Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study
Abstract
1. Introduction
Methods
2. Western Diet and Its Health Effects
2.1. Overview of the Western Diet
2.2. Similarities Between the Hungarian Diet and the Western Diet
2.3. Role of Western Diet in Unhealthy Aging
3. Western Diet and Cognitive Health
3.1. Cognitive Decline and Dementia as a Global Health Issue
3.2. Risk Factors for Cognitive Decline and Dementia
3.3. The Western Diet and Cognitive Decline: Preclinical and Clinical Evidence
3.3.1. Epidemiological Studies
3.3.2. Preclinical Studies and Experimental Evidence
3.3.3. Human Intervention Studies
3.3.4. The Role of Extra Virgin Olive Oil and Moderate Red Wine Consumption in the Health-Promoting Effects of the Mediterranean Diet
3.3.5. The Mediterranean Diet and Its Association with Neurotrophic Factors
3.4. Mechanisms Linking the Western Diet to Cognitive Decline
3.4.1. Oxidative Stress and Inflammation
3.4.2. Accelerated Cerebromicrovascular Aging
3.4.3. Insulin Resistance and Metabolic Dysfunction
3.4.4. Dysbiosis of the Gut Microbiota and Cognitive Decline
3.4.5. Impaired Synaptic Plasticity and Neurotrophic Support
3.4.6. Role of the Consumption of Ultra-Processed Foods
3.4.7. Deep-Frying with Linoleic Acid-Rich Oils and the Role of 4-Hydroxynonenal in Neurodegeneration
4. Implications for the Semmelweis Study and the Semmelweis Workplace Health Promotion Model Program
5. Regional and Cultural Specificities in the Hungarian Population
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Eurostat: Aging Europe. Available online: https://ec.europa.eu/eurostat/cache/digpub/ageing/ (accessed on 11 April 2025).
- Aiyar, S.; Ebeke, C.H.; Shao, X. The impact of workforce aging on European productivity. In International Monetary Fund (IMF) European Department, IMF Working Paper; International Monetary Fund: Washington, DC, USA, 2016; No. 16/238. [Google Scholar]
- Ghanem, A.S.; Faludi, E.V.; Bata, R.; Mezei, E.; Hadar, V.; Móré, M.; Tóth, Á.; Nagy, A.C. Cancer prevalence and its determinants in Hungary: Analyzing data from the 2009, 2014, and 2019 European Health Interview Surveys. PLoS ONE 2025, 20, e0315689. [Google Scholar] [CrossRef]
- Leijten, F.R.; Hoedemakers, M.; Struckmann, V.; Kraus, M.; Cheraghi-Sohi, S.; Zemplényi, A.; Ervik, R.; Vallvé, C.; Huiĉ, M.; Czypionka, T. Defining good health and care from the perspective of persons with multimorbidity: Results from a qualitative study of focus groups in eight European countries. BMJ Open 2018, 8, e021072. [Google Scholar] [CrossRef]
- Zaidi, A.; Gasior, K.; Zolyomi, E.; Schmidt, A.; Rodrigues, R.; Marin, B. Measuring active and healthy ageing in Europe. J. Eur. Soc. Policy 2017, 27, 138–157. [Google Scholar] [CrossRef]
- Kovacs, N.; Piko, P.; Juhasz, A.; Nagy, C.; Oroszi, B.; Ungvari, Z.; Adany, R. Comparative analysis of health status and health service utilization patterns among rural and urban elderly populations in Hungary: A study on the challenges of unhealthy aging. Geroscience 2024, 46, 2017–2031. [Google Scholar] [CrossRef]
- Kovacs, N.; Biro, E.; Piko, P.; Ungvari, Z.; Adany, R. Attitudes towards healthy eating and its determinants among older adults in a deprived region of Hungary: Implications for the National Healthy Aging Program. GeroScience, 2025; Epub ahead of print. [Google Scholar]
- Ulambayar, B.; Ghanem, A.S.; Nagy, A.C. Overnutrition in the Elderly Population: Socio-Demographic and Behavioral Risk Factors in Hungary. Nutrients 2025, 17, 1954. [Google Scholar] [CrossRef]
- Ageing and Care for the Elderly in Hungary General Survey and Problems [Press Release]. Available online: https://library.fes.de/pdf-files/bueros/budapest/15482.pdf (accessed on 20 April 2025).
