In Vitro Assessment of the Bioaccessibility and Hypoglycemic Properties of Essential Amino Acids Blend: Implication for Diabetes Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. GAF Static In Vitro Digestion with INFOGEST Protocol
2.3. Amino Acid (a.a.) Analysis
2.4. Cell Culture
2.5. Caco-2 Cell Differentiation
2.6. Caco-2 Cells Monolayers Integrity Evaluation
2.7. Amino Acid Uptake by Caco-2 Cell Monolayers
2.8. Cell Treatment Conditions
2.9. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Assay
2.10. Antidiabetic Activity of GAF
2.10.1. In Vitro Measurement of the DPP-IV Inhibitory Activity
2.10.2. Evaluation of the Inhibitory Effect of iGAF on Cellular DPP-IV Activity
2.10.3. Evaluation of the GLP-1 Stability and Secretion at Cellular Level
2.11. Statical Analysis
3. Results
3.1. GAF and iGAF Amino Acid Composition Analysis
3.2. Ability of GAF and iGAF to Inhibit in Vitro DPP-IV Enzyme Activity
3.3. iGAF’s Ability to Inhibit in Situ DPP-IV Enzyme Activity on Human Intestinal Caco-2 Cells
3.4. iGAF’s Ability to Induce GLP-1 Hormone Secretion in Enteroendocrine STC-1 Cells and to Modulate Its Stability in the STC-1/Caco-2 Co-Culture System
3.5. TEER Measurements in Differentiated Caco-2 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAs | Amino acids |
AMPK | AMP-activated protein kinase |
AP | Apical chamber |
BCAAs | Branched amino acids |
BL | Basolateral chamber |
DPP-IV | Dipeptidyl peptidase-IV |
EAAs | Essential amino acids |
FBS | Fetal bovine serum |
GAF | Gunaminoformula |
GIP | Gastric inhibitory polypeptide |
GLP-1 | Glucagon-like peptide-1 |
IB | INFOGEST blank |
iGAF | INFOGEST Gunaminoformula |
L-Ile | L-Isoleucine |
L-Leu | L-Leucine |
L-Lys | L-Lysine |
L-Met | L-Methionine |
L-Phe | L-Phenylalanine |
L-Thr | L-Threonine |
L-Trp | L-Tryptophan |
L-Val | L-Valin |
mTORC1 | Mammalian target of rapamycin complex 1 |
MTT | 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide |
TEER | Transepithelial electrical resistance |
SGF | Simulated gastric fluid |
SIF | Simulated intestinal fluid |
References
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids; StatPearls Publishing: Orlando, FL, USA, 2024. [Google Scholar]
- Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, G. Nutritionally Essential Amino Acids. Adv. Nutr. 2018, 9, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Børsheim, E.; Tipton, K.D.; Wolf, S.E.; Wolfe, R.R. Essential Amino Acids and Muscle Protein Recovery from Resistance Exercise. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E648–E657. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wu, G. Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake. Adv. Exp. Med. Biol. 2020, 1265, 167–185. [Google Scholar] [CrossRef]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef]
- Nartsissov, Y.R.; Nartsissov, Y.R. Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications. In COVID-19, Neuroimmunology and Neural Function; IntechOpen: London UK, 2022. [Google Scholar] [CrossRef]
- Dasgupta, M.; Sharkey, J.R.; Wu, G. Inadequate Intakes of Indispensable Amino Acids Among Homebound Older Adults. J. Nutr. Elder. 2005, 24, 85–99. [Google Scholar] [CrossRef]
