Food, Quality of Life and Mental Health: A Cross-Sectional Study with Federal Education Workers
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Context
2.2. Population and Sample
2.3. Data Collection
- (1)
- World Health Organization Quality of Life Brief Version—WHOQOL-bref [63]: Created by the World Health Organization (WHO), this is a comprehensive tool used to assess quality of life in different groups and cultural contexts. This instrument was developed and adapted with the aim of providing a detailed overview of how people perceive their own quality of life in various areas, taking into account factors that influence their well-being. It includes 26 items distributed between the following: the physical domain, the psychological domain, social relationships, the environmental domain and total score. The answers are given on a Likert-type scale, ranging from 1 (not at all) to 5 (completely), using four types of scales (depending on the content of the question): intensity, capacity, frequency and evaluation. The higher the score is, the better the individual’s perception of their quality of life is [63,64,65].
- (2)
- Depression, Anxiety and Stress Scale—DASS-21 [66]: This is a widely used tool for assessing symptoms of depression, anxiety and stress. It has been validated in various cultures and populations, demonstrating good validity and reliability in different cultural contexts. The answers are given on a 4-point Likert scale, ranging from 0 (“strongly disagree”) to 3 (“strongly agree”) taking into account the state of mental health in the last week. These items are also organized into subscales, regarding depression, anxiety and stress, with 7 items for each subscale. The score for each subscale is equal to the sum of the seven corresponding questions. The sum scores are multiplied by 2 to correspond to the original scale score in the DASS-42 [67]. For the anxiety subgroup, the score ranges of ≤7, 8 to 9, 10 to 14, 15 to 19 and ≥20 imply normal, mild, moderate, severe and very severe, respectively. For the stress subgroup, scores ranging ≤14, from 15 to 18, from 19 to 25, from 26 to 33 and ≥34 indicate normal, mild, moderate, severe and very severe, respectively. For the depression subgroup, scores ranging ≤9, from 10 to 13, from 14 to 20, from 21 to 27 and ≥28 reflect normal, mild, moderate, severe and very severe. The lower the score is, the lower the levels of depression, anxiety and stress are [68,69,70,71]. For statistical analysis, the data was categorized as normal, moderate and high [72,73].
- (3)
- National School Health Survey—PeNSE [74]: This survey has been carried out since 2009, in partnership with the Instituto Brasileiro de Geografia e Estatística (IBGE) and with the support of the Ministry of Education (MEC). The questionnaire covers the four common risk factors for chronic non-communicable diseases (smoking, sedentary lifestyle, inadequate diet and alcohol consumption). Data is collected on, for example, mental health, sexual and reproductive health, oral health, food consumption, body image and the use of cigarettes, alcohol and drugs, among others [75,76]. For this study, we used questions related to eating habits, where we considered (1) the consumption of sweets (candies, chocolates, chewing gum, chocolates, lollipops), (2) soft drinks, (3) industrialized/ultra-processed salty foods (hamburgers, ham, mortadella, salami, sausage, instant noodles, packaged snacks, salty cookies) and (4) fast food (snack bars, hot dog stands, pizzerias, among others) in the last 7 days. These variables were assessed using the following question: “In the last 7 days, on how many days did you eat/drink …?”. Eight answers were available: “I didn’t eat/drink in the last 7 days”, “I ate/drank on 1 day (2, …,6) of the last 7 days” and “I ate/drank on every day of the last 7 days”. The raw data was categorized for analysis. For eating habits, a period of 0–4 days a week was considered non-regular consumption and 5–7 days a week as regular consumption [77,78,79,80,81,82,83]. Thus, the categorization enabled a structured assessment of the regular consumption of these foods.
2.4. Data Analysis
3. Results
4. Discussion
4.1. Sociodemographic Factors, Work and Training
4.2. Sleep Quality, Body Image and Lifestyle Habits
4.3. Mental Health
4.4. Quality of Life
5. Limitations and Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UPF | Ultra-Processed Food |
RFEPCT | Federal Network of Professional, Scientific and Technological Education |
PeNSE | National School Health Survey |
DASS-21 | Depression, Anxiety and Stress Scale |
WHOQOL-bref | World Health Organization Quality of Life Brief Version |
PRadj | Adjusted Prevalence Ratio |
QoLE-BRA | Quality of Life in Brazilian Education |
ICF | Informed Consent Form |
MEC | Ministry of Education |
CEFETs | Federal Technological Education Centers |
PNP | Nilo Peçanha Platform |
ATEs | Administrative Technicians in Education |
IBGE | Instituto Brasileiro de Geografia e Estatística |
CNCD | Chronic Non-Communicable Disease |
References
- Dai, S.; Wellens, J.; Yang, N.; Li, D.; Wang, J.; Wang, L.; Yuan, S.; He, Y.; Song, P.; Munger, R.; et al. Ultra-Processed Foods and Human Health: An Umbrella Review and Updated Meta-Analyses of Observational Evidence. Clin. Nutr. 2024, 43, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Dicken, S.J.; Batterham, R.L. Ultra-Processed Food and Obesity: What Is the Evidence? Curr. Nutr. Rep. 2024, 13, 23–38. [Google Scholar] [CrossRef]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-Processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef]
- Mazloomi, S.N.; Talebi, S.; Mehrabani, S.; Bagheri, R.; Ghavami, A.; Zarpoosh, M.; Mohammadi, H.; Wong, A.; Nordvall, M.; Kermani, M.A.H.; et al. The Association of Ultra-Processed Food Consumption with Adult Mental Health Disorders: A Systematic Review and Dose-Response Meta-Analysis of 260,385 Participants. Nutr. Neurosci. 2023, 26, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Ejtahed, H.-S.; Mardi, P.; Hejrani, B.; Mahdavi, F.S.; Ghoreshi, B.; Gohari, K.; Heidari-Beni, M.; Qorbani, M. Association between Junk Food Consumption and Mental Health Problems in Adults: A Systematic Review and Meta-Analysis. BMC Psychiatry 2024, 24, 438. [Google Scholar] [CrossRef] [PubMed]
- Dicken, S.J.; Batterham, R.L. The Role of Diet Quality in Mediating the Association between Ultra-Processed Food Intake, Obesity and Health-Related Outcomes: A Review of Prospective Cohort Studies. Nutrients 2021, 14, 23. [Google Scholar] [CrossRef]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Jakstas, T.; Follong, B.; Bucher, T.; Miller, A.; Shrewsbury, V.A.; Collins, C.E. Addressing Schoolteacher Food and Nutrition-Related Health and Wellbeing: A Scoping Review of the Food and Nutrition Constructs Used across Current Research. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 108. [Google Scholar] [CrossRef]
- Tsubono, K.; Ogawa, M. The Analysis of Main Stressors among High-Stress Primary School Teachers by Job Positions: A Nationwide Survey in Japan. Front. Public Health 2022, 10, 990141. [Google Scholar] [CrossRef]
- Hecht, E.M.; Rabil, A.; Martinez Steele, E.; Abrams, G.A.; Ware, D.; Landy, D.C.; Hennekens, C.H. Cross-Sectional Examination of Ultra-Processed Food Consumption and Adverse Mental Health Symptoms. Public Health Nutr. 2022, 25, 3225–3234. [Google Scholar] [CrossRef] [PubMed]
- Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Sobczyk, K.; Grot, M.; Kowalski, O.; Staśkiewicz, W. Nutrition and Mental Health: A Review of Current Knowledge about the Impact of Diet on Mental Health. Front. Nutr. 2022, 9, 943998. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-Processed Food Exposure and Adverse Health Outcomes: Umbrella Review of Epidemiological Meta-Analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.-C.; Levy, R.B.; Canella, D.S.; Louzada, M.L.d.C.; Cannon, G. Household Availability of Ultra-Processed Foods and Obesity in Nineteen European Countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Lopes Cortes, M.; Andrade Louzado, J.; Galvão Oliveira, M.; Moraes Bezerra, V.; Mistro, S.; Souto Medeiros, D.; Arruda Soares, D.; Oliveira Silva, K.; Nicolaevna Kochergin, C.; Honorato dos Santos de Carvalho, V.C.; et al. Unhealthy Food and Psychological Stress: The Association between Ultra-Processed Food Consumption and Perceived Stress in Working-Class Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 3863. [Google Scholar] [CrossRef] [PubMed]
- Mattar, J.B.; Domingos, A.L.G.; Hermsdorff, H.H.M.; Juvanhol, L.L.; de Oliveira, F.L.P.; Pimenta, A.M.; Bressan, J. Ultra-Processed Food Consumption and Dietary, Lifestyle and Social Determinants: A Path Analysis in Brazilian Graduates (CUME Project). Public Health Nutr. 2022, 25, 3326–3334. [Google Scholar] [CrossRef]
