Zirlik, A.; Scherer-Crosbie, M.; et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 2014, 114, 1611–1622. [Google Scholar] [CrossRef]
- Hanna, R.N.; Shaked, I.; Hubbeling, H.G.; Punt, J.A.; Wu, R.; Herrley, E.; Zaugg, C.; Pei, H.; Geissmann, F.; Ley, K.; et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 2012, 110, 416–427. [Google Scholar] [CrossRef]
- Hanna, R.N.; Carlin, L.M.; Hubbeling, H.G.; Nackiewicz, D.; Green, A.M.; Punt, J.A.; Geissmann, F.; Hedrick, C.C. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat. Immunol. 2011, 12, 778–785. [Google Scholar] [CrossRef]
- Hamers, A.A.; Hanna, R.N.; Nowyhed, H.; Hedrick, C.C.; de Vries, C.J. NR4A nuclear receptors in immunity and atherosclerosis. Curr. Opin. Lipidol. 2013, 24, 381–385. [Google Scholar] [CrossRef]
- Hawk, J.D.; Bookout, A.L.; Poplawski, S.G.; Bridi, M.; Rao, A.J.; Sulewski, M.E.; Kroener, B.T.; Manglesdorf, D.J.; Abel, T. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. J. Clin. Invest. 2012, 122, 3593–3602. [Google Scholar] [CrossRef]
- Bridi, M.S.; Abel, T. The NR4A orphan nuclear receptors mediate transcription-dependent hippocampal synaptic plasticity. Neurobiol. Learn. Mem. 2013, 105, 151–158. [Google Scholar] [CrossRef]
- Chatterjee, S.; Walsh, E.N.; Yan, A.L.; Giese, K.P.; Safe, S.; Abel, T. Pharmacological activation of Nr4a rescues age-associated memory decline. Neurobiol. Aging 2020, 85, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Bahl, E.; Mukherjee, U.; Walsh, E.N.; Shetty, M.S.; Yan, A.L.; Vanrobaeys, Y.; Lederman, J.D.; Giese, K.P.; Michaelson, J.; et al. Endoplasmic reticulum chaperone genes encode effectors of long-term memory. Sci. Adv. 2022, 8, eabm6063. [Google Scholar] [CrossRef]
- Huang, M.; Pieraut, S.; Cao, J.; de Souza Polli, F.; Roncace, V.; Shen, G.; Ramos-Medina, C.; Lee, H.; Maximov, A. Nr4a1 regulates cell-specific transcriptional programs in inhibitory GABAergic interneurons. Neuron 2024, 112, 2031–2044.e7. [Google Scholar] [CrossRef]
- McNulty, S.E.; Barrett, R.M.; Vogel-Ciernia, A.; Malvaez, M.; Hernandez, N.; Davatolhagh, M.F.; Matheos, D.P.; Schiffman, A.; Wood, M.A. Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn. Mem. 2012, 19, 588–592. [Google Scholar] [CrossRef]
- Liu, P.; Chen, Y.; Zhang, Z.; Yuan, Z.; Sun, J.G.; Xia, S.; Cao, X.; Chen, J.; Zhang, C.J.; Chen, Y.; et al. Noncanonical contribution of microglial transcription factor NR4A1 to post-stroke recovery through TNF mRNA destabilization. PLoS Biol. 2023, 21, e3002199. [Google Scholar] [CrossRef] [PubMed]
- Nagai, S.; Ikeda, K.; Horie-Inoue, K.; Takeda, S.; Inoue, S. Estrogen signaling increases nuclear receptor subfamily 4 group A member 1 expression and energy production in skeletal muscle cells. Endocr. J. 2018, 65, 1209–1218. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, N.; Yu, Y.; Wang, D. Nr4a1 promotes cell adhesion and fusion by regulating ZEB1 transcript levels in myoblasts. Biochem. Biophys. Res. Commun. 2021, 556, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Kunst, S.; Wolloscheck, T.; Kelleher, D.K.; Wolfrum, U.; Sargsyan, S.A.; Iuvone, P.M.; Baba, K.; Tosini, G.; Spessert, R. Pgc-1α and Nr4a1 Are Target Genes of Circadian Melatonin and Dopamine Release in Murine Retina. Invest. Ophthalmol. Vis. Sci. 2015, 56, 6084–6094. [Google Scholar] [CrossRef]
- Tessem, J.S.; Moss, L.G.; Chao, L.C.; Arlotto, M.; Lu, D.; Jensen, M.V.; Stephens, S.B.; Tontonoz, P.; Hohmeier, H.E.; Newgard, C.B. Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors. Proc. Natl. Acad. Sci. USA 2014, 111, 5242–5247. [Google Scholar] [CrossRef]
- Reynolds, M.S.; Hancock, C.R.; Ray, J.D.; Kener, K.B.; Draney, C.; Garland, K.; Hardman, J.; Bikman, B.T.; Tessem, J.S. β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E186–E201. [Google Scholar] [CrossRef]
- Chao, L.C.; Wroblewski, K.; Ilkayeva, O.R.; Stevens, R.D.; Bain, J.; Meyer, G.A.; Schenk, S.; Martinez, L.; Vergnes, L.; Narkar, V.A.; et al. Skeletal muscle Nur77 expression enhances oxidative metabolism and substrate utilization. J. Lipid Res. 2012, 53, 2610–2619. [Google Scholar] [CrossRef]
- Chao, L.C.; Wroblewski, K.; Zhang, Z.; Pei, L.; Vergnes, L.; Ilkayeva, O.R.; Ding, S.Y.; Reue, K.; Watt, M.J.; Newgard, C.B.; et al. Insulin resistance and altered systemic glucose metabolism in mice lacking Nur77. Diabetes 2009, 58, 2788–2796. [Google Scholar] [CrossRef]
- Chao, L.C.; Zhang, Z.; Pei, L.; Saito, T.; Tontonoz, P.; Pilch, P.F. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle. Mol. Endocrinol. 2007, 21, 2152–2163. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, M.A.; Cleasby, M.E.; Harding, A.; Stark, A.; Cooney, G.J.; Muscat, G.E. Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta-adrenergic and an orphan nuclear hormone receptor pathway. J. Biol. Chem. 2005, 280, 12573–12584. [Google Scholar] [CrossRef] [PubMed]
- Kanzleiter, T.; Preston, E.; Wilks, D.; Ho, B.; Benrick, A.; Reznick, J.; Heilbronn, L.K.; Turner, N.; Cooney, G.J. Overexpression of the orphan receptor Nur77 alters glucose metabolism in rat muscle cells and rat muscle in vivo. Diabetologia 2010, 53, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Waki, H.; Vaitheesvaran, B.; Wilpitz, D.C.; Kurland, I.J.; Tontonoz, P. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 2006, 12, 1048–1055. [Google Scholar] [CrossRef]