- OECD; European Observatory on Health Systems and Policies. Hungary: Country Health Profile 2021; State of Health in the EU; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Egészségügyi Helyzetkép, 2019 [Press Release]. Available online: https://www.ksh.hu/docs/hun/xftp/idoszaki/pdf/egeszsegugyi_helyzetkep_2019.pdf2019 (accessed on 22 April 2025).
- Erdei, G.; Kovács, V.A.; Bakacs, M.; Martos, É. Hungarian Diet and Nutritional Status Survey 2014. I. Nutritional status of the Hungarian adult population. Orvosi Hetil. 2017, 158, 533–540. [Google Scholar] [CrossRef]
- Gallus, S.; Lugo, A.; Murisic, B.; Bosetti, C.; Boffetta, P.; La Vecchia, C. Overweight and obesity in 16 European countries. Eur. J. Nutr. 2015, 54, 679–689. [Google Scholar] [CrossRef]
- Piko, P.; Dioszegi, J.; Sandor, J.; Adany, R. Changes in the Prevalence of Metabolic Syndrome and Its Components as Well as in Relevant Preventive Medication between 2006 and 2018 in the Northeast Hungarian Population. J. Pers. Med. 2021, 11, 52. [Google Scholar] [CrossRef]
- Kenessey, I.; Szőke, G.; Dobozi, M.; Szatmári, I.; Wéber, A.; Fogarassy, G.; Nagy, P.; Kásler, M.; Polgár, C.; Vathy-Fogarassy, Á. Comparison of Cancer Survival Trends in Hungary in the Periods 2001–2005 and 2011–2015 According to a Population-Based Cancer Registry. Pathol. Oncol. Res. 2022, 28, 1610668. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ribeiro, R.V.; Senior, A.M.; Simpson, S.J.; Tan, J.; Raubenheimer, D.; Le Couteur, D.; Macia, L.; Holmes, A.; Eberhard, J.; O’Sullivan, J.; et al. Rapid benefits in older age from transition to whole food diet regardless of protein source or fat to carbohydrate ratio: Arandomised control trial. Aging Cell 2024, 23, e14276. [Google Scholar] [CrossRef]
- Shang, X.; Liu, J.; Zhu, Z.; Zhang, X.; Huang, Y.; Liu, S.; Wang, W.; Zhang, X.; Ma, S.; Tang, S.; et al. Metabolomic age and risk of 50 chronic diseases in community-dwelling adults: A prospective cohort study. Aging Cell 2024, 23, e14125. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Li, Z.; Liu, X.; Zhang, Y.; Yang, N.; Zhang, T.; Yang, X.; Lu, M. Accelerated biological aging, healthy behaviors, and genetic susceptibility with incidence of stroke and its subtypes: A prospective cohort study. Aging Cell 2025, 24, e14427. [Google Scholar] [CrossRef]
- Das, S.K.; Silver, R.E.; Senior, A.; Gilhooly, C.H.; Bhapkar, M.; Le Couteur, D. Diet composition, adherence to calorie restriction, and cardiometabolic disease risk modification. Aging Cell 2023, 22, e14018. [Google Scholar] [CrossRef]
- Hoscheidt, S.; Sanderlin, A.H.; Baker, L.D.; Jung, Y.; Lockhart, S.; Kellar, D.; Whitlow, C.T.; Hanson, A.J.; Friedman, S.; Register, T.; et al. Mediterranean and Western diet effects on Alzheimer’s disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimers Dement 2022, 18, 457–468. [Google Scholar] [CrossRef]
- Kanoski, S.E.; Davidson, T.L. Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiol. Behav. 2011, 103, 59–68. [Google Scholar] [CrossRef]
- Lopez-Taboada, I.; Gonzalez-Pardo, H.; Conejo, N.M. Western Diet: Implications for Brain Function and Behavior. Front. Psychol. 2020, 11, 564413. [Google Scholar] [CrossRef]
- Parker, K.R.; McGrath, R.; Rhee, Y.; Hamm, J. Western Mediterranean diet predicts 9-year changes in episodic memory in an adult lifespan sample of Americans. J. Alzheimers Dis. 2025, 104, 943–952. [Google Scholar] [CrossRef]
