Association Between Serum High Sensitivity C-Reactive Protein Levels and Low Muscle Strength Among Korean Adults
Abstract
1. Introduction
2. Methods
2.1. Data Source and Subjects
2.2. General Characteristics and Dietary Intake
2.3. Health Examinations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.W.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W.; et al. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia Muscle 2022, 13, 781–794. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef]
- Sayer, A.A.; Cruz-Jentoft, A. Sarcopenia definition, diagnosis and treatment: Consensus is growing. Age Ageing 2022, 51, 1. [Google Scholar] [CrossRef] [PubMed]
- Sayer, A.A.; Cooper, R.; Arai, H.; Cawthon, P.M.; Ntsama Essomba, M.J.; Fielding, R.A.; Grounds, M.D.; Witham, M.D.; Cruz-Jentoft, A.J. Sarcopenia. Nat. Rev. Dis. Primers 2024, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Pan, L.; Xie, W.; Fu, X.; Lu, W.; Jin, H.; Lai, J.; Zhang, A.; Yu, Y.; Li, Y.; Xiao, W. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp. Gerontol. 2021, 154, 111544. [Google Scholar] [CrossRef]
- Jimenez-Gutierrez, G.E.; Martínez-Gómez, L.E.; Martínez-Armenta, C.; Pineda, C.; Martínez-Nava, G.A.; Lopez-Reyes, A. Molecular Mechanisms of Inflammation in Sarcopenia: Diagnosis and Therapeutic Update. Cells 2022, 11, 2359. [Google Scholar] [CrossRef] [PubMed]
- Di Giosia, P.; Stamerra, C.A.; Giorgini, P.; Jamialahamdi, T.; Butler, A.E.; Sahebkar, A. The role of nutrition in inflammaging. Ageing Res. Rev. 2022, 77, 101596. [Google Scholar] [CrossRef]
- Banait, T.; Wanjari, A.; Danade, V.; Banait, S.; Jain, J. Role of High-Sensitivity C-reactive Protein (Hs-CRP) in Non-communicable Diseases: A Review. Cureus 2022, 14, e30225. [Google Scholar] [CrossRef]
- Denegri, A.; Boriani, G. High Sensitivity C-reactive Protein (hsCRP) and its Implications in Cardiovascular Outcomes. Curr. Pharm. Des. 2021, 27, 263–275. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- Son, D.H.; Song, S.A.; Lee, Y.J. Association Between C-Reactive Protein and Relative Handgrip Strength in Postmenopausal Korean Women Aged 45–80 Years: A Cross-Sectional Study. Clin. Interv. Aging 2022, 17, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; Rossmeislova, L.; Koppo, K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017, 8, 1045. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Choi, H.Y.; Ki, M. Association between levels of physical activity and low handgrip strength: Korea National Health and Nutrition Examination Survey 2014–2019. Epidemiol. Health 2022, 44, e2022027. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef]
- The 7th Korea National Health and Nutrition Examination Survey (KNHANES VII); Korea Disease Control and Prevention Agency: Cheongju, Republic of Korea, 2018.
- Jang, W.; Ryu, H.K. Association of low hand grip strength with protein intake in Korean female elderly: Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII), 2016–2018. Korean J. Community Nutr. 2020, 25, 226–235. [Google Scholar] [CrossRef]
- Korean Food Composition Database 9.3; Rural Development Administration & National Institute of Agricultural Sciences: Wanju, Republic of Korea, 2021.
- Sabatine, M.S.; Morrow, D.A.; Jablonski, K.A.; Rice, M.M.; Warnica, J.W.; Domanski, M.J.; Hsia, J.; Gersh, B.J.; Rifai, N.; Ridker, P.M.; et al. Prognostic significance of the Centers for Disease Control/American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease. Circulation 2007, 115, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- The 7th Korea National Health and Nutrition Examination Survey (2016–2018) Health Examination Guidelines; Korea Disease Control and Prevention Agency: Cheongju, Republic of Korea, 2016.