- Chao, L.C.; Bensinger, S.J.; Villanueva, C.J.; Wroblewski, K.; Tontonoz, P. Inhibition of adipocyte differentiation by Nur77, Nurr1, and Nor1. Mol. Endocrinol. 2008, 22, 2596–2608. [Google Scholar] [CrossRef]
- Duszka, K.; Bogner-Strauss, J.G.; Hackl, H.; Rieder, D.; Neuhold, C.; Prokesch, A.; Trajanoski, Z.; Krogsdam, A.M. Nr4a1 is required for fasting-induced down-regulation of Pparγ2 in white adipose tissue. Mol. Endocrinol. 2013, 27, 135–149. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, R.; Chen, H.Z.; Xiao, Q.; Wang, W.J.; He, J.P.; Li, X.X.; Yu, X.W.; Li, L.; Wang, P.; et al. Enhancement of hypothalamic STAT3 acetylation by nuclear receptor Nur77 dictates leptin sensitivity. Diabetes 2015, 64, 2069–2081. [Google Scholar] [CrossRef]
- Perez-Sieira, S.; Martinez, G.; Porteiro, B.; Lopez, M.; Vidal, A.; Nogueiras, R.; Dieguez, C. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity. PLoS ONE 2013, 8, e53836. [Google Scholar] [CrossRef]
- Szczepanski, H.E.; Flannigan, K.L.; Mainoli, B.; Alston, L.; Baruta, G.M.; Lee, J.W.; Venu, V.K.P.; Shearer, J.; Dufour, A.; Hirota, S.A. NR4A1 modulates intestinal smooth muscle cell phenotype and dampens inflammation-associated intestinal remodeling. FASEB J. 2022, 36, e22609. [Google Scholar] [CrossRef]
- Pulakazhi Venu, V.K.; Alston, L.; Iftinca, M.; Tsai, Y.C.; Stephens, M.; Warriyar, K.V.V.; Rehal, S.; Hudson, G.; Szczepanski, H.; von der Weid, P.Y.; et al. Nr4A1 modulates inflammation-associated intestinal fibrosis and dampens fibrogenic signaling in myofibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G280–G297. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, X.M.; Wang, J.R.; Gan, W.J.; Jiang, F.Q.; Liu, Y.; Zhang, X.D.; He, X.S.; Zhao, Y.Y.; Lu, X.X.; et al. NUR77 exerts a protective effect against inflammatory bowel disease by negatively regulating the TRAF6/TLR-IL-1R signalling axis. J. Pathol. 2016, 238, 457–469. [Google Scholar] [CrossRef]
- Zeng, H.; Qin, L.; Zhao, D.; Tan, X.; Manseau, E.J.; Van Hoang, M.; Senger, D.R.; Brown, L.F.; Nagy, J.A.; Dvorak, H.F. Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity. J. Exp. Med. 2006, 203, 719–729. [Google Scholar] [CrossRef]
- Niu, G.; Ye, T.; Qin, L.; Bourbon, P.M.; Chang, C.; Zhao, S.; Li, Y.; Zhou, L.; Cui, P.; Rabinovitz, I.; et al. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin β4. FASEB J. 2015, 29, 131–140. [Google Scholar] [CrossRef]
- Ye, T.; Peng, J.; Liu, X.; Hou, S.; Niu, G.; Li, Y.; Zeng, H.; Zhao, D. Orphan nuclear receptor TR3/Nur77 differentially regulates the expression of integrins in angiogenesis. Microvasc. Res. 2019, 122, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Hamers, A.A.; Argmann, C.; Moerland, P.D.; Koenis, D.S.; Marinković, G.; Sokolović, M.; de Vos, A.F.; de Vries, C.J.; van Tiel, C.M. Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance. BMC Genom. 2016, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Koenis, D.S.; Medzikovic, L.; Vos, M.; Beldman, T.J.; van Loenen, P.B.; van Tiel, C.M.; Hamers, A.A.J.; Otermin Rubio, I.; de Waard, V.; de Vries, C.J.M. Nur77 variants solely comprising the amino-terminal domain activate hypoxia-inducible factor-1α and affect bone marrow homeostasis in mice and humans. J. Biol. Chem. 2018, 293, 15070–15083. [Google Scholar] [CrossRef]
- Liebmann, M.; Hucke, S.; Koch, K.; Eschborn, M.; Ghelman, J.; Chasan, A.I.; Glander, S.; Schädlich, M.; Kuhlencord, M.; Daber, N.M.; et al. Nur77 serves as a molecular brake of the metabolic switch during T cell activation to restrict autoimmunity. Proc. Natl. Acad. Sci. USA 2018, 115, E8017–E8026. [Google Scholar] [CrossRef]
- Shaked, I.; Hanna, R.N.; Shaked, H.; Chodaczek, G.; Nowyhed, H.N.; Tweet, G.; Tacke, R.; Basat, A.B.; Mikulski, Z.; Togher, S.; et al. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat. Immunol. 2015, 16, 1228–1234. [Google Scholar] [CrossRef]
- Wang, L.M.; Zhang, Y.; Li, X.; Zhang, M.L.; Zhu, L.; Zhang, G.X.; Xu, Y.M. Nr4a1 plays a crucial modulatory role in Th1/Th17 cell responses and CNS autoimmunity. Brain Behav. Immun. 2018, 68, 44–55. [Google Scholar] [CrossRef]
- Han, X.; Xu, T.; Ding, C.; Wang, D.; Yao, G.; Chen, H.; Fang, Q.; Hu, G.; Sun, L. Neuronal NR4A1 deficiency drives complement-coordinated synaptic stripping by microglia in a mouse model of lupus. Signal Transduct. Target. Ther. 2022, 7, 50, Erratum in Signal Transduct. Target. Ther. 2022, 7, 328. https://doi.org/10.1038/s41392-022-01155-z. [Google Scholar] [CrossRef]
- Sekiya, T. Comparison Between Nr4a Transcription Factor Regulation and Function in Lymphoid and Tumor Treg Cells. Front. Immunol. 2022, 13, 866339. [Google Scholar] [CrossRef]
- Sekiya, T.; Nakatsukasa, H.; Lu, Q.; Yoshimura, A. Roles of transcription factors and epigenetic modifications in differentiation and maintenance of regulatory T cells. Microbes Infect. 2016, 18, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, T.; Kondo, T.; Shichita, T.; Morita, R.; Ichinose, H.; Yoshimura, A. Suppression of Th2 and Tfh immune reactions by Nr4a receptors in mature T reg cells. J. Exp. Med. 2015, 212, 1623–1640. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, T.; Kashiwagi, I.; Inoue, N.; Morita, R.; Hori, S.; Waldmann, H.; Rudensky, A.Y.; Ichinose, H.; Metzger, D.; Chambon, P.; et al. The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4+ T cells. Nat. Commun. 2011, 2, 269. [Google Scholar] [CrossRef]