- Wieckowska-Gacek, A.; Mietelska-Porowska, A.; Wydrych, M.; Wojda, U. Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 2021, 70, 101397. [Google Scholar] [CrossRef]
- Vidyanti, A.N.; Rahmawati, F.; Rahman, R.H.; Prodjohardjono, A.; Gofir, A. Lifestyle interventions for dementia risk reduction: A review on the role of physical activity and diet in Western and Asian Countries. J. Prev. Alzheimers Dis. 2025, 12, 100028. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tabak, A.G.; Adany, R.; Purebl, G.; Kaposvari, C.; Fazekas-Pongor, V.; Csipo, T.; Szarvas, Z.; Horvath, K.; Mukli, P.; et al. The Semmelweis Study: A longitudinal occupational cohort study within the framework of the Semmelweis Caring University Model Program for supporting healthy aging. Geroscience 2024, 46, 191–218. [Google Scholar] [CrossRef]
- Kopp, W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Abbasi, J. TMAO and Heart Disease: The New Red Meat Risk? JAMA 2019, 321, 2149–2151. [Google Scholar] [CrossRef]
- Zeng, L.; Ruan, M.; Liu, J.; Wilde, P.; Naumova, E.N.; Mozaffarian, D.; Zhang, F.F. Trends in Processed Meat, Unprocessed Red Meat, Poultry, and Fish Consumption in the United States, 1999-2016. J. Acad. Nutr. Diet. 2019, 119, 1085–1098.e12. [Google Scholar] [CrossRef]
- Wang, M.; Ma, H.; Song, Q.; Zhou, T.; Hu, Y.; Heianza, Y.; Manson, J.E.; Qi, L. Red meat consumption and all-cause and cardiovascular mortality: Results from the UK Biobank study. Eur. J. Nutr. 2022, 61, 2543–2553. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, J.L.; Chen, Q.C.; Xiao, W.K.; Ma, G.P.; Liang, J.H.; Chen, X.K.; Wang, S.; Zhou, X.X.; Wu, H.; et al. Red meat consumption and risk for dyslipidaemia and inflammation: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 996467. [Google Scholar] [CrossRef]
- Singh, B.; Khan, A.A.; Anamika, F.; Munjal, R.; Munjal, J.; Jain, R. Red Meat Consumption and its Relationship With Cardiovascular Health: A Review of Pathophysiology and Literature. Cardiol. Rev. 2023, 33, 49–53. [Google Scholar] [CrossRef]
- Shi, W.; Huang, X.; Schooling, C.M.; Zhao, J.V. Red meat consumption, cardiovascular diseases, and diabetes: A systematic review and meta-analysis. Eur. Heart J. 2023, 44, 2626–2635. [Google Scholar] [CrossRef]
- Larsson, S.C.; Virtamo, J.; Wolk, A. Red meat consumption and risk of stroke in Swedish men. Am. J. Clin. Nutr. 2011, 94, 417–421. [Google Scholar] [CrossRef]
- Kouvari, M.; Tyrovolas, S.; Panagiotakos, D.B. Red meat consumption and healthy ageing: A review. Maturitas 2016, 84, 17–24. [Google Scholar] [CrossRef]
- Johnston, B.C.; Zeraatkar, D.; Han, M.A.; Vernooij, R.W.M.; Valli, C.; El Dib, R.; Marshall, C.; Stover, P.J.; Fairweather-Taitt, S.; Wojcik, G.; et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Ann. Intern. Med. 2019, 171, 756–764. [Google Scholar] [CrossRef]
- Dong, X.; Zhuang, Z.; Zhao, Y.; Song, Z.; Xiao, W.; Wang, W.; Li, Y.; Huang, N.; Jia, J.; Liu, Z.; et al. Unprocessed Red Meat and Processed Meat Consumption, Plasma Metabolome, and Risk of Ischemic Heart Disease: A Prospective Cohort Study of UK Biobank. J. Am. Heart Assoc. 2023, 12, e027934. [Google Scholar] [CrossRef]
- Al-Shaar, L.; Satija, A.; Wang, D.D.; Rimm, E.B.; Smith-Warner, S.A.; Stampfer, M.J.; Hu, F.B.; Willett, W.C. Red meat intake and risk of coronary heart disease among US men: Prospective cohort study. BMJ 2020, 371, m4141. [Google Scholar] [CrossRef]