- Nosaka, K.; Sacco, P.; Mawatari, K. Effects of Amino Acid Supplementation on Muscle Soreness and Damage. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 620–635. [Google Scholar] [CrossRef]
- Børsheim, E.; Bui, Q.U.T.; Tissier, S.; Kobayashi, H.; Ferrando, A.A.; Wolfe, R.R. Effect of Amino Acid Supplementation on Muscle Mass, Strength and Physical Function in Elderly. Clin. Nutr. 2008, 27, 189–195. [Google Scholar] [CrossRef]
- Martinho, D.V.; Nobari, H.; Faria, A.; Field, A.; Duarte, D.; Sarmento, H. Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review. Nutrients 2022, 14, 4002. [Google Scholar] [CrossRef]
- Kolic, J.; Sun, W.G.; Johnson, J.D.; Guess, N. Amino Acid-Stimulated Insulin Secretion: A Path Forward in Type 2 Diabetes. Amino Acids 2023, 55, 1857–1866. [Google Scholar] [CrossRef]
- Bröer, S. Amino Acid Transporters as Modulators of Glucose Homeostasis. Trends Endocrinol. Metab. 2022, 33, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, L.J.C.; Kruijshoop, M.; Menheere, P.P.C.A.; Wagenmakers, A.J.M.; Saris, W.H.M.; Keizer, H.A. Amino Acid Ingestion Strongly Enhances Insulin Secretion in Patients with Long-Term Type 2 Diabetes. Diabetes Care 2003, 26, 625–630. [Google Scholar] [CrossRef]
- Newsholme, P.; Abdulkader, F.; Rebelato, E.; Romanatto, T.; Hermano, C.; Pinheiro, J.; Fernando Vitzel, K.; Silva, E.P.; Bazotte, R.B.; Procopio, J.; et al. Amino Acids and Diabetes: Implications for Endocrine, Metabolic and Immune Function. Front. Biosci. 2011, 16, 315–339. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, Y. How Dietary Amino Acids and High Protein Diets Influence Insulin Secretion. Physiol. Rep. 2023, 11, e15577. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Nuttall, F.Q. Amino Acid Ingestion and Glucose Metabolism—A Review. IUBMB Life 2010, 62, 660–668. [Google Scholar] [CrossRef]
- Kim, W.; Egan, J.M. The Role of Incretins in Glucose Homeostasis and Diabetes Treatment. Pharmacol. Rev. 2008, 60, 470. [Google Scholar] [CrossRef]
- Renner, S.; Blutke, A.; Streckel, E.; Wanke, R.; Wolf, E. Incretin Actions and Consequences of Incretin-Based Therapies: Lessons from Complementary Animal Models. J. Pathol. 2016, 238, 345–358. [Google Scholar] [CrossRef]
- Floyd, J.C.; Fajans, S.S.; Conn, J.W.; Knopf, R.F.; Rull, J. Stimulation of Insulin Secretion by Amino Acids. J. Clin. Investig. 1966, 45, 1487. [Google Scholar] [CrossRef]
- Floyd, J.C.; Fajans, S.S.; Pek, S.; Thiffault, C.A.; Knopf, R.F.; Conn, J.W. Synergistic Effect of Essential Amino Acids and Glucose upon Insulin Secretion in Man. Diabetes 1970, 19, 109–115. [Google Scholar] [CrossRef]
- Newsholme, P.; Bender, K.; Kiely, A.; Brennan, L. Amino Acid Metabolism, Insulin Secretion and Diabetes. Biochem. Soc. Trans. 2007, 35, 1180–1186. [Google Scholar] [CrossRef]
- Fajans, S.S.; Floyd, J.C.; Knopf, R.F.; Conn, J.W. Effect of Amino Acids and Proteins on Insulin Secretion in Man. Adv. Biosci. 1969, 1, 231–238. [Google Scholar] [CrossRef]