- Sekiya, T.; Kashiwagi, I.; Yoshida, R.; Fukaya, T.; Morita, R.; Kimura, A.; Ichinose, H.; Metzger, D.; Chambon, P.; Yoshimura, A. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat. Immunol. 2013, 14, 230–237. [Google Scholar] [CrossRef]
- Tan, C.; Hiwa, R.; Mueller, J.L.; Vykunta, V.; Hibiya, K.; Noviski, M.; Huizar, J.; Brooks, J.F.; Garcia, J.; Heyn, C.; et al. NR4A nuclear receptors restrain B cell responses to antigen when second signals are absent or limiting. Nat. Immunol. 2020, 21, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Hiwa, R.; Brooks, J.F.; Mueller, J.L.; Nielsen, H.V.; Zikherman, J. NR4A nuclear receptors in T and B lymphocytes: Gatekeepers of immune tolerance. Immunol. Rev. 2022, 307, 116–133. [Google Scholar] [CrossRef]
- Tel-Karthaus, N.; Kers-Rebel, E.D.; Looman, M.W.; Ichinose, H.; de Vries, C.J.; Ansems, M. Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Front. Immunol. 2018, 9, 1797. [Google Scholar] [CrossRef]
- Boulet, S.; Le Corre, L.; Odagiu, L.; Labrecque, N. Role of NR4A family members in myeloid cells and leukemia. Curr. Res. Immunol. 2022, 3, 23–36. [Google Scholar] [CrossRef]
- Nie, X.; Tan, J.; Dai, Y.; Mao, W.; Chen, Y.; Qin, G.; Li, G.; Shen, C.; Zhao, J.; Chen, J. Nur77 downregulation triggers pulmonary artery smooth muscle cell proliferation and migration in mice with hypoxic pulmonary hypertension via the Axin2-β-catenin signaling pathway. Vasc. Pharmacol. 2016, 87, 230–241. [Google Scholar] [CrossRef]
- Wang, H.; Wei, Z.; Xu, C.; Fang, F.; Wang, Z.; Zhong, Y.; Wang, X. Nuclear receptor 4A1 ameliorates UUO-induced renal fibrosis by inhibiting the PI3K/AKT pathway. Sci. Rep. 2024, 14, 24787. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fang, F.; Zhang, M.; Xu, C.; Liu, J.; Gao, L.; Zhao, C.; Wang, Z.; Zhong, Y.; Wang, X. Nuclear receptor 4A1 ameliorates renal fibrosis by inhibiting vascular endothelial growth factor A induced angiogenesis in UUO rats. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119813. [Google Scholar] [CrossRef]
- Westbrook, L.; Johnson, A.C.; Regner, K.R.; Williams, J.M.; Mattson, D.L.; Kyle, P.B.; Henegar, J.R.; Garrett, M.R. Genetic susceptibility and loss of Nr4a1 enhances macrophage-mediated renal injury in CKD. J. Am. Soc. Nephrol. 2014, 25, 2499–2510. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Tang, C.; Wei, J.; Shan, Y.; Fang, X.; Li, Y. Nr4a1 promotes renal interstitial fibrosis by regulating the p38 MAPK phosphorylation. Mol. Med. 2023, 29, 63. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.A.; Waller, C.; Batourina, E.; Kumar, L.; Mendelsohn, C.L.; Gilbert, N.M. Nur77 protects the bladder urothelium from intracellular bacterial infection. Nat. Commun. 2024, 15, 8308. [Google Scholar] [CrossRef]
- Liang, H.; Xie, X.; Song, X.; Huang, M.; Su, T.; Chang, X.; Liang, B.; Huang, D. Orphan nuclear receptor NR4A1 suppresses hyperhomocysteinemia-induced hepatic steatosis in vitro and in vivo. FEBS Lett. 2019, 593, 1061–1071. [Google Scholar] [CrossRef]
- Ma, T.; Huang, W.; Ding, Y.; Ji, R.; Ge, S.; Liu, Q.; Liu, Y.; Chen, J.; Yan, Y.; Lu, S.; et al. AIBP protects drug-induced liver injury by inhibiting MAPK-mediated NR4A1 expression. iScience 2024, 27, 110873. [Google Scholar] [CrossRef]
- Cao, J.; Xu, T.; Zhou, C.; Wang, S.; Jiang, B.; Wu, K.; Ma, L. NR4A1 knockdown confers hepatoprotection against ischaemia-reperfusion injury by suppressing TGFβ1 via inhibition of CYR61/NF-κB in mouse hepatocytes. J. Cell Mol. Med. 2021, 25, 5099–5112. [Google Scholar] [CrossRef]
- Sheng, M.; Weng, Y.; Cao, Y.; Zhang, C.; Lin, Y.; Yu, W. Caspase 6/NR4A1/SOX9 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed fatty liver. Cell Death Discov. 2023, 9, 106. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, Y.; Zhan, X.; Wu, Q. Nuclear receptor 4A1 (NR4A1) silencing protects hepatocyte against hypoxia-reperfusion injury in vitro by activating liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling. Bioengineered 2022, 13, 8349–8359. [Google Scholar] [CrossRef]
- Palumbo-Zerr, K.; Zerr, P.; Distler, A.; Fliehr, J.; Mancuso, R.; Huang, J.; Mielenz, D.; Tomcik, M.; Fürnrohr, B.G.; Scholtysek, C.; et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat. Med. 2015, 21, 150–158. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, J.; Ge, Y.; Shi, Y.; Wang, F.; Zhu, M. NR4A1 inhibits the epithelial-mesenchymal transition of hepatic stellate cells: Involvement of TGF-β-SMAD2/3/4-ZEB signaling. Open Life Sci. 2022, 17, 447–454. [Google Scholar] [CrossRef]
- Fuchs, C.D.; Claudel, T.; Mlitz, V.; Riva, A.; Menz, M.; Brusilovskaya, K.; Haller, F.; Baumgartner, M.; Königshofer, P.; Unger, L.W.; et al. GLP-2 Improves Hepatic Inflammation and Fibrosis in Mdr2-/- Mice Via Activation of NR4a1/Nur77 in Hepatic Stellate Cells and Intestinal FXR Signaling. Cell Mol. Gastroenterol. Hepatol. 2023, 16, 847–856. [Google Scholar] [CrossRef]