- Ungvari, Z.; Fekete, M.; Varga, P.; Lehoczki, A.; Munkacsy, G.; Fekete, J.T.; Bianchini, G.; Ocana, A.; Buda, A.; Ungvari, A.; et al. Association between red and processed meat consumption and colorectal cancer risk: A comprehensive meta-analysis of prospective studies. Geroscience 2025, 47, 5123–5140. [Google Scholar] [CrossRef]
- Rakhra, V.; Galappaththy, S.L.; Bulchandani, S.; Cabandugama, P.K. Obesity and the western diet: How we got here. Mo. Med. 2020, 117, 536. [Google Scholar]
- Awuchi, C.G.; Igwe, V.S.; Amagwula, I.; Echeta, C.K. Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Visioli, F.; Hagen, T.M. Nutritional strategies for healthy cardiovascular aging: Focus on micronutrients. Pharmacol. Res. 2007, 55, 199–206. [Google Scholar] [CrossRef]
- Carrera-Bastos, P.; Fontes-Villalba, M.; O’Keefe, J.H.; Lindeberg, S.; Cordain, L. The western diet and lifestyle and diseases of civilization. Res. Rep. Clin. Cardiol. 2011, 2011, 15–35. [Google Scholar] [CrossRef]
- Qi, L.; Cornelis, M.C.; Zhang, C.; Van Dam, R.M.; Hu, F.B. Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. Am. J. Clin. Nutr. 2009, 89, 1453–1458. [Google Scholar] [CrossRef]
- Seidell, J.C. Obesity, insulin resistance and diabetes—A worldwide epidemic. Br. J. Nutr. 2000, 83, S5–S8. [Google Scholar] [CrossRef]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A. Nutritional components in Western diet versus Mediterranean diet at the gut microbiota–immune system interplay. Implications for health and disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S. Nutrition strategies promoting healthy aging: From improvement of cardiovascular and brain health to prevention of age-associated diseases. Nutrients 2022, 15, 47. [Google Scholar] [CrossRef]
- Arora, S.; Santiago, J.A.; Bernstein, M.; Potashkin, J.A. Diet and lifestyle impact the development and progression of Alzheimer’s dementia. Front. Nutr. 2023, 10, 1213223. [Google Scholar] [CrossRef]
- Puri, S.; Shaheen, M.; Grover, B. Nutrition and cognitive health: A life course approach. Front. Public. Health 2023, 11, 1023907. [Google Scholar] [CrossRef]
- Országos Táplálkozási És Tápláltsági Állapot Vizsgálat. Available online: https://ogyei.gov.hu/dynamic/otap_2019_kutatasi_jelentes_v3.pdf (accessed on 27 November 2023).
- Rurik, I.; Ungvári, T.; Szidor, J.; Torzsa, P.; Móczár, C.; Jancsó, Z.; Sándor, J. Elhízó Magyarország. A túlsúly és az elhízás trendje és prevalenciája Magyarországon, 2015. Orvosi Hetil. 2016, 157, 1248–1255. [Google Scholar] [CrossRef]
- Bába, É.B.; Ráthonyi, G.; Müller, A.; Ráthonyi-Odor, K.; Balogh, P.; Ádány, R.; Bács, Z. Physical activity of the population of the most obese country in europe, hungary. Front. Public. Health 2020, 8, 203. [Google Scholar]
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.; Carrillo-Larco, R.M.; Stevens, G.A. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Soós, R.; Bakó, C.; Gyebrovszki, Á.; Gordos, M.; Csala, D.; Ádám, Z.; Wilhelm, M. Nutritional habits of Hungarian older adults. Nutrients 2024, 16, 1203. [Google Scholar] [CrossRef]
- Lee, S.H. Adults meeting fruit and vegetable intake recommendations—United States, 2019. MMWR. Morb. Mortal. Wkly. Rep. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Kormosné Koch, K. Distinctiveness of Hungarian Gastronomy: Theoretical Textbook. University of Debrecen. 2015. Available online: https://dea.lib.unideb.hu/bitstreams/d8313df0-d9a9-499a-bc95-8ac9d26001ab/download (accessed on 1 June 2025).