- Bremner, J.; Moazzami, K.; Wittbrodt, M.; Nye, J.; Lima, B.; Gillespie, C.; Rapaport, M.; Pearce, B.; Shah, A.; Vaccarino, V. Diet, Stress and Mental Health. Nutrients 2020, 12, 2428. [Google Scholar] [CrossRef]
- Firth, J.; Gangwisch, J.E.; Borsini, A.; Wootton, R.E.; Mayer, E.A. Food and Mood: How Do Diet and Nutrition Affect Mental Wellbeing? BMJ 2020, 369, m2382. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- Firth, J.; Veronese, N.; Cotter, J.; Shivappa, N.; Hebert, J.R.; Ee, C.; Smith, L.; Stubbs, B.; Jackson, S.E.; Sarris, J. What Is the Role of Dietary Inflammation in Severe Mental Illness? A Review of Observational and Experimental Findings. Front. Psychiatry 2019, 10, 350. [Google Scholar] [CrossRef] [PubMed]
- Bekdash, R.A. Epigenetics, Nutrition, and the Brain: Improving Mental Health through Diet. Int. J. Mol. Sci. 2024, 25, 4036. [Google Scholar] [CrossRef]
- Adan, R.A.H.; van der Beek, E.M.; Buitelaar, J.K.; Cryan, J.F.; Hebebrand, J.; Higgs, S.; Schellekens, H.; Dickson, S.L. Nutritional Psychiatry: Towards Improving Mental Health by What You Eat. Eur. Neuropsychopharmacol. 2019, 29, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Głąbska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef]
- Hepsomali, P.; Groeger, J.A. Diet, Sleep, and Mental Health: Insights from the UK Biobank Study. Nutrients 2021, 13, 2573. [Google Scholar] [CrossRef]
- Houminer-Klepar, N.; Dopelt, K. Associations Between Mediterranean Diet, Processed Food Consumption, and Symptoms of Anxiety and Depression: Cross-Sectional Study Among Israeli Adults. Foods 2025, 14, 1485. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; Stubbs, B.; Schuch, F.B.; Carvalho, A.F.; Jacka, F.; et al. The Effects of Dietary Improvement on Symptoms of Depression and Anxiety: A Meta-Analysis of Randomized Controlled Trials. Psychosom. Med. 2019, 81, 265–280. [Google Scholar] [CrossRef]
- Gómez-Donoso, C.; Sánchez-Villegas, A.; Martínez-González, M.A.; Gea, A.; Mendonça, R.d.D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-Processed Food Consumption and the Incidence of Depression in a Mediterranean Cohort: The SUN Project. Eur. J. Nutr. 2020, 59, 1093–1103. [Google Scholar] [CrossRef]
- Bizzozero-Peroni, B.; Martínez-Vizcaíno, V.; Fernández-Rodríguez, R.; Jiménez-López, E.; Núñez de Arenas-Arroyo, S.; Saz-Lara, A.; Díaz-Goñi, V.; Mesas, A.E. The Impact of the Mediterranean Diet on Alleviating Depressive Symptoms in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2025, 83, 29–39. [Google Scholar] [CrossRef]
- Dopelt, K.; Houminer-Klepar, N. The Impact of Social Media on Disordered Eating: Insights from Israel. Nutrients 2025, 17, 180. [Google Scholar] [CrossRef]
- Ministério da Saúde. Guia Alimentar Para a População Brasileira, 2nd ed.; Ministério Da Saúde: São Paulo, Brasília, 2014; Volume 1, 156p, ISBN 978-85-334-2176-9. [Google Scholar]
- Zapata, M.E.; Cediel, G.; Arrieta, E.; Rovirosa, A.; Carmuega, E.; Monteiro, C.A. Ultra-Processed Foods Consumption and Diet Quality among Preschool Children and Women of Reproductive Age from Argentina. Public Health Nutr. 2023, 26, 2304–2313. [Google Scholar] [CrossRef] [PubMed]
- Amorim, A.; Barbosa, A.d.H.; Sobral, P.J.d.A. Hunger, Obesity, Public Policies, and Food-Based Dietary Guidelines: A Reflection Considering the Socio-Environmental World Context. Front. Nutr. 2022, 8, 805569. [Google Scholar] [CrossRef] [PubMed]
- Pulker, C.E.; Scott, J.A.; Pollard, C.M. Ultra-Processed Family Foods in Australia: Nutrition Claims, Health Claims and Marketing Techniques. Public Health Nutr. 2018, 21, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Lam, J.; Moen, P.; Kelly, E.; King, R.; McHale, S. Constrained Choices? Linking Employees’ and Spouses’ Work Time to Health Behaviors. Soc. Sci. Med. 2015, 126, 99–109. [Google Scholar] [CrossRef]
- Parker, E.A.; Feinberg, T.M.; Lane, H.G.; Deitch, R.; Zemanick, A.; Saksvig, B.I.; Turner, L.; Hager, E.R. Diet Quality of Elementary and Middle School Teachers Is Associated with Healthier Nutrition-Related Classroom Practices. Prev. Med. Rep. 2020, 18, 101087. [Google Scholar] [CrossRef]
- Aydin, G.; Margerison, C.; Worsley, A.; Booth, A. Parents’ and Teachers’ Views of the Promotion of Healthy Eating in Australian Primary Schools. BMC Public Health 2021, 21, 1788. [Google Scholar] [CrossRef]
- Isaksen, I.M.; Dankel, S.N. Ultra-Processed Food Consumption and Cancer Risk: A Systematic Review and Meta-Analysis. Clin. Nutr. 2023, 42, 919–928. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, C.; Cui, L.; Fenfen, E.; Shang, W.; Wang, Z.; Song, G.; Yang, K.; Li, X. Consumption of Ultra-Processed Foods and Multiple Health Outcomes: An Umbrella Study of Meta-Analyses. Food Chem. 2024, 434, 137460. [Google Scholar] [CrossRef]
- Mendoza, K.; Smith-Warner, S.A.; Rossato, S.L.; Khandpur, N.; Manson, J.E.; Qi, L.; Rimm, E.B.; Mukamal, K.J.; Willett, W.C.; Wang, M.; et al. Ultra-Processed Foods and Cardiovascular Disease: Analysis of Three Large US Prospective Cohorts and a Systematic Review and Meta-Analysis of Prospective Cohort Studies. Lancet Reg. Health Am. 2024, 37, 100859. [Google Scholar] [CrossRef]
- López-Olivares, M.; De Teresa Galván, C.; Nestares, T.; Fernández-Gómez, E.; Enrique-Mirón, C. Lifestyle Factors Influencing Dietary Patterns of University Professors. Int. J. Environ. Res. Public Health 2021, 18, 9777. [Google Scholar] [CrossRef]
- Uvacsek, M.; Simkó, G.; Boda-Ujlaky, J.; Kneffel, Z. Frequency of Breakfast Eating and Obesity Prevalence in Primary School Teachers. Int. J. Environ. Res. Public Health 2022, 19, 5331. [Google Scholar] [CrossRef]
- Silva, J.P.d.; Fischer, F.M. Understudied School Teachers’ Work/Life Balance and Everyday Life Typologies. Chronobiol. Int. 2020, 37, 1513–1515. [Google Scholar] [CrossRef] [PubMed]
- Almhdawi, K.A.; Obeidat, D.; Kanaan, S.F.; Hajela, N.; Bsoul, M.; Arabiat, A.; Alazrai, A.; Jaber, H.; Alrabbaie, H. University Professors’ Mental and Physical Well-Being during the COVID-19 Pandemic and Distance Teaching. Work 2021, 69, 1153–1161. [Google Scholar] [CrossRef]
- Hibbs-Shipp, S.K.; Milholland, M.; Bellows, L. Barriers and Facilitators to Healthy Eating and Activity in Head Start Staff: An Opportunity for Worksite Wellness. Am. J. Health Educ. 2015, 46, 347–350. [Google Scholar] [CrossRef]
- Freitas, A.M.C.; Araújo, T.M.d.; Fischer, F.M. Psychosocial Aspects at Work and the Quality of Sleep of Professors in Higher Education. Arch. Environ. Occup. Health 2020, 75, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, L.; Goodman, L.; Roberts, L.; Dial, L.A.; Pratt, M.; Musher-Eizenman, D. Teacher Experience, Personal Health, and Dieting Status Is Associated with Classroom Health-Related Practices and Modeling. J. Sch. Health 2021, 91, 155–163. [Google Scholar] [CrossRef]
- Marangoni, F.; Martini, D.; Scaglioni, S.; Sculati, M.; Donini, L.M.; Leonardi, F.; Agostoni, C.; Castelnuovo, G.; Ferrara, N.; Ghiselli, A.; et al. Snacking in Nutrition and Health. Int. J. Food Sci. Nutr. 2019, 70, 909–923. [Google Scholar] [CrossRef]
- Vajdi, M.; Farhangi, M.A. A Systematic Review of the Association between Dietary Patterns and Health-Related Quality of Life. Health Qual. Life Outcomes 2020, 18, 337. [Google Scholar] [CrossRef]
- Zhu, Z.; Chang, Y. The Influence of Work Stress on the Work Performance of University Teachers in Zhejiang Province, China: The Mediating Role of Work Happiness. J. Educ. Social. Res. 2025, 15, 42. [Google Scholar] [CrossRef]
- Wartenberg, G.; Aldrup, K.; Grund, S.; Klusmann, U. Satisfied and High Performing? A Meta-Analysis and Systematic Review of the Correlates of Teachers’ Job Satisfaction. Educ. Psychol. Rev. 2023, 35, 114. [Google Scholar] [CrossRef]
- Trisal, A.; Singh, I.; Garg, G.; Jorwal, K.; Singh, A.K. Gut–Brain Axis and Brain Health: Modulating Neuroinflammation, Cognitive Decline, and Neurodegeneration. 3 Biotech 2025, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Stewart, D.; Yuan, Y.; Chang, C. Do Health-Promoting Schools Improve Nutrition in China? Health Promot. Int. 2015, 30, 359–368. [Google Scholar] [CrossRef]
- Perikkou, A.; Gavrieli, A.; Kougioufa, M.-M.; Tzirkali, M.; Yannakoulia, M. A Novel Approach for Increasing Fruit Consumption in Children. J. Acad. Nutr. Diet. 2013, 113, 1188–1193. [Google Scholar] [CrossRef]
- Oliveira, I.F.R.d.; Pereira, N.G.; Monteiro, L.F.; Rezende, L.M.T.d.; Lira, C.A.B.d.; Monfort-Pañego, M.; Costa, W.P.d.; Noll, P.R.E.S.; Noll, M. Factors Influencing the Quality of Life and Mental Health of Brazilian Federal Education Network Employees: An Epidemiological Cross-Sectional Study. Heliyon 2025, 11, e42029. [Google Scholar] [CrossRef] [PubMed]
- Brasil Lei No 11.892, de 29 de Dezembro de 2008. Institui a Rede Federal de Educação Profissional, Científica e Tecnológica, Cria Os Institutos Federais de Educação, Ciência e Tecnologia, e Dá Outras Providências. 2008. Available online: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/lei/l11892.htm (accessed on 13 April 2025).