- Caon, E.; Martins, M.; Hodgetts, H.; Blanken, L.; Vilia, M.G.; Levi, A.; Thanapirom, K.; Al-Akkad, W.; Abu-Hanna, J.; Baselli, G.; et al. Exploring the impact of the PNPLA3 I148M variant on primary human hepatic stellate cells using 3D extracellular matrix models. J. Hepatol. 2024, 80, 941–956. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Jang, S.; Zhu, J.; Qin, Q.; Sun, L.; Sun, J. Nur77 mitigates endothelial dysfunction through activation of both nitric oxide production and anti-oxidant pathways. Redox Biol. 2024, 70, 103056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, Y.; Cai, Z.; Cui, M.; Nie, P.; Sun, Z.; Sun, S.; Chu, S.; Wang, X.; Hu, L.; Yi, J.; et al. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice. Int. J. Mol. Med. 2015, 36, 1547–1555. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Z.; Bai, Y.; Chang, C.; Jiao, Y.; Chen, Q.; Guo, Z. Metformin attenuates myocardial ischemia/reperfusion-induced ferroptosis through the upregulation of Nur77-mediated IDH1. Biochim. Biophys. Acta Mol. Cell Res. 2025, 1872, 119934. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Chai, W.; Min, J.; Qu, X. Yin Yang 1 suppresses apoptosis and oxidative stress injury in SH-SY5Y cells by facilitating NR4A1 expression. J. Neurogenet. 2023, 37, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Widiapradja, A.; Connery, H.; Bullock, M.; Kasparian, A.O.; Clifton-Bligh, R.; Levick, S.P. The orphan nuclear receptor Nr4a1 contributes to interstitial cardiac fibrosis via modulation of cardiac fibroblast and macrophage phenotype. Cell Mol. Life Sci. 2024, 81, 484. [Google Scholar] [CrossRef] [PubMed]
- Jeanneteau, F.; Barrère, C.; Vos, M.; De Vries, C.J.M.; Rouillard, C.; Levesque, D.; Dromard, Y.; Moisan, M.P.; Duric, V.; Franklin, T.C.; et al. The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex. J. Neurosci. 2018, 38, 1335–1350. [Google Scholar] [CrossRef]
- Murphy, E.P.; Crean, D. NR4A1-3 nuclear receptor activity and immune cell dysregulation in rheumatic diseases. Front. Med. 2022, 9, 874182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, B.; Zhang, X.; Sun, G.; Sun, X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. Front. Pharmacol. 2020, 11, 587457. [Google Scholar] [CrossRef]
- Wang, Z.; Benoit, G.; Liu, J.; Prasad, S.; Aarnisalo, P.; Liu, X.; Xu, H.; Walker, N.P.; Perlmann, T. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 2003, 423, 555–560. [Google Scholar] [CrossRef]
- Jordan, V.C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. J. Med. Chem. 2003, 46, 883–908. [Google Scholar] [CrossRef]
- Jordan, V.C. A century of deciphering the control mechanisms of sex steroid action in breast and prostate cancer: The origins of targeted therapy and chemoprevention. Cancer Res. 2009, 69, 1243–1254. [Google Scholar] [CrossRef]
- Emons, G.; Mustea, A.; Tempfer, C. Tamoxifen and Endometrial Cancer: A Janus-Headed Drug. Cancers 2020, 12, 2535. [Google Scholar] [CrossRef]
- Zhan, Y.; Du, X.; Chen, H.; Liu, J.; Zhao, B.; Huang, D.; Li, G.; Xu, Q.; Zhang, M.; Weimer, B.C.; et al. Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat. Chem. Biol. 2008, 4, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Zeng, H.N.; Zhang, L.R.; Zhan, Y.Y.; Chen, Y.; Wang, Y.; Wang, J.; Xiang, S.H.; Liu, W.J.; Wang, W.J.; et al. A unique pharmacophore for activation of the nuclear orphan receptor Nur77 in vivo and in vitro. Cancer Res. 2010, 70, 3628–3637. [Google Scholar] [CrossRef]
- Deng, Z.; Zheng, L.; Xie, X.; Wei, H.; Peng, J. GPA peptide enhances Nur77 expression in intestinal epithelial cells to exert a protective effect against DSS-induced colitis. FASEB J. 2020, 34, 15364–15378. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.M.; Li, X.; Lv, C.J.; Peng, L.Y.; Yu, X.F.; Song, Y.J.; Wang, C.J. Pterostilbene pre-treatment reduces LPS-induced acute lung injury through activating NR4A1. Pharm. Biol. 2022, 60, 394–403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Egarnes, B.; Blanchet, M.R.; Gosselin, J. Treatment with the NR4A1 agonist cytosporone B controls influenza virus infection and improves pulmonary function in infected mice. PLoS ONE 2017, 12, e0186639. [Google Scholar] [CrossRef]
- Kurakula, K.; Sun, X.Q.; Happé, C.; da Silva Goncalves Bos, D.; Szulcek, R.; Schalij, I.; Wiesmeijer, K.C.; Lodder, K.; Tu, L.; Guignabert, C.; et al. Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: Role of BMP signalling. Eur. Respir. J. 2019, 54, 1802400. [Google Scholar] [CrossRef]
- Xiong, Y.; Ran, J.; Xu, L.; Tong, Z.; Adel Abdo, M.S.; Ma, C.; Xu, K.; He, Y.; Wu, Z.; Chen, Z.; et al. Reactivation of NR4A1 Restrains Chondrocyte Inflammation and Ameliorates Osteoarthritis in Rats. Front. Cell Dev. Biol. 2020, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, B.R.; Miller, J.A.; Hansen, R.J.; Lunghofer, P.J.; Safe, S.; Gustafson, D.L.; Colagiovanni, D.; Tjalkens, R.B. Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2013, 345, 125–138, Erratum in J. Pharmacol. Exp. Ther. 2019, 369, 66. [Google Scholar] [CrossRef] [PubMed]
- Bridi, M.S.; Hawk, J.D.; Chatterjee, S.; Safe, S.; Abel, T. Pharmacological Activators of the NR4A Nuclear Receptors Enhance LTP in a CREB/CBP-Dependent Manner. Neuropsychopharmacology 2017, 42, 1243–1253. [Google Scholar] [CrossRef]