- Benkhard, B.; Halmai, M. Mouthful Hungary–overview of Hungarian cuisine and culinary tourism. Geogr. Tour. 2017, 1, 41–54. [Google Scholar]
- Roufs, T.G.; Roufs, K.S. Sweet Treats Around the World: An Encyclopedia of Food and Culture; Bloomsbury Publishing USA: New York, NY, USA, 2014. [Google Scholar]
- Goldstein, D.; Mintz, S. The Oxford Companion to Sugar and Sweets; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Herforth, A.; Arimond, M.; Álvarez-Sánchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A global review of food-based dietary guidelines. Adv. Nutr. 2019, 10, 590–605. [Google Scholar] [CrossRef]
- Szymula, E.; Petrides, S.; Mirza, T.; Sarwar, T. East and South-East Europe. In Multicultural Handbook of Food, Nutrition and Dietetics; Wiley-Blackwell: Hoboken, NJ, USA, 2012; p. 277. [Google Scholar]
- Montagnese, C.; Santarpia, L.; Buonifacio, M.; Nardelli, A.; Caldara, A.R.; Silvestri, E.; Contaldo, F.; Pasanisi, F. European food-based dietary guidelines: A comparison and update. Nutrition 2015, 31, 908–915. [Google Scholar] [CrossRef]
- Nagy, B.; Nagy-Lőrincz, Z.; Bakacs, M.; Illés, É.; Sarkadi Nagy, E.; Martos, É. Hungarian Diet and Nutritional Status Survey—OTÁP2014. III. Macroelement intake of the Hungarian population. Orvosi Hetil. 2017, 158, 653–661. [Google Scholar] [CrossRef]
- Sarkadi Nagy, E.; Bakacs, M.; Illés, É.; Nagy, B.; Varga, A.; Kis, O.; Schreiberné Molnár, E.; Martos, É. Országos Táplálkozás és Tápláltsági Állapot Vizsgálat–OTÁP2014. II. A magyar lakosság energia-és makrotápanyag-bevitele. Orvosi Hetil. 2017, 158, 587–597. [Google Scholar] [CrossRef]
- Sarkadi Nagy, E.; Bakacs, M.; Illés, É.; Zentai, A.; Lugasi, A.; Martos, É. Hungarian Diet and Nutritional Status Survey–the OTAP2009 study. II. Energy and macronutrient intake of the Hungarian population. Orvosi Hetil. 2012, 153, 1057–1067. [Google Scholar] [CrossRef]
- Sarkadi Nagy, E.; Bakacs, M.; Illés, É.; Nagy, B.; Varga, A.; Kis, O.; Schreiberné Molnár, E.; Martos, É. Hungarian Diet and Nutritional Status Survey—OTÁP2014. II. Energy and macronutrient intake of the Hungarian population. Orvosi Hetil. 2017, 158, 587–597. [Google Scholar] [CrossRef]
- Müller, A.; Gabnai, Z.; Pfau, C.S.; Pető, K. A magyarok táplálkozási szokásainak és tápláltsági állapotának jellemzői–Szakirodalmi áttekintés. Táplálkozásmarketing 2018, 5, 45–55. [Google Scholar] [CrossRef]
- wuerthner, t.p. First you make a roux. Gastronomica 2006, 6, 64–68. [Google Scholar] [CrossRef]
- Czégény, C.M. Helen’s Hungarian Heritage Recipes. Dream Machine Publishing: Oakville, ON, Canada, 2006. [Google Scholar]