- Galvão, T.; Tavares, K.A.; Fernandes, M.; Souza, J.C.M.d.; Noll, M. Case Report: Scientific Dissemination as a Mediator of the Research Consolidation Process: Proposals for Institutionalization. F1000Research 2021, 10, 886. [Google Scholar] [CrossRef]
- Galvão, T.; Rayanne, E.; Silva Noll, P.; Aparecida Silveira, E.; Noll, M. Fake News and Misinformation in Brazil: Critical Analyses Regarding Scientific Information in Pandemic Times. J. Hum. Growth Dev. 2023, 33, 493–500. [Google Scholar] [CrossRef]
- Melo, A.F.; da Costa, W.P.; Rodrigues, R.R.; Nunes, L.d.A.C.B.; Noll, P.R.E.S.; Noll, M. Panorama of Undergraduate Research in Brazil: Profile, Scientific Production, and Perceptions. Publications 2023, 11, 30. [Google Scholar] [CrossRef]
- Plataforma Nilo Peçanha. Available online: https://www.gov.br/mec-divulga-mapa-das-mais-de-7-mil-formaturas-antecipadas-de-cursos-da-saude/pt-br/pnp (accessed on 29 May 2025).
- Costa, W.P.d.; Walker, A.F.M.; Miñana-Signes, V.; Monfort-Pañego, M.; Noll, P.R.E.S.; Noll, M. Scientific Output of Undergraduate Research Supervisors: The Role of Sex-Related, Academic Career, and Subject Areas in a Brazilian Public Institution. Front. Educ. 2025, 10, 1554124. [Google Scholar] [CrossRef]
- Santos de Holanda Vieira, V.; Maria de Lima, A. Technical-Administrative Servers in Education at Federal Institutes: A Study of Scientific Production in Brazil in Recent Years (2017–2022). Rev. Bras. Educ. Prof. Tecnol. 2024, 2, e16160. [Google Scholar] [CrossRef]
- Fleck, M.P.d.A. The World Health Organization Instrument to Evaluate Quality of Life (WHOQOL-100): Characteristics and Perspectives. Cien Saude Colet. 2000, 5, 33–38. [Google Scholar] [CrossRef]
- Power, M.; Bullinger, M.; Harper, A. The World Health Organization WHOQOL-100: Tests of the Universality of Quality of Life in 15 Different Cultural Groups Worldwide. Health Psychol. 1999, 18, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Skevington, S.M.; Lotfy, M.; O’Connell, K.A. The World Health Organization’s WHOQOL-BREF Quality of Life Assessment: Psychometric Properties and Results of the International Field Trial. A Report from the WHOQOL Group. Qual. Life Res. 2004, 13, 299–310. [Google Scholar] [CrossRef]
- Lovibond, P.F.; Lovibond, S.H. The Structure of Negative Emotional States: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, S.H.; Lovibond, P.F. Depression Anxiety Stress Scales. PsycTESTS Dataset. 2011. Available online: https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft01004-000 (accessed on 7 July 2025). [CrossRef]
- Wittayapun, Y.; Summart, U.; Polpanadham, P.; Direksunthorn, T.; Paokanha, R.; Judabood, N.; A’la, M.Z. Validation of Depression, Anxiety, and Stress Scales (DASS-21) among Thai Nursing Students in an Online Learning Environment during the COVID-19 Outbreak: A Multi-Center Study. PLoS ONE 2023, 18, e0288041. [Google Scholar] [CrossRef] [PubMed]
- Makara-Studzińska, M.; Tyburski, E.; Załuski, M.; Adamczyk, K.; Mesterhazy, J.; Mesterhazy, A. Confirmatory Factor Analysis of Three Versions of the Depression Anxiety Stress Scale (DASS-42, DASS-21, and DASS-12) in Polish Adults. Front. Psychiatry 2022, 12, 770532. [Google Scholar] [CrossRef]
- Hajmir, M.M.; Shiraseb, F.; Ebrahimi, S.; Noori, S.; Ghaffarian-Ensaf, R.; Mirzaei, K. Interaction between Ultra-Processed Food Intake and Genetic Risk Score on Mental Health and Sleep Quality. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2022, 27, 3609–3625. [Google Scholar] [CrossRef]
- Al Saadi, T.; Zaher Addeen, S.; Turk, T.; Abbas, F.; Alkhatib, M. Psychological Distress among Medical Students in Conflicts: A Cross-Sectional Study from Syria. BMC Med. Educ. 2017, 17, 173. [Google Scholar] [CrossRef]
- Abdel Wahed, W.Y.; Hassan, S.K. Prevalence and Associated Factors of Stress, Anxiety and Depression among Medical Fayoum University Students. Alex. J. Med. 2017, 53, 77–84. [Google Scholar] [CrossRef]
- Taheri, M.; Esmaeili, A.; Irandoust, K.; Mirmoezzi, M.; Souissi, A.; Laher, I.; Dergaa, I.; Zouhal, H. Mental Health, Eating Habits and Physical Activity Levels of Elite Iranian Athletes during the COVID-19 Pandemic. Sci. Sports 2023, 38, 527–533. [Google Scholar] [CrossRef]
- Ministério da Economia—Instituto Brasileiro de Geografia e Estatística—IBGE. Pesquisa Nacional de Saúde do Escolar; IBGE: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística—IBGE. Pesquisa Nacional de Saúde do Escolar: 2019; IBGE: Rio de Janeiro, Brazil, 2021; p. 162. [Google Scholar]
- Boklis-Berer, M.; Rauber, F.; Azeredo, C.M.; Levy, R.B.; Louzada, M.L.d.C. School Meals Consumption Is Associated with a Better Diet Quality of Brazilian Adolescents: Results from the PeNSE 2015 Survey. Public Health Nutr. 2021, 24, 6512–6520. [Google Scholar] [CrossRef]
- Noll, P.R.e.S.; Noll, M.; de Abreu, L.C.; Baracat, E.C.; Silveira, E.A.; Sorpreso, I.C.E. Ultra-Processed Food Consumption by Brazilian Adolescents in Cafeterias and School Meals. Sci. Rep. 2019, 9, 7162. [Google Scholar] [CrossRef] [PubMed]
- Domingues, J.G.; Santos, F.S.d.; Kaufmann, C.C.; Muniz, L.C.; Bielemann, R.M.; Mintem, G.C. Healthy Eating Markers among Adolescents from the Municipal School System in Pelotas, Rio Grande Do Sul, Brazil, 2019: A Cross-Sectional Study. Epidemiol. Serviços Saúde 2023, 32, e2022964. [Google Scholar] [CrossRef] [PubMed]
- Ministério Da Saúde Vigitel Brazil 2006–2021: Surveillance of Risk and Protective Factors for Chronic Diseases by Telephone Survey: Estimates of Frequency and Sociodemographic Distribution of Nutritional Status and Food Consumption in the Capitals of the 26 Brazilian States and the Federal District between 2006 and 2021: Nutritional Status and Food Consumption; Brasília. 2022. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2006-2021_estado_nutricional.pdf (accessed on 29 May 2025).