- Bartolomei, M.; Capriotti, A.L.; Li, Y.; Bollati, C.; Li, J.; Cerrato, A.; Cecchi, L.; Pugliese, R.; Bellumori, M.; Mulinacci, N.; et al. Exploitation of Olive (Olea Europaea L.) Seed Proteins as Upgraded Source of Bioactive Peptides with Multifunctional Properties: Focus on Antioxidant and Dipeptidyl-Dipeptidase—IV Inhibitory Activities, and Glucagon-like Peptide 1 Improved Modulation. Antioxidants 2022, 11, 1730. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Ferruzza, S.; Rossi, C.; Sambuy, Y.; Scarino, M.L. Serum-Reduced and Serum-Free Media for Differentiation of Caco-2 Cells. ALTEX 2013, 30, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Helander, H.F.; Fändriks, L. Surface Area of the Digestive Tract-Revisited. Scand. J. Gastroenterol. 2014, 49, 681–689. [Google Scholar] [CrossRef] [PubMed]
- d’Adduzio, L.; Fanzaga, M.; Capriotti, A.L.; Taglioni, E.; Boschin, G.; Laganà, A.; Rueller, L.; Robert, J.; van Gemmern, A.; Bollati, C.; et al. Ultrasonication Coupled to Enzymatic Hydrolysis of Soybean Okara Proteins for Producing Bioactive and Bioavailable Peptides. Curr. Res. Food Sci. 2024, 9, 100919. [Google Scholar] [CrossRef] [PubMed]
- Bollati, C.; Xu, R.; Boschin, G.; Bartolomei, M.; Rivardo, F.; Li, J.; Arnoldi, A.; Lammi, C. Integrated Evaluation of the Multifunctional DPP-IV and ACE Inhibitory Effect of Soybean and Pea Protein Hydrolysates. Nutrients 2022, 14, 2379. [Google Scholar] [CrossRef]
- Caron, J.; Domenger, D.; Dhulster, P.; Ravallec, R.; Cudennec, B. Using Caco-2 Cells as Novel Identification Tool for Food-Derived DPP-IV Inhibitors. Food Res. Int. 2017, 92, 113–118. [Google Scholar] [CrossRef]
- Lu, M.; Li, C. Nutrient Sensing in Pancreatic Islets: Lessons from Congenital Hyperinsulinism and Monogenic Diabetes. Ann. N. Y. Acad. Sci. 2017, 1411, 65. [Google Scholar] [CrossRef]
- Henquin, J.C. Triggering and Amplifying Pathways of Regulation of Insulin Secretion by Glucose. Diabetes 2000, 49, 1751–1760. [Google Scholar] [CrossRef]
- Lejeune, M.P.G.M.; Westerterp, K.R.; Adam, T.C.; Luscombe-Marsh, N.D.; Westerterp-Plantenga, M.S. Ghrelin and Glucagon-like Peptide 1 Concentrations, 24-h Satiety, and Energy and Substrate Metabolism during a High-Protein Diet and Measured in a Respiration Chamber. Am. J. Clin. Nutr. 2006, 83, 89–94. [Google Scholar] [CrossRef]
- Clemmensen, C.; Jørgensen, C.V.; Smajilovic, S.; Bräuner-Osborne, H. Robust GLP-1 Secretion by Basic L-Amino Acids Does Not Require the GPRC6A Receptor. Diabetes Obes. Metab. 2017, 19, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Neophytou, C.; Thein, S.; Martin, N.M.; Alamshah, A.; Spreckley, E.; Bloom, S.R.; Murphy, K.G. L-Arginine Increases Postprandial Circulating GLP-1 and PYY Levels in Humans. Obesity 2018, 26, 1721–1726. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; Mooney, C.; Shields, D.C.; FitzGerald, R.J. Inhibition of Dipeptidyl Peptidase IV and Xanthine Oxidase by Amino Acids and Dipeptides. Food Chem. 2013, 141, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, K.; Ogasawara, M.; Wada, J.; Yamamoto, Y.; Inouye, K. Exploration of Dipeptidyl-Peptidase IV (DPP IV) Inhibitors in a Low-Molecular Mass Extract of the Earthworm Eisenia Fetida and Identification of the Inhibitors as Amino Acids like Methionine, Leucine, Histidine, and Isoleucine. Enzym. Microb. Technol. 2020, 137, 109534. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Ferruzza, S.; Ranaldi, G.; Sambuy, Y.; Arnoldi, A. Soybean- and Lupin-Derived Peptides Inhibit DPP-IV Activity on In Situ Human Intestinal Caco-2 Cells and Ex Vivo Human Serum. Nutrients 2018, 10, 1082. [Google Scholar] [CrossRef]