- Raubenheimer, D.; Simpson, S. Eat Like the Animals: What Nature Teaches Us About the Science of Healthy Eating; Houghton Mifflin: Boston, MA, USA, 2020. [Google Scholar]
- Premachandran, K.; Wilson Alphonse, C.R.; Soundharapandiyan, N. Nourishing the Cognition with Millets: A Comprehensive Review of Their Nutritional Impact and Potential as Cognitive Enhancers. Mol. Nutr. Food Res. 2023, 67, 2300450. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Llanaj, E.; Ádány, R.; Lachat, C.; D’Haese, M. Examining food intake and eating out of home patterns among university students. PLoS ONE 2018, 13, e0197874. [Google Scholar] [CrossRef]
- Csertő, M.; Mihályi, K.; Mendl, E.; Lőcsei, D.; Daum, V.; Szili, N.; Decsi, T.; Lohner, S. Dietary Energy and Nutrient Intake of Healthy Pre-School Children in Hungary. Nutrients 2023, 15, 2989. [Google Scholar] [CrossRef]
- Marcus, J.B. Aging, Nutrition and Taste: Nutrition, Food Science and Culinary Perspectives for Aging Tastefully; Academic Press: San Diego, CA, USA, 2019. [Google Scholar]
- Diószegi, J.; Pikó, P.; Kósa, Z.; Sándor, J.; Llanaj, E.; Ádány, R. Taste and food preferences of the Hungarian Roma population. Front. Public. Health 2020, 8, 359. [Google Scholar] [CrossRef]
- Meneton, P.; Jeunemaitre, X.; de Wardener, H.E.; Macgregor, G.A. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol. Rev. 2005, 85, 679–715. [Google Scholar] [CrossRef]
- Pelucchi, C.; Tramacere, I.; Boffetta, P.; Negri, E.; Vecchia, C.L. Alcohol consumption and cancer risk. Nutr. Cancer 2011, 63, 983–990. [Google Scholar] [CrossRef]
- OECD. Tackling Harmful Alcohol Use; OECD: Paris, France, 2015. [Google Scholar]
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2019.
- Koob, G.F.; Arends, M.A.; McCracken, M.L.; Le Moal, M. Alcohol: Neurobiology of Addiction; Academic Press: Cambridge, MA, USA, 2021; Volume 3. [Google Scholar]
- Mihailovic, N.; Szőllősi, G.J.; Rancic, N.; János, S.; Boruzs, K.; Nagy, A.C.; Timofeyev, Y.; Dragojevic-Simic, V.; Antunovic, M.; Reshetnikov, V. Alcohol consumption among the elderly citizens in Hungary and Serbia—Comparative assessment. Int. J. Environ. Res. Public Health 2020, 17, 1289. [Google Scholar] [CrossRef]
- Kurshed, A.A.M.; Vincze, F.; Pikó, P.; Kósa, Z.; Sándor, J.; Ádány, R.; Diószegi, J. Alcohol consumption patterns of the Hungarian general and Roma populations. Front. Public. Health 2023, 10, 1003129. [Google Scholar] [CrossRef]
- Cecchini, M.; Devaux, M. Addressing Harmful Slcohol Use. 2021. Available online: https://www.oecd.org/health/addressing-harmful-alcohol-use-9789264265590-en (accessed on 1 June 2025).