- de Souza, A.L.G.; de Almeida, A.A.; Noll, P.R.E.S.; Noll, M. Unhealthy Life Habits Associated with Self-Induced Vomiting and Laxative Misuse in Brazilian Adolescents. Sci. Rep. 2021, 11, 2482. [Google Scholar] [CrossRef]
- Ventura Barbosa Gonçalves, H.; Canella, D.S.; Bandoni, D.H. Temporal Variation in Food Consumption of Brazilian Adolescents (2009–2015). PLoS ONE 2020, 15, e0239217. [Google Scholar] [CrossRef]
- Locatelli, N.T.; Canella, D.S.; Bandoni, D.H. Positive Influence of School Meals on Food Consumption in Brazil. Nutrition 2018, 53, 140–144. [Google Scholar] [CrossRef]
- Azeredo, C.M.; de Rezende, L.F.M.; Canella, D.S.; Moreira Claro, R.; de Castro, I.R.R.; Luiz, O.d.C.; Levy, R.B. Dietary Intake of Brazilian Adolescents. Public Health Nutr. 2015, 18, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.T.; Ferreira, L.S.; Cezar, T.T. Challenges of Teachers of Basic Technical and Technological Education in Brazil. Educ. Policy Anal. Arch. 2021, 29, 55. [Google Scholar] [CrossRef]
- Ramos, L.d.F.d.C.; Macêdo, K.B. Reflections on the Occupational Illnesses of Technical-Administrativeemployees in Education. Argumentum 2018, 10, 107–122. [Google Scholar] [CrossRef]
- Sun, G.-W.; Shook, T.L.; Kay, G.L. Inappropriate Use of Bivariable Analysis to Screen Risk Factors for Use in Multivariable Analysis. J. Clin. Epidemiol. 1996, 49, 907–916. [Google Scholar] [CrossRef]
- Barros, A.J.; Hirakata, V.N. Alternatives for Logistic Regression in Cross-Sectional Studies: An Empirical Comparison of Models That Directly Estimate the Prevalence Ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef]
- Park, S.; Xu, F.; Town, M.; Blanck, H.M. Prevalence of Sugar-Sweetened Beverage Intake Among Adults—23 States and the District of Columbia, 2013. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; De Ridder, K.; Fiolet, T.; Bel, S.; Tafforeau, J. Consumption of Ultra-Processed Food Products and Diet Quality among Children, Adolescents and Adults in Belgium. Eur. J. Nutr. 2019, 58, 3267–3278. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.H.; Blanck, H.M. Characteristics Associated with Being a High Consumer of Sweet Foods and Sugar-Sweetened Beverages among US Adults during the COVID-19 Pandemic, 2021. Nutrients 2023, 15, 2363. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.B.; Marchioni, D.M.L.; César, C.L.G.; Fisberg, R.M. Added Sugars: Consumption and Associated Factors among Adults and the Elderly. São Paulo, Brazil. Rev. Bras. Epidemiol. 2012, 15, 256–264. [Google Scholar] [CrossRef]
- Benajiba, N.; Bernstein, J.; Aboul-Enein, B.H. Attitudes toward Sweetened Soft Drinks and Consumption Patterns among Saudi Women: A Cross-Sectional Study. Eat. Behav. 2020, 38, 101413. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; Steele, E.M.; Louzada, M.L.d.C.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-Processed Food Consumption and Indicators of Obesity in the United Kingdom Population (2008–2016). PLoS ONE 2020, 15, e0232676. [Google Scholar] [CrossRef]
- Silva Júnior, J.N.B.d.; Freiria, C.N.; Silva, G.M.d.; Corona, L.P. Factors Associated with Added Sugar Consumption of Older Adults from the Region of Campinas-SP, Brazil. Cien Saude Colet. 2023, 28, 1219–1228. [Google Scholar] [CrossRef]
- Malo-Vintimilla, L.; Aguirre, C.; Vergara, A.; Fernández-Verdejo, R.; Galgani, J.E. Resting Energy Metabolism and Sweet Taste Preference during the Menstrual Cycle in Healthy Women. Br. J. Nutr. 2024, 131, 384–390. [Google Scholar] [CrossRef]
- Lampuré, A.; Schlich, P.; Deglaire, A.; Castetbon, K.; Péneau, S.; Hercberg, S.; Méjean, C. Sociodemographic, Psychological, and Lifestyle Characteristics Are Associated with a Liking for Salty and Sweet Tastes in French Adults. J. Nutr. 2015, 145, 587–594. [Google Scholar] [CrossRef]
- Tsuno, K.; Kawachi, I.; Inoue, A.; Nakai, S.; Tanigaki, T.; Nagatomi, H.; Kawakami, N. Long Working Hours and Depressive Symptoms: Moderating Effects of Gender, Socioeconomic Status, and Job Resources. Int. Arch. Occup. Environ. Health 2019, 92, 661–672. [Google Scholar] [CrossRef]
- Dinh, H.; Strazdins, L.; Welsh, J. Hour-Glass Ceilings: Work-Hour Thresholds, Gendered Health Inequities. Soc. Sci. Med. 2017, 176, 42–51. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.-C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed Products Are Becoming Dominant in the Global Food System. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Juul, F.; Martinez-Steele, E.; Parekh, N.; Monteiro, C.A.; Chang, V.W. Ultra-Processed Food Consumption and Excess Weight among US Adults. Br. J. Nutr. 2018, 120, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Juul, F.; Parekh, N.; Martinez-Steele, E.; Monteiro, C.A.; Chang, V.W. Ultra-Processed Food Consumption among US Adults from 2001 to 2018. Am. J. Clin. Nutr. 2022, 115, 211–221. [Google Scholar] [CrossRef]
- Kliemann, N.; Al Nahas, A.; Vamos, E.P.; Touvier, M.; Kesse-Guyot, E.; Gunter, M.J.; Millett, C.; Huybrechts, I. Ultra-Processed Foods and Cancer Risk: From Global Food Systems to Individual Exposures and Mechanisms. Br. J. Cancer 2022, 127, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.C.; Gombi-Vaca, M.F.; Louzada, M.L.d.C.; Azeredo, C.M.; Levy, R.B. The Consumption of Ultra-Processed Foods According to Eating out Occasions. Public Health Nutr. 2020, 23, 1041–1048. [Google Scholar] [CrossRef]
- Bertoni Maluf, V.A.; Bucher Della Torre, S.; Jotterand Chaparro, C.; Belle, F.N.; Khalatbari-Soltani, S.; Kruseman, M.; Marques-Vidal, P.; Chatelan, A. Description of Ultra-Processed Food Intake in a Swiss Population-Based Sample of Adults Aged 18 to 75 Years. Nutrients 2022, 14, 4486. [Google Scholar] [CrossRef]
- Marchese, L.; Livingstone, K.M.; Woods, J.L.; Wingrove, K.; Machado, P. Ultra-Processed Food Consumption, Socio-Demographics and Diet Quality in Australian Adults. Public Health Nutr. 2022, 25, 94–104. [Google Scholar] [CrossRef]
- Levy, R.B.; Andrade, G.C.; Cruz, G.L.d.; Rauber, F.; Louzada, M.L.d.C.; Claro, R.M.; Monteiro, C.A. Three Decades of Household Food Availability According to NOVA–Brazil, 1987–2018. Rev. Saude Publica 2022, 56, 75. [Google Scholar] [CrossRef]
- Louzada, M.L.d.C.; Cruz, G.L.d.; Silva, K.A.A.N.; Grassi, A.G.F.; Andrade, G.C.; Rauber, F.; Levy, R.B.; Monteiro, C.A. Consumption of Ultra-Processed Foods in Brazil: Distribution and Temporal Evolution 2008–2018. Rev. Saude Publica 2023, 57, 12. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Park, J.M.; Oh, S.U.; Ha, K.; Joung, H. Consumption of Ultra-Processed Foods Increases the Likelihood of Having Obesity in Korean Women. Nutrients 2021, 13, 698. [Google Scholar] [CrossRef]