- Baek, J.Y.; Jung, H.W.; Kim, K.M.; Kim, M.; Park, C.Y.; Lee, K.P.; Lee, S.Y.; Jang, I.Y.; Jeon, O.H.; Lim, J.Y. Korean Working Group on Sarcopenia Guideline: Expert Consensus on Sarcopenia Screening and Diagnosis by the Korean Society of Sarcopenia, the Korean Society for Bone and Mineral Research, and the Korean Geriatrics Society. Ann. Geriatr. Med. Res. 2023, 27, 9–21. [Google Scholar] [CrossRef]
- Lin, S.; Chen, X.; Cheng, Y.; Huang, H.; Yang, F.; Bao, Z.; Fan, Y. C-Reactive Protein Level as a Novel Serum Biomarker in Sarcopenia. Mediat. Inflamm. 2024, 2024, 3362336. [Google Scholar] [CrossRef]
- Grima-Terrén, M.; Campanario, S.; Ramírez-Pardo, I.; Cisneros, A.; Hong, X.; Perdiguero, E.; Serrano, A.L.; Isern, J.; Muñoz-Cánoves, P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol. Asp. Med. 2024, 100, 101319. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, X.; Shen, J.; Lei, W.; Zhang, S.; Hu, W.; Lv, L. Association between high-sensitivity C-reactive protein, cystatin C and all-cause mortality in middle-aged and elderly participants with sarcopenia. Aging Clin. Exp. Res. 2025, 37, 215. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zhang, T.; Liu, H.; Li, Z.; Peng, L.; Wang, C.; Wang, T. Inflammaging: The ground for sarcopenia? Exp. Gerontol. 2022, 168, 111931. [Google Scholar] [CrossRef]
- Xie, H.; Wang, H.; Wu, Z.; Li, W.; Liu, Y.; Wang, N. The association of dietary inflammatory potential with skeletal muscle strength, mass, and sarcopenia: A meta-analysis. Front. Nutr. 2023, 10, 1100918. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.W. Association between C-reactive protein and sarcopenia: The National Health and Nutrition Examination Survey. Medicine 2024, 103, e41052. [Google Scholar] [CrossRef]
- Guo, X.Y.; Li, L.W. Hs-CRP/HDL-C ratio as a predictive inflammatory-lipid marker for sarcopenia: Evidence from NHANES 2015–2018. Front. Immunol. 2025, 16, 1600421. [Google Scholar] [CrossRef]
- Cataltepe, E.; Ceker, E.; Fadiloglu, A.; Gungor, F.; Karakurt, N.; Ulger, Z.; Varan, H.D. Association between the systemic immune-inflammation index and sarcopenia in older adults: A cross-sectional study. BMC Geriatr. 2025, 25, 28. [Google Scholar] [CrossRef] [PubMed]
- Micallef, M.A.; Munro, I.A.; Garg, M.L. An inverse relationship between plasma n-3 fatty acids and C-reactive protein in healthy individuals. Eur. J. Clin. Nutr. 2009, 63, 1154–1156. [Google Scholar] [CrossRef]
- Shin, Y.; Chang, E. Increased Intake of Omega-3 Polyunsaturated Fatty Acids Is Associated with Reduced Odds of Low Hand Grip Strength in Korean Adults. Nutrients 2023, 15, 321. [Google Scholar] [CrossRef]
- Jafarnejad, S.; Boccardi, V.; Hosseini, B.; Taghizadeh, M.; Hamedifard, Z. A Meta-analysis of Randomized Control Trials: The Impact of Vitamin C Supplementation on Serum CRP and Serum hs-CRP Concentrations. Curr. Pharm. Des. 2018, 24, 3520–3528. [Google Scholar] [CrossRef]