- Lieber, C.S. Relationships between nutrition, alcohol use, and liver disease. Alcohol. Res. Health 2003, 27, 220. [Google Scholar]
- Brenes, J.C.; Gómez, G.; Quesada, D.; Kovalskys, I.; Rigotti, A.; Cortés, L.Y.; Yépez García, M.C.; Liria-Domínguez, R.; Herrera-Cuenca, M.; Guajardo, V. Alcohol Contribution to Total Energy Intake and Its Association with Nutritional Status and Diet Quality in Eight Latina American Countries. Int. J. Environ. Res. Public. Health 2021, 18, 13130. [Google Scholar] [CrossRef]
- Squeglia, L.M.; Gray, K.M. Alcohol and drug use and the developing brain. Curr. Psychiatry Rep. 2016, 18, 1–10. [Google Scholar] [CrossRef]
- Varghese, J.; Dakhode, S. Effects of Alcohol Consumption on Various Systems of the Human Body: A Systematic Review. Cureus 2022, 14, e30057. [Google Scholar] [CrossRef]
- Ungvari, Z.; Fekete, M.; Fekete, J.T.; Grosso, G.; Ungvari, A.; Gyorffy, B. Adherence to the Mediterranean diet and its protective effects against colorectal cancer: A meta-analysis of 26 studies with 2,217,404 participants. Geroscience 2024, 47, 1105–1121. [Google Scholar] [CrossRef]
- Talavera-Rodriguez, I.; Banegas, J.R.; de la Cruz, J.J.; Martinez-Gomez, D.; Ruiz-Canela, M.; Ortola, R.; Hershey, M.S.; Artalejo, F.R.; Sotos-Prieto, M. Mediterranean lifestyle index and 24-h systolic blood pressure and heart rate in community-dwelling older adults. Geroscience 2024, 46, 1357–1369. [Google Scholar] [CrossRef]
- Stepaniak, U.; Grosso, G.; Polak, M.; Gradowicz-Prajsnar, B.; Kozela, M.; Bobak, M.; Sanchez-Niubo, A.; Stefler, D.; Haro, J.M.; Pajak, A. Association between dietary (poly)phenol intake and the ATHLOS Healthy Ageing Scale in the Polish arm of the HAPIEE study. Geroscience 2024. [Google Scholar] [CrossRef]
- Fekete, M.; Varga, P.; Ungvari, Z.; Fekete, J.T.; Buda, A.; Szappanos, A.; Lehoczki, A.; Mozes, N.; Grosso, G.; Godos, J.; et al. The role of the Mediterranean diet in reducing the risk of cognitive impairement, dementia, and Alzheimer’s disease: A meta-analysis. Geroscience 2025. [Google Scholar] [CrossRef]
- Knoops, K.T.; de Groot, L.C.; Kromhout, D.; Perrin, A.E.; Moreiras-Varela, O.; Menotti, A.; van Staveren, W.A. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: The HALE project. JAMA 2004, 292, 1433–1439. [Google Scholar] [CrossRef]
- Ungvari, Z.; Fekete, M.; Varga, P.; Fekete, J.T.; Buda, A.; Szappanos, A.; Lehoczki, A.; Mozes, N.; Grosso, G.; Menyhart, O.; et al. Impact of adherence to the Mediterranean diet on stroke risk. Geroscience 2025, 47, 3565–3581. [Google Scholar] [CrossRef]
- Echeverria, G.; Tiboni, O.; Berkowitz, L.; Pinto, V.; Samith, B.; von Schultzendorff, A.; Pedrals, N.; Bitran, M.; Ruini, C.; Ryff, C.D.; et al. Mediterranean Lifestyle to Promote Physical, Mental, and Environmental Health: The Case of Chile. Int. J. Environ. Res. Public. Health 2020, 17, 8482. [Google Scholar] [CrossRef]
- Hoffmann, A.; Meir, A.Y.; Hagemann, T.; Czechowski, P.; Muller, L.; Engelmann, B.; Haange, S.B.; Rolle-Kampczyk, U.; Tsaban, G.; Zelicha, H.; et al. A polyphenol-rich green Mediterranean diet enhances epigenetic regulatory potential: The DIRECT PLUS randomized controlled trial. Metabolism 2023, 145, 155594. [Google Scholar] [CrossRef]
- Godos, J.; Grosso, G.; Ferri, R.; Caraci, F.; Lanza, G.; Al-Qahtani, W.H.; Caruso, G.; Castellano, S. Mediterranean diet, mental health, cognitive status, quality of life, and successful aging in southern Italian older adults. Exp. Gerontol. 2023, 175, 112143. [Google Scholar] [CrossRef]