- Hammond, S.L.; Safe, S.; Tjalkens, R.B. A novel synthetic activator of Nurr1 induces dopaminergic gene expression and protects against 6-hydroxydopamine neurotoxicity in vitro. Neurosci. Lett. 2015, 607, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.O.; Li, X.; Hedrick, E.; Jin, U.H.; Tjalkens, R.B.; Backos, D.S.; Li, L.; Zhang, Y.; Wu, Q.; Safe, S. Diindolylmethane analogs bind NR4A1 and are NR4A1 antagonists in colon cancer cells. Mol. Endocrinol. 2014, 28, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Yang, X.Y.; Zheng, L.T.; Wang, G.H.; Zhen, X.C. Activation of Nur77 in microglia attenuates proinflammatory mediators production and protects dopaminergic neurons from inflammation-induced cell death. J. Neurochem. 2017, 140, 589–604. [Google Scholar] [CrossRef]
- Rothe, T.; Ipseiz, N.; Faas, M.; Lang, S.; Perez-Branguli, F.; Metzger, D.; Ichinose, H.; Winner, B.; Schett, G.; Krönke, G. The Nuclear Receptor Nr4a1 Acts as a Microglia Rheostat and Serves as a Therapeutic Target in Autoimmune-Driven Central Nervous System Inflammation. J. Immunol. 2017, 198, 3878–3885. [Google Scholar] [CrossRef]
- Carpenter, M.D.; Hu, Q.; Bond, A.M.; Lombroso, S.I.; Czarnecki, K.S.; Lim, C.J.; Song, H.; Wimmer, M.E.; Pierce, R.C.; Heller, E.A. Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nat. Commun. 2020, 11, 504. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yue, Z.; Gao, Y.; Jiang, G.; Zeng, F.; Shao, Y.; Huang, J.; Yin, M.; Li, Y. NR4A1 is Involved in Fibrogenesis in Ovarian Endometriosis. Cell Physiol. Biochem. 2018, 46, 1078–1090. [Google Scholar] [CrossRef]
- Mohankumar, K.; Li, X.; Sung, N.; Cho, Y.J.; Han, S.J.; Safe, S. Bis-Indole-Derived Nuclear Receptor 4A1 (NR4A1, Nur77) Ligands as Inhibitors of Endometriosis. Endocrinology 2020, 161, bqaa027. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Song, X.; Yuan, S.; Cai, H.; Chen, Y.; Chang, X.; Liang, B.; Huang, D. Histone acetylation regulates orphan nuclear receptor NR4A1 expression in hypercholesterolaemia. Clin. Sci. 2015, 129, 1151–1161. [Google Scholar] [CrossRef]
- Liu, W.; Li, G.; Shi, J.; Gao, Y.; Fang, P.; Zhao, Y.; Zhong, F.; Guo, X.; Lyu, Y.; Da, X.; et al. NR4A1 Acts as a Novel Regulator of Platelet Activation and Thrombus Formation. Circ. Res. 2025, 136, 809–826. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.W.; Zhang, P.; Yang, J.Y.; Huang, J.L.; Ma, X.; Li, S.F.; Zhao, J.Y.; Hu, Y.R.; Wang, Y.C.; Gao, J.J.; et al. Nur77 decreases atherosclerosis progression in apoE(-/-) mice fed a high-fat/high-cholesterol diet. PLoS ONE 2014, 9, e87313. [Google Scholar] [CrossRef]
- Pires, N.M.; Pols, T.W.; de Vries, M.R.; van Tiel, C.M.; Bonta, P.I.; Vos, M.; Arkenbout, E.K.; Pannekoek, H.; Jukema, J.W.; Quax, P.H.; et al. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation. Circulation 2007, 115, 493–500. [Google Scholar] [CrossRef]
- Chen, L.; Shi, Y.; Xiao, D.; Huang, Y.; Jiang, Y.; Liang, M.; Liang, F.; Xue, J.; Chen, H.; Liu, Z.; et al. NR4A1 deficiency promotes carotid plaque vulnerability by activating integrated stress response via targeting Bcat1. Cell Mol. Life Sci. 2025, 82, 91. [Google Scholar] [CrossRef]
- Ding, X.; Le, S.; Wang, K.; Su, Y.; Chen, S.; Wu, C.; Chen, J.; Chen, S.; Zhang, A.; Xia, J. Cytosporone B (Csn-B), an NR4A1 agonist, attenuates acute cardiac allograft rejection by inducing differential apoptosis of CD4+T cells. Int. Immunopharmacol. 2022, 104, 108521. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Martínez, E.; Solís-Barbosa, M.A.; Santana, E.; González-Domínguez, E.; Segovia-Gamboa, N.C.; Meraz-Ríos, M.A.; Córdova, E.J.; Valdés, J.; Corbí, Á.L.; Sánchez-Torres, C. The Nurr7 agonist Cytosporone B differentially regulates inflammatory responses in human polarized macrophages. Immunobiology 2022, 227, 152299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, Y.; Gong, C.; Tang, Y.; Xiong, J.; Wang, D.; Liu, X. Dexmedetomidine attenuates inflammation and organ injury partially by upregulating Nur77 in sepsis. Immun. Inflamm. Dis. 2023, 11, e883. [Google Scholar] [CrossRef]
- Brunet, A.; LeBel, M.; Egarnes, B.; Paquet-Bouchard, C.; Lessard, A.J.; Brown, J.P.; Gosselin, J. NR4A1-dependent Ly6Clow monocytes contribute to reducing joint inflammation in arthritic mice through Treg cells. Eur. J. Immunol. 2016, 46, 2789–2800. [Google Scholar] [CrossRef]
- Teichmann, T.; Pflüger-Müller, B.; Giménez, V.M.M.; Sailer, F.; Dirks, H.; Zehr, S.; Warwick, T.; Brettner, F.; Munoz-Tello, P.; Zimmer, A.; et al. The endocannabinoid anandamide mediates anti-inflammatory effects through activation of NR4A nuclear receptors. Br. J. Pharmacol. 2025, 182, 1164–1182. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, H.; Qin, J.; Zhang, W.; Gao, H.; Long, X.; He, H.; Zhang, L.; Zhang, C.; Cao, C.; et al. The phthalide compound tokinolide B from Angelica sinensis exerts anti-inflammatory effects through Nur77 binding. Phytomedicine 2024, 133, 155925. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Luo, Q.; Alitongbieke, G.; Chong, S.; Xu, C.; Xie, L.; Chen, X.; Zhang, D.; Zhou, Y.; Wang, Z.; et al. Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Mol. Cell 2017, 66, 141–153.e6. [Google Scholar] [CrossRef]