- Park, C.Y.; Shin, S. Low dietary vitamin C intake is associated with low muscle strength among elderly Korean women. Nutr. Res. 2024, 127, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Griffith, J.A.; Chasan-Taber, L.; Olendzki, B.C.; Jackson, E.; Stanek, E.J., III; Li, W.; Pagoto, S.L.; Hafner, A.R.; Ockene, I.S. Association between dietary fiber and serum C-reactive protein. Am. J. Clin. Nutr. 2006, 83, 760–766. [Google Scholar] [CrossRef]
- Shin, S. Association Between Dietary Fiber Intake and Low Muscle Strength Among Korean Adults. Clin. Nutr. Res. 2024, 13, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Salvioli, S.; Basile, M.S.; Bencivenga, L.; Carrino, S.; Conte, M.; Damanti, S.; De Lorenzo, R.; Fiorenzato, E.; Gialluisi, A.; Ingannato, A.; et al. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res. Rev. 2023, 91, 102044. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Men | p Value * | Women | p Value * | ||||
---|---|---|---|---|---|---|---|---|
Normal (n = 1225) | Elevated (n = 364) | High (n = 131) | Normal (n = 1669) | Elevated (n = 338) | High (n = 169) | |||
Age, years | 29.3 ± 0.2 | 30.3 ± 0.4 | 29.9 ± 0.6 | 0.011 | 29.5 ± 0.2 | 29.8 ± 0.4 | 30.4 ± 0.5 | 0.198 |
Household income | 0.974 | 0.045 | ||||||
Low | 98 (8.9) | 27 (8.6) | 13 (10.5) | 105 (6.8) | 27 (9.3) | 14 (9.3) | ||
Middle-low | 276 (22.6) | 84 (23.0) | 30 (21.0) | 412 (25.1) | 111 (30.7) | 57 (34.2) | ||
Middle-high | 420 (33.5) | 133 (35.5) | 40 (32.5) | 582 (33.9) | 106 (31.3) | 54 (29.6) | ||
High | 429 (35.0) | 120 (32.9) | 48 (35.9) | 567 (34.2) | 94 (28.8) | 43 (26.9) | ||
Current alcohol consumer | 935 (76.4) | 263 (71.6) | 95 (74.7) | 0.236 | 1015 (63.4) | 177 (55.0) | 96 (52.8) | 0.003 |
Current smoker | 480 (38.6) | 141 (37.3) | 55 (43.0) | 0.565 | 123 (8.4) | 24 (6.2) | 8 (5.6) | 0.277 |
Regular resistance exercise | 396 (33.4) | 81 (22.2) | 26 (23.3) | <0.001 | 268 (17.1) | 34 (10.6) | 23 (14.3) | 0.029 |
Medical condition † | 9 (0.7) | 6 (1.2) | 3 (1.6) | 0.383 | 18 (1.0) | 5 (1.2) | 8 (4.5) | 0.001 |
Body mass index, kg/m2 | 23.9 ± 0.1 | 27.3 ± 0.3 | 27.5 ± 0.5 | <0.001 | 21.4 ± 0.1 | 24.6 ± 0.3 | 26.7 ± 0.5 | <0.001 |
hsCRP, mg/L | 0.46 ± 0.01 | 1.63 ± 0.03 | 6.14 ± 0.32 | <0.001 | 0.41 ± 0.01 | 1.65 ± 0.03 | 5.29 ± 0.20 | <0.001 |
Maximal handgrip strength, Kg | 42.7 ± 0.2 | 42.7 ± 0.5 | 41.5 ± 0.6 | 0.175 | 24.8 ± 0.1 | 25.0 ± 0.3 | 25.6 ± 0.4 | 0.180 |
Low muscle strength | 26 (2.2) | 9 (3.0) | 4 (2.2) | 0.693 | 102 (6.2) | 24 (7.8) | 12 (7.2) | 0.605 |
Total energy intake, kcal/day | 2549 ± 36 | 2510 ± 63 | 2419 ± 92 | 0.416 | 1783 ± 21 | 1780 ± 55 | 1805 ± 83 | 0.964 |
Dietary protein intake, g/day | 97.4 ± 1.7 | 96.2 ± 3.0 | 93.3 ± 4.4 | 0.687 | 66.2 ± 1.0 | 64.5 ± 2.2 | 65.6 ± 3.6 | 0.775 |