- Sandri, E.; Pérez-Bermejo, M.; Cabo, A.; Cerdá-Olmedo, G. Living Alone: Associations with Diet and Health in the Spanish Young Adult Population. Nutrients 2023, 15, 2516. [Google Scholar] [CrossRef] [PubMed]
- Almoraie, N.M.; Alothmani, N.M.; Alomari, W.D.; Al-amoudi, A.H. Addressing Nutritional Issues and Eating Behaviours among University Students: A Narrative Review. Nutr. Res. Rev. 2024, 38, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S.; Thomas, J. Social Influences on Eating. Curr. Opin. Behav. Sci. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Jönsson, H.; Michaud, M.; Neuman, N. What Is Commensality? A Critical Discussion of an Expanding Research Field. Int. J. Environ. Res. Public Health 2021, 18, 6235. [Google Scholar] [CrossRef]
- Rosmiati, R.; Reswari Haryana, N.; Firmansyah, H.; Purba, R.; Rahman Nurfazriah, L.; Edwin Fransiari, M. The Relationship between Occupational Stress and Diet Quality with Productivity Loss in Islamic School Teachers in Medan: A Cross-Sectional Study. BIO Web Conf. 2022, 54, 00017. [Google Scholar] [CrossRef]
- Ramberg, J.; Brolin Låftman, S.; Åkerstedt, T.; Modin, B. Teacher Stress and Students’ School Well-Being: The Case of Upper Secondary Schools in Stockholm. Scand. J. Educ. Res. 2020, 64, 816–830. [Google Scholar] [CrossRef]
- Amaro, J.M.R.S.; Dumith, S.C. Excessive Daytime Sleepiness and Quality of Life Related to the Health of University Professors. J. Bras. Psiquiatr. 2018, 67, 94–100. [Google Scholar] [CrossRef]
- Grosso, G.; Godos, J.; Micek, A. Ultra-Processed Food Intake Is Associated with Worse Mental Health in Southern Italian Individuals. Eur. J. Public Health 2022, 32, ckac129.553. [Google Scholar] [CrossRef]
- Duquenne, P.; Capperella, J.; Fezeu, L.K.; Srour, B.; Benasi, G.; Hercberg, S.; Touvier, M.; Andreeva, V.A.; St-Onge, M.-P. The Association Between Ultra-Processed Food Consumption and Chronic Insomnia in the NutriNet-Santé Study. J. Acad. Nutr. Diet. 2024, 124, 1109–1117.e2. [Google Scholar] [CrossRef] [PubMed]
- Pourmotabbed, A.; Awlqadr, F.H.; Mehrabani, S.; Babaei, A.; Wong, A.; Ghoreishy, S.M.; Talebi, S.; Kermani, M.A.H.; Jalili, F.; Moradi, S.; et al. Ultra-Processed Food Intake and Risk of Insomnia: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 3767. [Google Scholar] [CrossRef] [PubMed]
- Klok, M.D.; Jakobsdottir, S.; Drent, M.L. The Role of Leptin and Ghrelin in the Regulation of Food Intake and Body Weight in Humans: A Review. Obes. Rev. 2007, 8, 21–34. [Google Scholar] [CrossRef]
- Zuraikat, F.M.; Makarem, N.; Liao, M.; St-Onge, M.; Aggarwal, B. Measures of Poor Sleep Quality Are Associated With Higher Energy Intake and Poor Diet Quality in a Diverse Sample of Women From the Go Red for Women Strategically Focused Research Network. J. Am. Heart Assoc. 2020, 9, e014587. [Google Scholar] [CrossRef]
- Bombarda, A.; St-Onge, M.; Seixas, A.; Williams, N.; Jean-Louis, G.; Killgore, W.D.; Wills, C.C.; Grandner, M.A. 0235 Sleep Duration and Timing Associated with Eating Behaviors: Data from NHANES 2015–2016. Sleep 2020, 43, A90–A91. [Google Scholar] [CrossRef]
- Baglioni, C.; Battagliese, G.; Feige, B.; Spiegelhalder, K.; Nissen, C.; Voderholzer, U.; Lombardo, C.; Riemann, D. Insomnia as a Predictor of Depression: A Meta-Analytic Evaluation of Longitudinal Epidemiological Studies. J. Affect. Disord. 2011, 135, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D. Primary Insomnia: A Risk Factor to Develop Depression? J. Affect. Disord. 2003, 76, 255–259. [Google Scholar] [CrossRef]
- Maisey, G.; Cattani, M.; Devine, A.; Lo, J.; Fu, S.C.; Dunican, I.C. Digging for Data: How Sleep Is Losing out to Roster Design, Sleep Disorders, and Lifestyle Factors. Appl. Ergon. 2022, 99, 103617. [Google Scholar] [CrossRef]
- Huang, T.; Mariani, S.; Redline, S. Sleep Irregularity and Risk of Cardiovascular Events. J. Am. Coll. Cardiol. 2020, 75, 991–999. [Google Scholar] [CrossRef]
- Barbosa, S.S.; Sousa, L.C.M.; de Oliveira Silva, D.F.; Pimentel, J.B.; Evangelista, K.C.M.d.S.; Lyra, C.d.O.; Lopes, M.M.G.D.; Lima, S.C.V.C. A Systematic Review on Processed/Ultra-Processed Foods and Arterial Hypertension in Adults and Older People. Nutrients 2022, 14, 1215. [Google Scholar] [CrossRef]
- Liu, Y.; Wheaton, A.G.; Chapman, D.P.; Cunningham, T.J.; Lu, H.; Croft, J.B. Prevalence of Healthy Sleep Duration among Adults—United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Arocha Rodulfo, J.I. Sedentary Lifestyle a Disease from Xxi Century. Clín. Investig. Arterioscler. 2019, 31, 233–240. [Google Scholar] [CrossRef]
- Jeong, S.-W.; Kim, S.-H.; Kang, S.-H.; Kim, H.-J.; Yoon, C.-H.; Youn, T.-J.; Chae, I.-H. Mortality Reduction with Physical Activity in Patients with and without Cardiovascular Disease. Eur. Heart J. 2019, 40, 3547–3555. [Google Scholar] [CrossRef] [PubMed]
- Posadzki, P.; Pieper, D.; Bajpai, R.; Makaruk, H.; Könsgen, N.; Neuhaus, A.L.; Semwal, M. Exercise/Physical Activity and Health Outcomes: An Overview of Cochrane Systematic Reviews. BMC Public Health 2020, 20, 1724. [Google Scholar] [CrossRef]
- Chastin, S.F.M.; Abaraogu, U.; Bourgois, J.G.; Dall, P.M.; Darnborough, J.; Duncan, E.; Dumortier, J.; Pavón, D.J.; McParland, J.; Roberts, N.J.; et al. Effects of Regular Physical Activity on the Immune System, Vaccination and Risk of Community-Acquired Infectious Disease in the General Population: Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1673–1686. [Google Scholar] [CrossRef]
- Brace, A.M.; De Andrade, F.C.; Finkelstein, B. Assessing the Effectiveness of Nutrition Interventions Implemented among US College Students to Promote Healthy Behaviors: A Systematic Review. Nutr. Health 2018, 24, 171–181. [Google Scholar] [CrossRef]
- Nardocci, M.; Leclerc, B.-S.; Louzada, M.-L.; Monteiro, C.A.; Batal, M.; Moubarac, J.-C. Consumption of Ultra-Processed Foods and Obesity in Canada. Can. J. Public Health 2019, 110, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Jezewska-Zychowicz, M.; Gębski, J.; Guzek, D.; Świątkowska, M.; Stangierska, D.; Plichta, M.; Wasilewska, M. The Associations between Dietary Patterns and Sedentary Behaviors in Polish Adults (LifeStyle Study). Nutrients 2018, 10, 1004. [Google Scholar] [CrossRef]
- Martínez Steele, E.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary Share of Ultra-Processed Foods and Metabolic Syndrome in the US Adult Population. Prev. Med. 2019, 125, 40–48. [Google Scholar] [CrossRef]