- Zhan, Y.Y.; Chen, Y.; Zhang, Q.; Zhuang, J.J.; Tian, M.; Chen, H.Z.; Zhang, L.R.; Zhang, H.K.; He, J.P.; Wang, W.J.; et al. The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat. Chem. Biol. 2012, 8, 897–904. [Google Scholar] [CrossRef]
- Mohankumar, K.; Lee, J.; Wu, C.S.; Sun, Y.; Safe, S. Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells. Endocrinology 2018, 159, 1950–1963. [Google Scholar] [CrossRef]
- Yang, R.; Zong, T.; Wang, N.; Wang, F.; Su, Y. NR4A1 Alleviates Subretinal Fibrosis by Inhibiting Macrophage to Myofibroblast Transition. Invest. Ophthalmol. Vis. Sci. 2025, 66, 47. [Google Scholar] [CrossRef]
- Paillasse, M.R.; de Medina, P. The NR4A nuclear receptors as potential targets for anti-aging interventions. Med. Hypotheses 2015, 84, 135–140. [Google Scholar] [CrossRef]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, more than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef]
- Khoso, M.A.; Liu, H.; Zhao, T.; Zhao, W.; Huang, Q.; Sun, Z.; Dinislam, K.; Chen, C.; Kong, L.; Zhang, Y.; et al. Impact of plant-derived antioxidants on heart aging: A mechanistic outlook. Front. Pharmacol. 2025, 16, 1524584. [Google Scholar] [CrossRef]
- Nakadate, K.; Ito, N.; Kawakami, K.; Yamazaki, N. Anti-Inflammatory Actions of Plant-Derived Compounds and Prevention of Chronic Diseases: From Molecular Mechanisms to Applications. Int. J. Mol. Sci. 2025, 26, 5206. [Google Scholar] [CrossRef]
- Zhang, L.; Mohankumar, K.; Martin, G.; Mariyam, F.; Park, Y.; Han, S.J.; Safe, S. Flavonoids Quercetin and Kaempferol Are NR4A1 Antagonists and Suppress Endometriosis in Female Mice. Endocrinology 2023, 164, bqad133. [Google Scholar] [CrossRef]
- Shrestha, R.; Mohankumar, K.; Martin, G.; Hailemariam, A.; Lee, S.O.; Jin, U.H.; Burghardt, R.; Safe, S. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. J. Exp. Clin. Cancer Res. 2021, 40, 392. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Upadhyay, S.; Mariyam, F.; Martin, G.; Hailemariam, A.; Lee, K.; Jayaraman, A.; Chapkin, R.S.; Lee, S.O.; Safe, S. Flavone and Hydroxyflavones Are Ligands That Bind the Orphan Nuclear Receptor 4A1 (NR4A1). Int. J. Mol. Sci. 2023, 24, 8152. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Wang, Y.; Song, F.; Yuan, Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-κB/IκBα, p38 MAPK, and Bcl-2/Bax signaling. Int. Immunopharmacol. 2017, 47, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Q.; Mo, W.; Feng, J.; Li, S.; Li, J.; Liu, T.; Xu, S.; Wang, W.; Lu, X.; et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci. Rep. 2017, 7, 9289. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Wan, J.; Dou, X.; Zhang, C.; Sun, M.; Ye, F. Quercetin alleviates liver fibrosis via regulating glycolysis of liver sinusoidal endothelial cells and neutrophil infiltration. Biomol. Biomed. 2024, 24, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Shakerian, E.; Akbari, R.; Mohammadtaghvaei, N.; Mohammadi Gahrooie, M.; Afarin, R. Quercetin Reduces Hepatic Fibrogenesis by Inhibiting TGF-β/Smad3 Signaling Pathway in LX-2 Cell Line. Jundishapur J. Nat. Pharm. Prod. 2021, 17, e113484. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Wang, W.; Wang, L.; Hu, S.; Xiao, X.; Hu, C.; Dai, Y.; Zhang, Y.; Li, Z.; et al. The construction of preclinical evidence for the treatment of liver fibrosis with quercetin: A systematic review and meta-analysis. Phytother. Res. 2022, 36, 3774–3791. [Google Scholar] [CrossRef]
- Ren, J.; Li, J.; Liu, X.; Feng, Y.; Gui, Y.; Yang, J.; He, W.; Dai, C. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci. Rep. 2016, 6, 23968. [Google Scholar] [CrossRef]
- Liu, X.; Sun, N.; Mo, N.; Lu, S.; Song, E.; Ren, C.; Li, Z. Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway. Food Funct. 2019, 10, 3782–3797. [Google Scholar] [CrossRef]
- Cao, Y.; Hu, J.; Sui, J.; Jiang, L.; Cong, Y.; Ren, G. Quercetin is able to alleviate TGF-β-induced fibrosis in renal tubular epithelial cells by suppressing miR-21. Exp. Ther. Med. 2018, 16, 2442–2448. [Google Scholar] [CrossRef] [PubMed]
- Sherif, I.O. Uroprotective mechanism of quercetin against cyclophosphamide-induced urotoxicity: Effect on oxidative stress and inflammatory markers. J. Cell Biochem. 2018, 119, 7441–7448. [Google Scholar] [CrossRef] [PubMed]
- Maisto, M.; Iannuzzo, F.; Novellino, E.; Schiano, E.; Piccolo, V.; Tenore, G.C. Natural Polyphenols for Prevention and Treatment of Urinary Tract Infections. Int. J. Mol. Sci. 2023, 24, 3277. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Han, X.; Xu, T.; Fang, Q.; Zhang, H.; Yue, L.; Hu, G.; Sun, L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol. 2021, 44, 102010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Cheang, L.C.; Wang, M.W.; Lee, S.M. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int. J. Mol. Med. 2011, 27, 195–203. [Google Scholar] [CrossRef]
- Geng, F.; Zhao, L.; Cai, Y.; Zhao, Y.; Jin, F.; Li, Y.; Li, T.; Yang, X.; Li, S.; Gao, X.; et al. Quercetin Alleviates Pulmonary Fibrosis in Silicotic Mice by Inhibiting Macrophage Transition and TGF-β-SMAD2/3 Pathway. Curr. Issues Mol. Biol. 2023, 45, 3087–3101. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhong, T.; Wu, H. Quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch. Med. Sci. 2015, 11, 427–432. [Google Scholar] [CrossRef]