Dietary vitamin C intake, mg/day | 64.2 ± 2.3 | 64.3 ± 6.5 | 69.4 ± 9.7 | 0.874 | 55.9 ± 1.8 | 57.4 ± 4.4 | 58.9 ± 5.4 | 0.840 |
Dietary vitamin E intake, mg α-TE/day | 8.23 ± 0.15 | 7.93 ± 0.28 | 7.88 ± 0.41 | 0.530 | 6.17 ± 0.12 | 6.22 ± 0.21 | 6.41 ± 0.59 | 0.915 |
Dietary β-carotene intake, μg/day | 2627 ± 70 | 2503 ± 124 | 2558 ± 220 | 0.670 | 2161 ± 60 | 2594 ± 173 | 4045 ± 1996 | 0.038 |
Characteristics | Men | p Value * | Women | p Value * | ||||
---|---|---|---|---|---|---|---|---|
Normal (n = 1225) | Elevated (n = 364) | High (n = 131) | Normal (n = 1669) | Elevated (n = 338) | High (n = 169) | |||
Age, years | 50.8 ± 0.2 | 51.3 ± 0.3 | 51.7 ± 0.5 | 0.051 | 51.2 ± 0.2 | 52.5 ± 0.3 | 52.0 ± 0.5 | <0.001 |
Household income | <0.001 | 0.009 | ||||||
Low | 169 (7.9) | 60 (7.5) | 43 (16.1) | 292 (9.1) | 99 (13.3) | 38 (14.7) | ||
Middle-low | 395 (18.8) | 159 (24.4) | 65 (21.9) | 685 (22.6) | 177 (23.7) | 54 (20.5) | ||
Middle-high | 597 (31.0) | 185 (29.1) | 70 (27.5) | 873 (30.2) | 199 (30.6) | 84 (33.4) | ||
High | 800 (42.3) | 230 (39.0) | 82 (34.4) | 1094 (38.1) | 216 (31.4) | 76 (31.4) | ||
Current alcohol consumer | 1460 (74.9) | 459 (73.9) | 187 (71.4) | 0.537 | 1296 (46.5) | 253 (36.7) | 105 (44.2) | <0.001 |
Current smoker | 699 (35.8) | 283 (46.7) | 117 (44.1) | <0.001 | 126 (4.7) | 39 (5.7) | 19 (8.9) | 0.055 |
Regular resistance exercise | 519 (26.6) | 148 (23.7) | 51 (20.4) | 0.102 | 506 (17.2) | 80 (10.8) | 33 (13.1) | 0.001 |
Medical condition † | 327 (13.5) | 100 (13.4) | 49 (17.1) | 0.346 | 532 (16.7) | 156 (23.6) | 57 (22.4) | <0.001 |
Body mass index, kg/m2 | 24.4 ± 0.1 | 25.5 ± 0.1 | 25.2 ± 0.3 | <0.001 | 23.1 ± 0.1 | 25.3 ± 0.2 | 25.6 ± 0.3 | <0.001 |
hsCRP, mg/L | 0.50 ± 0.01 | 1.62 ± 0.02 | 6.30 ± 0.29 | <0.001 | 0.46 ± 0.00 | 1.65 ± 0.02 | 5.60 ± 0.22 | <0.001 |
Maximal handgrip strength, Kg | 42.0 ± 0.2 | 41.6 ± 0.3 | 40.5 ± 0.5 | 0.018 | 24.6 ± 0.1 | 24.4 ± 0.2 | 24.1 ± 0.3 | 0.333 |
Low muscle strength | 44 (1.9) | 22 (2.4) | 13 (4.3) | 0.051 | 188 (6.3) | 62 (9.3) | 21 (6.5) | 0.029 |
Total energy intake, kcal/day | 2432 ± 24 | 2401 ± 47 | 2427 ± 74 | 0.833 | 1692 ± 15 | 1670 ± 27 | 1730 ± 48 | 0.533 |
Dietary protein intake, g/day | 86.2 ± 1.0 | 84.6 ± 2.0 | 83.8 ± 3.2 | 0.604 | 60.9 ± 0.7 | 58.7 ± 1.2 | 63.5 ± 2.1 | 0.081 |
Dietary vitamin C intake, mg/day | 69.2 ± 2.2 | 68.4 ± 4.1 | 64.1 ± 4.2 | 0.545 | 66.8 ± 1.6 | 65.8 ± 4.8 | 65.3 ± 4.8 | 0.940 |
Dietary vitamin E intake, mg α-TE/day | 7.94 ± 0.14 | 7.63 ± 0.19 | 7.28 ± 0.30 | 0.078 | 5.98 ± 0.08 | 5.77 ± 0.13 | 6.60 ± 0.32 | 0.043 |
Dietary β-carotene intake, μg/day | 3295 ± 74 | 3483 ± 147 | 3279 ± 192 | 0.517 | 2817 ± 58 | 2781 ± 124 | 2906 ± 177 | 0.850 |
Characteristics | Men | p Value * | Women | p Value * | ||||
---|---|---|---|---|---|---|---|---|