- Rounsefell, K.; Gibson, S.; McLean, S.; Blair, M.; Molenaar, A.; Brennan, L.; Truby, H.; McCaffrey, T.A. Social Media, Body Image and Food Choices in Healthy Young Adults: A Mixed Methods Systematic Review. Nutr. Diet. 2020, 77, 19–40. [Google Scholar] [CrossRef]
- Eck, K.M.; Quick, V.; Byrd-Bredbenner, C. Body Dissatisfaction, Eating Styles, Weight-Related Behaviors, and Health among Young Women in the United States. Nutrients 2022, 14, 3876. [Google Scholar] [CrossRef] [PubMed]
- Shagar, P.S.; Harris, N.; Boddy, J.; Donovan, C.L. The Relationship Between Body Image Concerns and Weight-Related Behaviours of Adolescents and Emerging Adults: A Systematic Review. Behav. Change 2017, 34, 208–252. [Google Scholar] [CrossRef]
- Bornioli, A.; Lewis-Smith, H.; Slater, A.; Bray, I. Body Dissatisfaction Predicts the Onset of Depression among Adolescent Females and Males: A Prospective Study. J. Epidemiol. Community Health 2021, 75, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.; Coelho, G.M.d.O.; Cabral, M.C.; Bezerra, F.F.; Faerstein, E.; Canella, D.S. Association of Body Image (Dis)Satisfaction and Perception with Food Consumption According to the NOVA Classification: Pró-Saúde Study. Appetite 2020, 144, 104464. [Google Scholar] [CrossRef]
- Minari, T.P.; Araújo-Filho, G.M.d.; Tácito, L.H.B.; Yugar, L.B.T.; Rubio, T.d.A.; Pires, A.C.; Vilela-Martin, J.F.; Cosenso-Martin, L.N.; Fattori, A.; Yugar-Toledo, J.C.; et al. Effects of Mindful Eating in Patients with Obesity and Binge Eating Disorder. Nutrients 2024, 16, 884. [Google Scholar] [CrossRef] [PubMed]
- Boulos, R.; Vikre, E.K.; Oppenheimer, S.; Chang, H.; Kanarek, R.B. ObesiTV: How Television Is Influencing the Obesity Epidemic. Physiol. Behav. 2012, 107, 146–153. [Google Scholar] [CrossRef]
- Mansouri, M.; Sharifi, F.; Yaghubi, H.; Varmaghani, M.; Tabrizi, Y.M.; Nasiri, M.; Sadeghi, O. Sugar-Sweetened Beverages Consumption in Relation to Hypertension among Iranian University Students: The MEPHASOUS Study. Eat. Weight Disord. Stud. Anorex. Bulim. Obes. 2020, 25, 973–982. [Google Scholar] [CrossRef]
- Tapanee, P.; Reeder, N.; Christensen, R.; Tolar-Peterson, T. Sugar, Non-Nutritive Sweetener Intake and Obesity Risk in College Students. J. Am. Coll. Health 2023, 71, 2093–2098. [Google Scholar] [CrossRef]
- Liang, T.; Kuhle, S.; Veugelers, P.J. Nutrition and Body Weights of Canadian Children Watching Television and Eating While Watching Television. Public Health Nutr. 2009, 12, 2457–2463. [Google Scholar] [CrossRef]
- Silva, D.C.G.d.; Segheto, W.; Amaral, F.C.d.S.; Reis, N.d.A.; Veloso, G.S.S.; Pessoa, M.C.; Novaes, J.F.d.; Longo, G.Z. Consumption of Sweetened Beverages and Associated Factors in Adults. Cien Saude Colet. 2019, 24, 899–906. [Google Scholar] [CrossRef]
- Costa, C.d.S.; Wendt, A.; Machado, A.K.F.; Ricardo, L.I.C.; Werneck, A.d.O.; Louzada, M.L.d.C. Ultra-Processed Food Consumption Is Related to Screen Time among Brazilian Adolescents, Adults and Older Adults. Br. J. Nutr. 2025, 133, 118–125. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Fulton, S.; Wilson, M.; Petrovich, G.; Rinaman, L. Stress Exposure, Food Intake and Emotional State. Stress 2015, 18, 381–399. [Google Scholar]
- Ghernati, L.; Tamim, H.; Chokor, F.A.Z.; Taktouk, M.; Assi, B.; Nasreddine, L.; Elbejjani, M. Processed and Ultra-Processed Foods Are Associated with Depression and Anxiety Symptoms in a Cross-Sectional Sample of Urban Lebanese Adults. Nutr. Res. 2025, 133, 172–189. [Google Scholar] [CrossRef]
- Hill, D.; Conner, M.; Clancy, F.; Moss, R.; Wilding, S.; Bristow, M.; O’Connor, D.B. Stress and Eating Behaviours in Healthy Adults: A Systematic Review and Meta-Analysis. Health Psychol. Rev. 2022, 16, 280–304. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.B.; Thayer, J.F.; Vedhara, K. Stress and Health: A Review of Psychobiological Processes. Annu. Rev. Psychol. 2021, 72, 663–688. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Hodge, A.M.; O’Neil, A.; Travica, N.; Jacka, F.N.; Rocks, T.; Machado, P.; Forbes, M.; Ashtree, D.N.; et al. High Ultra-Processed Food Consumption Is Associated with Elevated Psychological Distress as an Indicator of Depression in Adults from the Melbourne Collaborative Cohort Study. J. Affect. Disord. 2023, 335, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.C.G.; Lopes, L.J.; Rezende-Alves, K.; Bressan, J.; Pimenta, A.M.; Hermsdorff, H.H.M. Ultra-Processed Food Consumption Is Positively Associated with the Incidence of Depression in Brazilian Adults (CUME Project). J. Affect. Disord. 2023, 328, 58–63. [Google Scholar] [CrossRef]
- Noll, P.R.e.S.; Noll, M.; Zangirolami-Raimundo, J.; Baracat, E.C.; Louzada, M.L.d.C.; Soares Júnior, J.M.; Sorpreso, I.C.E. Life Habits of Postmenopausal Women: Association of Menopause Symptom Intensity and Food Consumption by Degree of Food Processing. Maturitas 2022, 156, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cadenhead, J.W.; Martínez-Steele, E.; Contento, I.; Kushi, L.H.; Lee, A.R.; Nguyen, T.T.T.; Lebwohl, B.; Green, P.H.R.; Wolf, R.L. Diet Quality, Ultra-processed Food Consumption, and Quality of Life in a Cross-sectional Cohort of Adults and Teens with Celiac Disease. J. Hum. Nutr. Diet. 2023, 36, 1144–1158. [Google Scholar] [CrossRef]
- Hosseininasab, D.; Shiraseb, F.; Bahrampour, N.; da Silva, A.; Hajinasab, M.M.; Bressan, J.; Mirzaei, K. Ultra-Processed Food Consumption and Quality of Life: A Cross-Sectional Study in Iranian Women. Front. Public Health 2024, 12, 1351510. [Google Scholar] [CrossRef]
- Hosseinpour-Niazi, S.; Niknam, M.; Amiri, P.; Mirmiran, P.; Ainy, E.; Izadi, N.; Gaeini, Z.; Azizi, F. The Association between Ultra-Processed Food Consumption and Health-Related Quality of Life Differs across Lifestyle and Socioeconomic Strata. BMC Public Health 2024, 24, 1955. [Google Scholar] [CrossRef]
- Carroll, A.; York, A.; Fynes-Clinton, S.; Sanders-O’Connor, E.; Flynn, L.; Bower, J.M.; Forrest, K.; Ziaei, M. The Downstream Effects of Teacher Well-Being Programs: Improvements in Teachers’ Stress, Cognition and Well-Being Benefit Their Students. Front. Psychol. 2021, 12, 689628. [Google Scholar] [CrossRef] [PubMed]
- Nwoko, J.C.; Emeto, T.I.; Malau-Aduli, A.E.O.; Malau-Aduli, B.S. A Systematic Review of the Factors That Influence Teachers’ Occupational Wellbeing. Int. J. Environ. Res. Public Health 2023, 20, 6070. [Google Scholar] [CrossRef] [PubMed]
2022 | ||
---|---|---|
n | % | |
Sex | ||
Male | 668 | 42.7 |
Famale | 895 | 57.3 |
Age group | ||
≤35 | 389 | 24.9 |
36–41 | 472 | 30.2 |
42–49 | 372 | 23.8 |
≥50 | 330 | 21.1 |
Marital status | ||
Married | 1019 | 65 |