- Lv, P.; Han, P.; Cui, Y.; Chen, Q.; Cao, W. Quercetin attenuates inflammation in LPS-induced lung epithelial cells via the NRF2 signaling pathway. Immun. Inflamm. Dis. 2024, 12, e1185. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yun, G. Quercetin: A Potential Drug Candidate for Inflammatory Bowel Disease. In Quercetin-Effects on Human Health; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Dong, Y.; Lei, J.; Zhang, B. Dietary Quercetin Alleviated DSS-induced Colitis in Mice Through Several Possible Pathways by Transcriptome Analysis. Curr. Pharm. Biotechnol. 2020, 21, 1666–1673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zheng, Y.; Yan, F.; Dong, M.; Ren, Y. Research progress of quercetin in cardiovascular disease. Front. Cardiovasc. Med. 2023, 10, 1203713. [Google Scholar] [CrossRef]
- Espírito-Santo, D.A.; Cordeiro, G.S.; Santos, L.S.; Silva, R.T.; Pereira, M.U.; Matos, R.J.B.; Boaventura, G.T.; Barreto-Medeiros, J.M. Cardioprotective effect of the quercetin on cardiovascular remodeling and atherosclerosis in rodents fed a high-fat diet: A systematic review. Chem. Biol. Interact. 2023, 384, 110700. [Google Scholar] [CrossRef]
- Arabi, S.M.; Shahraki Jazinaki, M.; Chambari, M.; Bahrami, L.S.; Maleki, M.; Sukhorukov, V.N.; Sahebkar, A. The effects of Quercetin supplementation on cardiometabolic outcomes: An umbrella review of meta-analyses of randomized controlled trials. Phytother. Res. 2023, 37, 5080–5091. [Google Scholar] [CrossRef]
- Wei, X.; Meng, X.; Yuan, Y.; Shen, F.; Li, C.; Yang, J. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol. Cell Biochem. 2018, 446, 43–52. [Google Scholar] [CrossRef]
- Bule, M.; Abdurahman, A.; Nikfar, S.; Abdollahi, M.; Amini, M. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem. Toxicol. 2019, 125, 494–502. [Google Scholar] [CrossRef]
- Eid, H.M.; Nachar, A.; Thong, F.; Sweeney, G.; Haddad, P.S. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn. Mag. 2015, 11, 74–81. [Google Scholar] [CrossRef]
- Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J.F.; Gross, R.; Petit, P.; et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol. 2010, 161, 799–814. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, W. Anti-Inflammatory Effect of Quercetin on RAW 264.7 Mouse Macrophages Induced with Polyinosinic-Polycytidylic Acid. Molecules 2016, 21, 450. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.F.; Chen, G.W.; Chen, Y.C.; Shen, C.K.; Lu, D.Y.; Yang, L.Y.; Chen, J.H.; Yeh, W.L. Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Nutrients 2021, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Yu, Y.L.; Cheng, W.C.; OuYang, C.N.; Fu, E.; Chu, C.L. Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol. 2010, 184, 6815–6821. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, L.; Jian, X.; Wang, Q.; Li, Z.; Ge, H. Baicalein attenuates ovalbumin-induced allergic rhinitis through the activation of nuclear receptor subfamily 4 group a member 1. Immunol. Res. 2025, 73, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Martin, G.; Mohankumar, K.; Hampton, J.T.; Liu, W.R.; Safe, S. Resveratrol binds nuclear receptor 4A1 (NR4A1) and acts as an NR4A1 antagonist in lung cancer cells. Mol. Pharmacol. 2022, 102, 80–91. [Google Scholar] [CrossRef]
- Ren, Z.Q.; Zheng, S.Y.; Sun, Z.; Luo, Y.; Wang, Y.T.; Yi, P.; Li, Y.S.; Huang, C.; Xiao, W.F. Resveratrol: Molecular Mechanisms, Health Benefits, and Potential Adverse Effects. MedComm (2020) 2025, 6, e70252. [Google Scholar] [CrossRef]
- Zhou, D.D.; Cheng, J.; Li, J.; Wu, S.X.; Xiong, R.G.; Huang, S.Y.; Cheung, P.C.; Li, H.B. Resveratrol and Its Analogues: Anti-ageing Effects and Underlying Mechanisms. Subcell. Biochem. 2024, 107, 183–203. [Google Scholar] [CrossRef]
- Zhou, D.D.; Luo, M.; Huang, S.Y.; Saimaiti, A.; Shang, A.; Gan, R.Y.; Li, H.B. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid. Med. Cell Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef]
- Xu, X.; Ocansey, D.K.W.; Pei, B.; Zhang, Y.; Wang, N.; Wang, Z.; Mao, F. Resveratrol alleviates DSS-induced IBD in mice by regulating the intestinal microbiota-macrophage-arginine metabolism axis. Eur. J. Med. Res. 2023, 28, 319. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Liu, X.; Yin, J.; Li, X.; Zhang, X.; Xing, X.; Wang, J.; Wang, S. Differential Protective Effect of Resveratrol and Its Microbial Metabolites on Intestinal Barrier Dysfunction is Mediated by the AMPK Pathway. J. Agric. Food Chem. 2022, 70, 11301–11313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, Q.; Xu, T.; Hong, L.; Fu, R.; Wu, J.; Ding, J. Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways. Mol. Med. Rep. 2016, 13, 224–230. [Google Scholar] [CrossRef]
- Zhu, L.; Mou, Q.; Wang, Y.; Zhu, Z.; Cheng, M. Resveratrol contributes to the inhibition of liver fibrosis by inducing autophagy via the microRNA 20a mediated activation of the PTEN/PI3K/AKT signaling pathway. Int. J. Mol. Med. 2020, 46, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Tian, S.; Han, J.; Xiong, P. Resveratrol as a therapeutic agent for renal fibrosis induced by unilateral ureteral obstruction. Ren. Fail. 2014, 36, 285–291. [Google Scholar] [CrossRef]