Normal (n = 1225) | Elevated (n = 364) | High (n = 131) | Normal (n = 1669) | Elevated (n = 338) | High (n = 169) | |||
Age, years | 72.3 ± 0.2 | 73.0 ± 0.3 | 73.2 ± 0.4 | 0.035 | 72.4 ± 0.1 | 73.0 ± 0.3 | 73.9 ± 0.5 | 0.003 |
Household income | 0.094 | 0.125 | ||||||
Low | 395 (36.0) | 172 (42.0) | 100 (49.0) | 690 (47.5) | 258 (52.7) | 121 (57.5) | ||
Middle-low | 319 (21.6) | 108 (26.0) | 56 (26.6) | 352 (25.4) | 130 (24.5) | 36 (18.0) | ||
Middle-high | 198 (19.7) | 68 (18.1) | 20 (13.9) | 187 (14.8) | 55 (13.1) | 26 (16.7) | ||
High | 135 (14.7) | 48 (13.9) | 20 (10.5) | 139 (12.3) | 43 (9.7) | 11 (7.9) | ||
Current alcohol consumer | 621 (59.3) | 217 (56.5) | 106 (56.8) | 0.648 | 244 (19.4) | 89 (17.3) | 26 (11.3) | 0.034 |
Current smoker | 173 (16.4) | 81 (20.4) | 35 (19.0) | 0.302 | 25 (2.2) | 10 (2.1) | 6 (2.3) | 0.983 |
Regular resistance exercise | 292 (27.9) | 109 (30.9) | 33 (17.0) | 0.005 | 130 (10.5) | 38 (9.5) | 15 (8.4) | 0.707 |
Medical condition † | 437 (40.5) | 163 (38.7) | 83 (37.3) | 0.729 | 746 (54.0) | 279 (55.4) | 121 (59.7) | 0.437 |
Body mass index, kg/m2 | 23.6 ± 0.1 | 24.1 ± 0.2 | 23.6 ± 0.2 | 0.042 | 24.2 ± 0.1 | 25.2 ± 0.2 | 24.9 ± 0.3 | <0.001 |
hsCRP, mg/L | 0.50 ± 0.01 | 1.64 ± 0.04 | 6.70 ± 0.37 | <0.001 | 0.50 ± 0.01 | 1.65 ± 0.03 | 6.73 ± 0.42 | <0.001 |
Maximal handgrip strength, Kg | 33.4 ± 0.2 | 33.0 ± 0.4 | 30.8 ± 0.6 | <0.001 | 20.0 ± 0.2 | 19.3 ± 0.3 | 18.3 ± 0.4 | <0.001 |
Low muscle strength | 229 (21.1) | 91 (21.1) | 67 (34.9) | <0.001 | 440 (31.3) | 189 (38.1) | 92 (45.3) | <0.001 |
Total energy intake, kcal/day | 1925 ± 25 | 1951 ± 52 | 1948 ± 53 | 0.839 | 1471 ± 20 | 1493 ± 34 | 1397 ± 58 | 0.343 |
Dietary protein intake, g/day | 65.3 ± 1.0 | 64.7 ± 2.0 | 65.4 ± 2.6 | 0.960 | 47.7 ± 0.7 | 48.4 ± 1.3 | 44.7 ± 2.1 | 0.295 |
Dietary vitamin C intake, mg/day | 60.0 ± 2.3 | 58.5 ± 4.7 | 55.9 ± 4.5 | 0.707 | 53.1 ± 2.1 | 50.9 ± 2.9 | 62.8 ± 10.1 | 0.496 |
Dietary vitamin E intake, mg α-TE/day | 5.87 ± 0.12 | 5.93 ± 0.54 | 5.55 ± 0.25 | 0.499 | 4.55 ± 0.10 | 4.37 ± 0.14 | 4.07 ± 0.27 | 0.170 |
Dietary β-carotene intake, μg/day | 2960 ± 102 | 2968 ± 198 | 2529 ± 159 | 0.067 | 2364 ± 77 | 2261 ± 137 | 2087 ± 181 | 0.342 |
Unadjusted | Model 1 * | Model 2 † | Model 3 ‡ | |||||
---|---|---|---|---|---|---|---|---|
β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | |
19–39 years | ||||||||
Men | −0.144 (0.088) | 0.103 | −0.327 (0.085) | <0.001 | −0.353 (0.080) | <0.001 | −0.350 (0.081) | <0.001 |
Women | 0.138 (0.074) | 0.064 | −0.141 (0.080) | 0.078 | −0.129 (0.081) | 0.112 | −0.130 (0.081) | 0.110 |
40–64 years | ||||||||
Men | −0.169 (0.069) | 0.014 | −0.193 (0.067) | 0.004 | −0.136 (0.066) | 0.041 | −0.136 (0.066) | 0.041 |
Women | −0.054 (0.047) | 0.251 | −0.104 (0.049) | 0.035 | −0.095 (0.048) | 0.050 | −0.096 (0.048) | 0.048 |
≥65 years | ||||||||