Single | 377 | 24 |
Divorced/widowed | 167 | 11 |
Level of education | ||
HS/HE/PTE | 332 | 21.2 |
Specialist/MBA | 484 | 31 |
Master’s | 111 | 7.1 |
Doctorate/PhD | 636 | 40.7 |
Region | ||
Center–West | 504 | 32.2 |
North and Northeast | 411 | 26.3 |
Southwest | 406 | 26 |
South | 242 | 15.5 |
Position | ||
ATE | 878 | 56.2 |
Teacher | 685 | 43.8 |
Length of service | ||
1–5 years | 313 | 20 |
6–10 years | 674 | 43.1 |
≥11 years | 576 | 36.9 |
Region of residence | ||
Urban | 1486 | 95.1 |
Rural | 77 | 4.9 |
Food/Weekly Frequency | Total | Male | Famale | |||
---|---|---|---|---|---|---|
% | n | % | n | % | n | |
Sweets | ||||||
Did not eat | 13.2 | 206 | 15.7 | 105 | 11.3 | 101 |
1 day | 16.4 | 257 | 17.5 | 117 | 15.6 | 140 |
2 days | 19.7 | 308 | 20.5 | 137 | 19.1 | 171 |
3 days | 16.1 | 252 | 16.9 | 113 | 15.5 | 139 |
4 days | 9.3 | 145 | 8.7 | 58 | 9.7 | 87 |
5 days | 7.5 | 117 | 6.4 | 43 | 8.3 | 74 |
6 days | 4.9 | 76 | 4.2 | 28 | 5.4 | 48 |
7 days | 12.9 | 202 | 10 | 67 | 15.1 | 135 |
Soft Drinks | ||||||
Did not eat | 40.8 | 637 | 35.8 | 239 | 44.5 | 398 |
1 day | 19.6 | 307 | 19.8 | 132 | 19.6 | 175 |
2 days | 16.3 | 254 | 19.5 | 130 | 13.9 | 124 |
3 days | 10.6 | 165 | 12 | 80 | 9.5 | 85 |
4 days | 4.4 | 69 | 4.2 | 28 | 4.6 | 41 |
5 days | 3.4 | 53 | 2.7 | 18 | 3.9 | 35 |
6 days | 1.2 | 18 | 1.6 | 11 | 0.8 | 7 |
7 days | 3.8 | 60 | 4.5 | 30 | 3.4 | 30 |
Industrialized/Ultra-Processed Salty Foods | ||||||
Did not eat | 19.6 | 307 | 16.2 | 108 | 22.2 | 199 |
1 day | 22.4 | 350 | 21 | 140 | 23.5 | 210 |
2 days | 19.4 | 304 | 20.1 | 134 | 19 | 170 |
3 days | 15.7 | 246 | 18.6 | 124 | 13.6 | 122 |
4 days | 8.3 | 129 | 8.8 | 59 | 7.8 | 70 |
5 days | 5.6 | 87 | 6.1 | 41 | 5.1 | 46 |
6 days | 2.8 | 44 | 3.1 | 21 | 2.6 | 23 |
7 days | 6.1 | 96 | 6.1 | 41 | 6.1 | 55 |
Fast Food | ||||||
Did not eat | 40.6 | 635 | 37.9 | 253 | 42.7 | 382 |
1 day | 30.4 | 475 | 30.4 | 203 | 30.4 | 272 |
2 days | 16.8 | 262 | 18 | 120 | 15.9 | 142 |
3 days | 7.4 | 115 | 8.4 | 56 | 6.6 | 59 |
4 days | 2.3 | 36 | 3.3 | 22 | 1.6 | 14 |
5 days | 1.3 | 21 | 1.2 | 8 | 1.5 | 13 |
6 days | 0.4 | 7 | 0.3 | 2 | 0.6 | 5 |
7 days | 0.8 | 12 | 0.6 | 4 | 0.9 | 8 |
RC Sweets | RC Soft Drinks | RC Industrialized/Ultra-Processed Salty Foods | RC Fast Food | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | PRadj (95% CI) | p | n (%) | PRadj (95% CI) | p | n (%) | PRadj (95% CI) | p | n (%) | PRadj (95% CI) | p | |
Sociodemographic | ||||||||||||
Sex | ||||||||||||
Male | 138 (20.7) | 1 | 59 (8.8) | 1 | 103 (15.4) | 1 | 14 (2.1) | 1 | ||||
Female | 257 (28.7) | 1.40 (1.17–1.67) | <0.001 | 72 (8) | 0.96 (0.69–1.33) | 0.790 | 124 (13.9) | 0.92 (0.72–1.18) | 0.524 | 26 (2.9) | 1.50 (0.78–2.88) | 0.223 |
Age group | ||||||||||||
22–34 | 105 (32.9) | 1 | 27 (8.5) | 1 | 56 (17.6) | 1 | 10 (3.1) | 1 | ||||
35–47 | 236 (28) | 0.86 (0.70–1.06) | 0.159 | 83 (9.9) | 1.13 (0.73–1.74) | 0.586 | 130 (15.4) | 0.90 (0.66–1.22) | 0.504 | 18 (2.1) | 0.62 (0.26–1.46) | 0.272 |
48–60 | 47 (13.5) | 0.42 (0.30–0.58) | <0.001 | 15 (4.3) | 0.48 (0.25–0.89) | 0.020 | 34 (9.7) | 0.56 (0.37–0.86) | 0.008 | 12 (3.4) | 0.86 (0.35–2.09) | 0.739 |
61–72 | 7 (13.2) | 0.37 (0.18–0.77) | 0.008 | 6 (11.3) | 0.14 (0.46–2.85) | 0.779 | 7 (13.2) | 0.69 (0.32–1.51) | 0.352 | - | - | - |
Region | ||||||||||||
North–Northeast | 71 (17.3) | 1 | 19 (4.6) | 1 | 47 (11.4) | 1 | 10 (2.4) | 1 | ||||
South | 73 (30.2) | 1.89 (1.43–2.50) | <0.001 | 14 (5.8) | 1.29 (0.66–2.55) | 0.457 | 42 (17.4) | 1.59 (1.08–2.36) | 0.019 | 5 (2.1) | 0.99 (0.34–2.88) | 0.985 |
Midwest | 123 (24.4) | 1.47 (1.14–1.91) | 0.003 | 56 (11.1) | 2.46 (1.46–4.15) | 0.001 | 72 (14.3) | 1.28 (0.90–1.81) | 0.167 | 17 (3.4) | 1.47 (0.66–3.28) | 0.351 |
Southeast | 128 (31.5) | 2.01 (1.57–2.59) | <0.001 | 42 (10.3) | 2.37 (1.38–4.08) | 0.002 | 66 (16.3) | 1.50 (1.05–2.14) | 0.025 | 8 (2) | 0.89 (0.34–2.31) | 0.811 |
Marital status | ||||||||||||
Married | 242 (23.7) | 1 | 90 (8.8) | 1 | 145 (14.2) | 1 | 21 (2.1) | 1 | ||||
Single | 114 (30.2) | 1.19 (0.98–1.43) | 0.074 | 28 (7.4) | 0.87 (0.58–1.31) | 0.511 | 57 (15.1) | 1.02 (0.77–1.38) | 0.866 | 15 (4) | 2.02 (1.05–3.88) | 0.034 |
Divorced/widowed | 39 (23.4) | 1.05 (0.80–1.39) | 0.705 | 13 (7.8) | 1.01 (0.58–1.77) | 0.966 | 25 (15) | 1.12 (0.75–1.65) | 0.582 | 4 (2.4) | 1.01 (0.35–2.95) | 0.979 |
Work and Training | ||||||||||||
Level of education | ||||||||||||
Doctorate/PHD | 168 (26.4) | 1 | 56 (8.8) | 1 | 91 (14.3) | 1 | 15 (2.4) | 1 | ||||
Master’s degree | 28 (25.2) | 1.08 (0.75–1.56) | 0.674 | 9 (8.1) | 1.18 (0.58–2.41) | 0.647 | 23 (20.7) | 1.66 (1.07–2.59) | 0.024 | 4 (3.6) | 1.83 (0.55–6.09) | 0.324 |
Specialization/MBA | 122 (25.2) | 1.03 (0.84–1.28) | 0.757 | 42 (8.7) | 1.15 (0.77–1.73) | 0.498 | 71 (14.7) | 1.14 (0.84–1.55) | 0.387 | 11 (2.3) | 1.07 (0.48–2.37) | 0.867 |
HS/HE/PTE | 77 (23.2) | 0.80 (0.63–1.02) | 0.073 | 24 (7.2) | 0.73 (0.44–1.21) | 0.224 | 42 (12.7) | 0.83 (0.58–1.17) | 0.286 | 10 (3) | 1.01 (0.43–2.34) | 0.983 |
Position | ||||||||||||
ATE | 215 (24.5) | 1 | 71 (8.1) | 1 | 125 (14.2) | 1 | 20 (2.3) | 1 | ||||
Teacher | 180 (26.3) | 1.45 (1.17–1.78) | 0.001 | 60 (8.8) | 1.43 (0.93–2.19) | 0.108 | 102 (14.9) | 1.39 (1.03–1.88) | 0.029 | 20 (2.9) | 1.48 (0.74–2.96) | 0.265 |
Length of service | ||||||||||||
≥11 years | 119 (20.7) | 1 | 44 (7.6) | 1 | 71 (12.3) | 1 | 18 (3.1) | 1 | ||||
6–10 years | 177 (26.3) | 1.00 (0.81–1.24) | 0.968 | 66 (9.8) | 1.06 (0.73–1.53) | 0.764 | 108 (16) | 1.11 (0.83–1.49) | 0.481 | 13 (1.9) | 0.57 (0.28–1.19) | 0.134 |
1–5 years | 99 (31.6) | 1.10 (0.85–1.42) | 0.459 | 21 (6.7) | 0.73 (0.43–1.25) | 0.250 | 48 (15.3) | 0.98 (0.67–1.41) | 0.896 | 9 (2.9) | 0.71 (0.32–1.59) | 0.406 |
Body Perception and Lifestyle Habits | ||||||||||||
Body satisfaction | ||||||||||||
1° tercil—satisfied | 181 (22.0) | 1 | 56 (6.8) | 1 | 92 (11.2) | 1 | 26 (3.2) | 1 | ||||
2° tercil—neutral | 122 (25.8) | 1.13 (0.93–1.37) | 0.230 | 39 (8.3) | 1.24 (0.83–1.84) | 0.285 | 71 (15) | 1.36 (1.02–1.82) | 0.035 | 6 (1.3) | 0.38 (0.16–0.93) | 0.034 |
3° tercil—dissatisfied | 92 (34.3) | 1.39 (1.13–1.71) | 0.002 | 36 (13.4) | 1.90 (1.28–2.81) | 0.001 | 64 (32.9) | 2.07 (1.55–2.76) | <0.001 | 8 (3.0) | 0.88 (0.41–1.91) | 0.756 |
Quality of sleep | ||||||||||||
1° tercil—satisfied | 172 (23.3) | 1 | 52 (7) | 1 | 90 (12.2) | 1 | 16 (2.2) | 1 | ||||
2° tercil—neutral | 92 (22.8) | 0.99 (0.80–1.23) | 0.951 | 33 (8.2) | 1.18 (0.78–1.78) | 0.427 | 50 (12.4) | 1.02 (0.74–1.41) | 0.891 | 8 (2) | 0.89 (0.39–2.05) | 0.793 |