- Deacon, C.F.; Pridal, L.; Klarskov, L.; Olesen, M.; Holst, J.J. Glucagon-like Peptide 1 Undergoes Differential Tissue-Specific Metabolism in the Anesthetized Pig. Am. J. Physiol. Endocrinol. Metab. 1996, 271, E458–E464. [Google Scholar] [CrossRef]
- Hansen, L.; Deacon, C.F.; Ørskov, C.; Holst, J.J. Glucagon-like Peptide-1-(7-36)Amide Is Transformed to Glucagon-like Peptide-1-(9-36)Amide by Dipeptidyl Peptidase IV in the Capillaries Supplying the L Cells of the Porcine Intestine. Endocrinology 1999, 140, 5356–5363. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Mc Carthy, T.; Green, B.D.; Calderwood, D.; Gillespie, A.; Cryan, J.F.; Giblin, L. STC-1 Cells. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: Cham, Switzerland, 2015; pp. 211–220. [Google Scholar] [CrossRef]
- Greenfield, J.R.; Farooqi, I.S.; Keogh, J.M.; Henning, E.; Habib, A.M.; Blackwood, A.; Reimann, F.; Holst, J.J.; Gribble, F.M. Oral Glutamine Increases Circulating GLP-1, Glucagon and Insulin Levels in Lean, Obese and Type 2 Diabetic Subjects. Am. J. Clin. Nutr. 2008, 89, 106. [Google Scholar] [CrossRef]
- Herrmann, C.; Göke, R.; Richter, G.; Fehmann, H.C.; Arnold, R.; Göke, B. Glucagon-like Peptide-1 and Glucose-Dependent Insulin-Releasing Polypeptide Plasma Levels in Response to Nutrients. Digestion 1995, 56, 117–126. [Google Scholar] [CrossRef]
- Reimer, R.A. Meat Hydrolysate and Essential Amino Acid-Induced Glucagon-like Peptide-1 Secretion, in the Human NCI-H716 Enteroendocrine Cell Line, Is Regulated by Extracellular Signal-Regulated Kinase1/2 and P38 Mitogen-Activated Protein Kinases. J. Endocrinol. 2006, 191, 159–170. [Google Scholar] [CrossRef]
- Chen, Q.; Reimer, R.A. Dairy Protein and Leucine Alter GLP-1 Release and MRNA of Genes Involved in Intestinal Lipid Metabolism in Vitro. Nutrition 2009, 25, 340–349. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Adduzio, L.; Fanzaga, M.; Musco, M.S.; Sindaco, M.; D’Incecco, P.; Boschin, G.; Bollati, C.; Lammi, C. In Vitro Assessment of the Bioaccessibility and Hypoglycemic Properties of Essential Amino Acids Blend: Implication for Diabetes Management. Nutrients 2025, 17, 2606. https://doi.org/10.3390/nu17162606
d’Adduzio L, Fanzaga M, Musco MS, Sindaco M, D’Incecco P, Boschin G, Bollati C, Lammi C. In Vitro Assessment of the Bioaccessibility and Hypoglycemic Properties of Essential Amino Acids Blend: Implication for Diabetes Management. Nutrients. 2025; 17(16):2606. https://doi.org/10.3390/nu17162606
Chicago/Turabian Styled’Adduzio, Lorenza, Melissa Fanzaga, Maria Silvia Musco, Marta Sindaco, Paolo D’Incecco, Giovanna Boschin, Carlotta Bollati, and Carmen Lammi. 2025. "In Vitro Assessment of the Bioaccessibility and Hypoglycemic Properties of Essential Amino Acids Blend: Implication for Diabetes Management" Nutrients 17, no. 16: 2606. https://doi.org/10.3390/nu17162606
APA Styled’Adduzio, L., Fanzaga, M., Musco, M. S., Sindaco, M., D’Incecco, P., Boschin, G., Bollati, C., & Lammi, C. (2025). In Vitro Assessment of the Bioaccessibility and Hypoglycemic Properties of Essential Amino Acids Blend: Implication for Diabetes Management. Nutrients, 17(16), 2606. https://doi.org/10.3390/nu17162606