Men | −0.212 (0.092) | 0.022 | −0.175 (0.097) | 0.071 | −0.137 (0.095) | 0.148 | −0.138 (0.096) | 0.151 |
Women | −0.164 (0.060) | 0.006 | −0.123 (0.051) | 0.017 | −0.160 (0.034) | <0.001 | −0.160 (0.051) | 0.002 |
hsCRP Level | Unadjusted | Model 1 * | Model 2 † | Model 3 ‡ | ||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |
19–39 years | ||||||||
Men | ||||||||
Normal | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Elevated | 1.37 | 0.62, 3.05 | 1.96 | 0.82, 4.69 | 1.48 | 0.59, 3.71 | 1.50 | 0.59, 3.79 |
High | 1.00 | 0.30, 3.32 | 1.36 | 0.40, 4.60 | 1.16 | 0.32, 4.16 | 1.20 | 0.33, 4.32 |
Women | ||||||||
Normal | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Elevated | 1.26 | 0.78, 2.04 | 1.50 | 0.92, 2.44 | 1.32 | 0.80, 2.18 | 1.31 | 0.79, 2.18 |
High | 1.16 | 0.60, 2.28 | 1.55 | 0.76, 3.15 | 1.50 | 0.74, 3.05 | 1.49 | 0.74, 3.02 |
40–64 years | ||||||||
Men | ||||||||
Normal | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Elevated | 1.25 | 0.68, 2.32 | 1.38 | 0.74, 2.57 | 1.30 | 0.67, 2.50 | 1.30 | 0.67, 2.49 |
High | 2.31 | 1.15, 4.66 | 2.25 | 1.10, 4.63 | 1.81 | 0.88, 3.73 | 1.82 | 0.88, 3.74 |
Women | ||||||||
Normal | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Elevated | 1.52 | 1.10, 2.10 | 1.56 | 1.11, 2.20 | 1.47 | 1.04, 2.09 | 1.47 | 1.04, 2.09 |
High | 1.03 | 0.61, 1.73 | 1.08 | 0.63, 1.87 | 1.03 | 0.59, 1.78 | 1.03 | 0.59, 1.78 |
≥65 years | ||||||||
Men | ||||||||
Normal | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Elevated | 1.00 | 0.73, 1.38 | 0.96 | 0.68, 1.36 | 0.97 | 0.68, 1.39 | 0.97 | 0.68, 1.39 |
High | 2.00 | 1.38, 2.91 | 2.02 | 1.30, 3.15 | 1.71 | 1.06, 2.75 | 1.71 | 1.06, 2.75 |
Women | ||||||||
Normal | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Elevated | 1.35 | 1.06, 1.73 | 1.33 | 1.03, 1.73 | 1.34 | 1.04, 1.73 | 1.34 | 1.04, 1.74 |
High | 1.82 | 1.29, 2.57 | 1.57 | 1.08, 2.28 | 1.66 | 1.15, 2.41 | 1.66 | 1.14, 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, B.-H.; Shin, S. Association Between Serum High Sensitivity C-Reactive Protein Levels and Low Muscle Strength Among Korean Adults. Nutrients 2025, 17, 2698. https://doi.org/10.3390/nu17162698
Choi B-H, Shin S. Association Between Serum High Sensitivity C-Reactive Protein Levels and Low Muscle Strength Among Korean Adults. Nutrients. 2025; 17(16):2698. https://doi.org/10.3390/nu17162698
Chicago/Turabian StyleChoi, Bo-Hyun, and Sunhye Shin. 2025. "Association Between Serum High Sensitivity C-Reactive Protein Levels and Low Muscle Strength Among Korean Adults" Nutrients 17, no. 16: 2698. https://doi.org/10.3390/nu17162698
APA StyleChoi, B.-H., & Shin, S. (2025). Association Between Serum High Sensitivity C-Reactive Protein Levels and Low Muscle Strength Among Korean Adults. Nutrients, 17(16), 2698. https://doi.org/10.3390/nu17162698