3° tercil—dissatisfied | 131 (31) | 1.26 (1.04–1.52) | 0.017 | 46 (10.9) | 1.48 (1.01–2.15) | 0.042 | 87 (20.6) | 1.64 (1.26–2.15) | <0.001 | 16 (3.8) | 1.73 (0.88–3.37) | 0.109 |
Hours of sleep | ||||||||||||
7–8 h | 204 (25) | 1 | 64 (7.9) | 1 | 103 (12.6) | 1 | 17 (2.1) | 1 | ||||
≥9 h | 19 (31.1) | 1.07 (0.73–1.58) | 0.726 | 8 (13.1) | 1.57 (0.79–3.13) | 0.201 | 8 (13.1) | 0.96 (0.49–1.87) | 0.912 | - | - | - |
≤6 h | 172 (25) | 1.07 (0.90–1.27) | 0.442 | 59 (8.6) | 1.07 (0.77–1.50) | 0.683 | 116 (16.9) | 1.38 (1.08–1.77) | 0.011 | 23 (3.3) | 1.58 (0.83–3.00) | 0.161 |
TV time (h/d) | ||||||||||||
<1 h | 144 (26.6) | 1 | 55 (10.2) | 1 | 72 (13.3) | 1 | 14 (2.6) | 1 | ||||
1–2 h | 148 (24.7) | 0.95 (0.79–1.16) | 0.634 | 56 (9.4) | 0.92 (0.65–1.30) | 0.625 | 85 (14.2) | 1.07 (0.80–1.44) | 0.645 | 15 (2.5) | 0.96 (0.47–1.95) | 0.914 |
≥3 h | 85 (24.9) | 0.97 (0.78–1.21) | 0.797 | 14 (4.1) | 0.41 (0.23–0.73) | 0.002 | 57 (16.7) | 1.24 (0.90–1.71) | 0.184 | 8 (2.3) | 0.92 (0.39–2.19) | 0.857 |
Regular physical activity | ||||||||||||
Yes | 187 (21.5) | 1 | 43 (4.9) | 1 | 96 (11) | 1 | 13 (1.5) | 1 | ||||
No | 208 (30) | 1.37 (1.16–1.62) | <0.001 | 88 (12.7) | 2.42 (1.71–3.42) | <0.001 | 131 (18.9) | 1.67 (1.31–2.14) | <0.001 | 27 (3.9) | 2.67 (1.36–5.25) | 0.004 |
Weekly frequency of physical activity | ||||||||||||
≥4 days | 63 (17.3) | 1 | 14 (3.8) | 1 | 34 (9.3) | 1 | 6 (1.6) | 1 | ||||
1–3 days | 120 (24.7) | 1.42 (1.09–1.85) | 0.010 | 28 (5.8) | 1.51 (0.81–2.81) | 0.195 | 60 (12.4) | 1.33 (0.90–1.98) | 0.155 | 7 (1.4) | 0.88 (0.30–2.63) | 0.823 |
0 day | 208 (30) | 1.70 (1.33–2.18) | <0.001 | 88 (12.7) | 3.14 (1.81–5.43) | <0.001 | 131 (18.9) | 1.99 (1.39–2.84) | <0.001 | 27 (3.9) | 2.43 (0.99–5.92) | 0.051 |
Mental Health—DASS-21 | ||||||||||||
Stress | ||||||||||||
Normal | 187 (21.8) | 1 | 51 (6) | 1 | 94 (11) | 1 | 17 (2) | 1 | ||||
Moderate | 116 (28.6) | 1.14 (0.94–1.49) | 0.184 | 40 (9.9) | 1.57 (1.05–2.35) | 0.028 | 62 (15.3) | 1.36 (1.01–1.83) | 0.045 | 13 (3.2) | 1.55 (0.75–3.19) | 0.239 |
High | 92 (30.6) | 1.21 (0.98–1.49) | 0.078 | 40 (13.3) | 2.11 (1.43–3.13) | <0.001 | 71 (14.5) | 2.11 (1.58–2.80) | <0.001 | 10 (3.3) | 1.58 (0.74–3.37) | 0.232 |
Anxiety | ||||||||||||
Normal | 194 (22.4) | 1 | 55 (6.4) | 1 | 100 (11.5) | 1 | 17 (2) | 1 | ||||
Moderate | 100 (25.3) | 1.11 (0.91–1.36) | 0.295 | 37 (10.2) | 1.60 (1.08–2.36) | 0.018 | 56 (15.5) | 1.32 (0.97–1.78) | 0.073 | 11 (27.5) | 1.49 (0.71–3.13) | 0.289 |
High | 101 (30.1) | 1.18 (0.96–1.45) | 0.106 | 39 (11.6) | 1.83 (1.24–2.70) | 0.002 | 71 (21.1) | 1.81 (1.36–2.41) | <0.001 | 12 (3.6) | 1.65 (0.79–3.44) | 0.181 |
Depression | ||||||||||||
Normal | 175 (21.1) | 1 | 53 (6.4) | 1 | 83 (10) | 1 | 19 (2.3) | 1 | ||||
Moderate | 139 (30) | 1.22 (1.04–1.53) | 0.016 | 40 (8.6) | 1.25 (0.85–1.86) | 0.260 | 75 (16.2) | 1.55 (1.16–2.08) | 0.003 | 11 (2.4) | 1.01 (0.48–2.12) | 0.980 |
High | 81 (30.2) | 1.29 (1.04–1.60) | 0.020 | 38 (14.2) | 2.05 (1.39–3.03) | <0.001 | 69 (25.7) | 2.43 (1.82–3.26) | <0.001 | 10 (3.7) | 1.52 (0.72–3.18) | 0.268 |
Quality of Life—WHOQOL-bref | ||||||||||||
Physics | ||||||||||||
3rd tertile—better | 101 (22) | 1 | 33 (7.2) | 1 | 54 (11.7) | 1 | 9 (2) | 1 | ||||
2nd tertile | 132 (24.5) | 1.09 (0.88–1.37) | 0.423 | 33 (6.1) | 0.85 (0.54–1.36) | 0.503 | 70 (13) | 1.14 (0.82–1.60) | 0.436 | 14 (2.6) | 1.36 (0.59–3.14) | 0.474 |
1st tertile—worse | 162 (28.7) | 1.27 (1.02–1.57) | 0.030 | 65 (11.5) | 1.62 (1.07–2.45) | 0.021 | 103 (18.3) | 1.62 (1.19–2.20) | 0.002 | 17 (3) | 1.46 (0.67–3.18) | 0.335 |
Psychological | ||||||||||||
3rd tertile—better | 126 (19.5) | 1 | 40 (6.2) | 1 | 61 (9.4) | 1 | 16 (2.5) | 1 | ||||
2nd tertile | 119 (26.7) | 1.29 (1.04–1.60) | 0.020 | 33 (7.4) | 1.23 (0.79–1.93) | 0.354 | 58 (13) | 1.37 (0.98–1.93) | 0.065 | 13 (2.9) | 1.20 (0.57–2.52) | 0.625 |
1st tertile—worse | 150 (31.8) | 1.44 (1.18–1.77) | <0.001 | 58 (12.3) | 1.92 (1.31–2.82) | 0.001 | 108 (22.9) | 2.32 (1.73–3.11) | <0.001 | 11 (2.3) | 0.93 (0.43–1.99) | 0.852 |
Social | ||||||||||||
3rd tertile—better | 69 (24.4) | 1 | 24 (8.5) | 1 | 34 (12) | 1 | 7 (2.5) | 1 | ||||
2nd tertile | 196 (26.8) | 1.11 (0.88–1.40) | 0.373 | 46 (6.3) | 0.71 (0.45–1.14) | 0.161 | 91 (12.4) | 1.04 (0.72–1.51) | 0.823 | 19 (2.6) | 1.10 (0.46–2.63) | 0.822 |
1st tertile—worse | 130 (23.7) | 0.99 (0.77–1.27) | 0.934 | 61 (11.1) | 1.27 (0.81–1.99) | 0.301 | 102 (18.6) | 1.55 (1.07–2.23) | 0.019 | 14 (2.6) | 1.09 (0.43–2.76) | 0.862 |
Environmental | ||||||||||||
3rd tertile—better | 112 (25.6) | 1 | 38 (8.7) | 1 | 53 (12.1) | 1 | 11 (2.5) | 1 | ||||
2nd tertile | 157 (26.2) | 1.02 (0.83–1.25) | 0.846 | 48 (8) | 0.97 (0.64–1.46) | 0.885 | 76 (12.7) | 1.06 (0.76–1.47) | 0.730 | 13 (2.2) | 0.91 (0.40–2.07) | 0.827 |
1st tertile—worse | 126 (23.9) | 0.95 (0.77–1.18) | 0.657 | 45 (8.5) | 1.05 (0.69–1.59) | 0.818 | 98 (18.6) | 1.56 (1.15–2.13) | 0.005 | 16 (3) | 1.35 (0.60–3.04) | 0.473 |
Total score | ||||||||||||
3rd tertile—better | 113 (21.6) | 1 | 32 (6.1) | 1 | 55 (10.5) | 1 | 13 (2.5) | 1 | ||||
2nd tertile | 139 (26.8) | 1.22 (0.99–1.51) | 0.059 | 41 (7.9) | 1.34 (0.85–2.09) | 0.202 | 62 (11.9) | 1.14 (0.81–1.60) | 0.448 | 11 (2.1) | 0.88 (0.39–1.97) | 0.753 |
1st tertile—worse | 143 (27.4) | 1.22 (0.99–1.51) | 0.058 | 58 (11.1) | 1.83 (1.21–2.77) | 0.004 | 110 (21.1) | 1.99 (1.48–2.69) | <0.001 | 16 (3.1) | 1.24 (0.59–2.59) | 0.568 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Jesus, J.I.F.; Monfort-Pañego, M.; Alves Santos, G.V.; Monteiro, Y.C.; Nogueira, S.M.; e Silva, P.R.; Noll, M. Food, Quality of Life and Mental Health: A Cross-Sectional Study with Federal Education Workers. Nutrients 2025, 17, 2519. https://doi.org/10.3390/nu17152519
Santos Jesus JIF, Monfort-Pañego M, Alves Santos GV, Monteiro YC, Nogueira SM, e Silva PR, Noll M. Food, Quality of Life and Mental Health: A Cross-Sectional Study with Federal Education Workers. Nutrients. 2025; 17(15):2519. https://doi.org/10.3390/nu17152519
Chicago/Turabian StyleSantos Jesus, José Igor Ferreira, Manuel Monfort-Pañego, Gabriel Victor Alves Santos, Yasmin Carla Monteiro, Suelen Marçal Nogueira, Priscilla Rayanne e Silva, and Matias Noll. 2025. "Food, Quality of Life and Mental Health: A Cross-Sectional Study with Federal Education Workers" Nutrients 17, no. 15: 2519. https://doi.org/10.3390/nu17152519
APA StyleSantos Jesus, J. I. F., Monfort-Pañego, M., Alves Santos, G. V., Monteiro, Y. C., Nogueira, S. M., e Silva, P. R., & Noll, M. (2025). Food, Quality of Life and Mental Health: A Cross-Sectional Study with Federal Education Workers. Nutrients, 17(15), 2519. https://doi.org/10.3390/nu17152519