- He, T.; Xiong, J.; Nie, L.; Yu, Y.; Guan, X.; Xu, X.; Xiao, T.; Yang, K.; Liu, L.; Zhang, D.; et al. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J. Mol. Med. 2016, 94, 1359–1371. [Google Scholar] [CrossRef] [PubMed]
- Yonamine, C.Y.; Pinheiro-Machado, E.; Michalani, M.L.; Alves-Wagner, A.B.; Esteves, J.V.; Freitas, H.S.; Machado, U.F. Resveratrol Improves Glycemic Control in Type 2 Diabetic Obese Mice by Regulating Glucose Transporter Expression in Skeletal Muscle and Liver. Molecules 2017, 22, 1180. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M. Resveratrol supplementation and type 2 diabetes: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 4465–4480. [Google Scholar] [CrossRef]
- Teimouri, M.; Homayouni-Tabrizi, M.; Rajabian, A.; Amiri, H.; Hosseini, H. Anti-inflammatory effects of resveratrol in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2022, 70, 102863. [Google Scholar] [CrossRef]
- Hao, H.D.; He, L.R. Mechanisms of cardiovascular protection by resveratrol. J. Med. Food 2004, 7, 290–298. [Google Scholar] [CrossRef]
- Latronico, T.; Rossano, R.; Miniero, D.V.; Casalino, E.; Liuzzi, G.M. Neuroprotective Effect of Resveratrol against Manganese-Induced Oxidative Stress and Matrix Metalloproteinase-9 in an “In Vivo” Model of Neurotoxicity. Int. J. Mol. Sci. 2024, 25, 2142. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, J.S.; Zhou, H.; Wilson, B.; Hong, J.S.; Gao, H.M. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol. Pharmacol. 2010, 78, 466–477, Erratum in Mol. Pharmacol. 2010, 78, 981. [Google Scholar] [CrossRef]
- ElFeky, D.S.; Kassem, A.A.; Moustafa, M.A.; Assiri, H.; El-Mahdy, A.M. Suppression of virulence factors of uropathogenic Escherichia coli by Trans-resveratrol and design of nanoemulgel. BMC Microbiol. 2024, 24, 412. [Google Scholar] [CrossRef]
- Calmasini, F.B.; Silva, F.H.; Alexandre, E.C.; Antunes, E. Efficacy of resveratrol in male urogenital tract dysfunctions: An evaluation of pre-clinical data. Nutr. Res. Rev. 2023, 36, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; He, Y.; Yu, Y.; Zhang, J.; Zeng, X.; Gong, F.; Liu, Q.; Yang, B. Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis by mast cell suppression. Mol. Med. Rep. 2018, 17, 918–924. [Google Scholar] [CrossRef]
- Li, W.; Luo, R.; Liu, Z.; Li, X.; Zhang, C.; Huang, J.; Wang, Z.; Chen, J.; Ding, H.; Zhou, X.; et al. Anti-inflammatory effects of resveratrol in treating interstitial cystitis/bladder pain syndrome: A multi-faceted approach integrating network pharmacology, molecular docking, and experimental validation. Mol. Divers. 2025, 29, 2489–2497. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Chen, H.; Han, L.; Ji, X.; Wang, Q.; Wei, L.; Miu, Y.; Wang, J.; Mao, J.; et al. Resveratrol alleviates bleomycin-induced pulmonary fibrosis via suppressing HIF-1α and NF-κB expression. Aging 2021, 13, 4605–4616. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, L.; Kang, K.; Fei, D.; Gong, R.; Cao, Y.; Pan, S.; Zhao, M.; Zhao, M. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation. Biomed. Pharmacother. 2016, 84, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Noh, K.T.; Cho, J.; Chun, S.H.; Jang, J.H.; Cha, G.S.; Jung, I.D.; Jang, D.D.; Park, Y.M. Resveratrol regulates naïve CD 8+ T-cell proliferation by upregulating IFN-γ-induced tryptophanyl-tRNA synthetase expression. BMB Rep. 2015, 48, 283–288. [Google Scholar] [CrossRef]
- Svajger, U.; Obermajer, N.; Jeras, M. Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology 2010, 129, 525–535. [Google Scholar] [CrossRef]
- Silva, A.M.; Oliveira, M.I.; Sette, L.; Almeida, C.R.; Oliveira, M.J.; Barbosa, M.A.; Santos, S.G. Resveratrol as a natural anti-tumor necrosis factor-α molecule: Implications to dendritic cells and their crosstalk with mesenchymal stromal cells. PLoS ONE 2014, 9, e91406. [Google Scholar] [CrossRef]
- Moka, M.K.; George, M.; Sriram, D.K. Advancing Longevity: Exploring Antiaging Pharmaceuticals in Contemporary Clinical Trials Amid Aging Dynamics. Rejuvenation Res. 2024, 27, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Faheem, H.I.; Hamid, A.; Yousaf, R.; Haris, M.; Saleem, U.; Shah, G.M.; Alhasani, R.H.; Althobaiti, N.A.; Alsharif, I.; et al. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med. Res. Rev. 2024, 44, 235–274. [Google Scholar] [CrossRef] [PubMed]
- Proshkina, E.; Koval, L.; Platonova, E.; Golubev, D.; Ulyasheva, N.; Babak, T.; Shaposhnikov, M.; Moskalev, A. Polyphenols as Potential Geroprotectors. Antioxid. Redox Signal. 2024, 40, 564–593. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safe, S. NR4A1 Acts as a Nutrient Sensor That Inhibits the Effects of Aging. Nutrients 2025, 17, 2709. https://doi.org/10.3390/nu17162709
Safe S. NR4A1 Acts as a Nutrient Sensor That Inhibits the Effects of Aging. Nutrients. 2025; 17(16):2709. https://doi.org/10.3390/nu17162709
Chicago/Turabian StyleSafe, Stephen. 2025. "NR4A1 Acts as a Nutrient Sensor That Inhibits the Effects of Aging" Nutrients 17, no. 16: 2709. https://doi.org/10.3390/nu17162709
APA StyleSafe, S. (2025). NR4A1 Acts as a Nutrient Sensor That Inhibits the Effects of Aging. Nutrients, 17(16), 2709. https://doi.org/10.3390/nu17162709