- Vassilaki, M.; Aakre, J.A.; Syrjanen, J.A.; Mielke, M.M.; Geda, Y.E.; Kremers, W.K.; Machulda, M.M.; Alhurani, R.E.; Staubo, S.C.; Knopman, D.S.; et al. Mediterranean Diet, Its Components, and Amyloid Imaging Biomarkers. J. Alzheimers Dis. 2018, 64, 281–290. [Google Scholar] [CrossRef]
- Agarwal, P.; Leurgans, S.E.; Agrawal, S.; Aggarwal, N.T.; Cherian, L.J.; James, B.D.; Dhana, K.; Barnes, L.L.; Bennett, D.A.; Schneider, J.A. Association of Mediterranean-DASH Intervention for Neurodegenerative Delay and Mediterranean Diets With Alzheimer Disease Pathology. Neurology 2023, 100, e2259–e2268. [Google Scholar] [CrossRef]
- Hogg, R.E.; Woodside, J.V.; McGrath, A.; Young, I.S.; Vioque, J.L.; Chakravarthy, U.; de Jong, P.T.; Rahu, M.; Seland, J.; Soubrane, G.; et al. Mediterranean Diet Score and Its Association with Age-Related Macular Degeneration: The European Eye Study. Ophthalmology 2017, 124, 82–89. [Google Scholar] [CrossRef]
- Broadhead, G.K.; Agron, E.; Peprah, D.; Keenan, T.D.L.; Lawler, T.P.; Mares, J.; Chew, E.Y.; Investigators, A.A. Association of Dietary Nitrate and a Mediterranean Diet With Age-Related Macular Degeneration Among US Adults: The Age-Related Eye Disease Study (AREDS) and AREDS2. JAMA Ophthalmol. 2023, 141, 130–139. [Google Scholar] [CrossRef]
- Lakkur, S.; Judd, S.E. Diet and Stroke: Recent Evidence Supporting a Mediterranean-Style Diet and Food in the Primary Prevention of Stroke. Stroke 2015, 46, 2007–2011. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Psaltopoulou, T.; Wadley, V.G.; Alexandrov, A.V.; Howard, G.; Unverzagt, F.W.; Moy, C.; Howard, V.J.; Kissela, B.; Judd, S.E. Adherence to a Mediterranean diet and prediction of incident stroke. Stroke 2015, 46, 780–785. [Google Scholar] [CrossRef]
- Scarmeas, N.; Stern, Y.; Tang, M.X.; Mayeux, R.; Luchsinger, J.A. Mediterranean diet and risk for Alzheimer’s disease. Ann. Neurol. 2006, 59, 912–921. [Google Scholar] [CrossRef]
- Scarmeas, N.; Stern, Y.; Mayeux, R.; Luchsinger, J.A. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch. Neurol. 2006, 63, 1709–1717. [Google Scholar] [CrossRef]
- Shannon, O.M.; Ranson, J.M.; Gregory, S.; Macpherson, H.; Milte, C.; Lentjes, M.; Mulligan, A.; McEvoy, C.; Griffiths, A.; Matu, J.; et al. Mediterranean diet adherence is associated with lower dementia risk, independent of genetic predisposition: Findings from the UK Biobank prospective cohort study. BMC Med. 2023, 21, 81. [Google Scholar] [CrossRef]
- Féart, C.; Samieri, C.; Rondeau, V.; Amieva, H.; Portet, F.; Dartigues, J.F.; Scarmeas, N.; Barberger-Gateau, P. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. Jama 2009, 302, 638–648. [Google Scholar] [CrossRef]
- Scarmeas, N.; Stern, Y.; Mayeux, R.; Manly, J.J.; Schupf, N.; Luchsinger, J.A. Mediterranean diet and mild cognitive impairment. Arch. Neurol. 2009, 66, 216–225. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Judd, S.; Letter, A.J.; Alexandrov, A.V.; Howard, G.; Nahab, F.; Unverzagt, F.W.; Moy, C.; Howard, V.J.; Kissela, B.; et al. Adherence to a Mediterranean diet and risk of incident cognitive impairment. Neurology 2013, 80, 1684–1692. [Google Scholar] [CrossRef]
- Kassis, A.; Fichot, M.-C.; Horcajada, M.-N.; Horstman, A.M.; Duncan, P.; Bergonzelli, G.; Preitner, N.; Zimmermann, D.; Bosco, N.; Vidal, K. Nutritional and lifestyle management of the aging journey: A narrative review. Front. Nutr. 2023, 9, 1087505. [Google Scholar] [CrossRef]
- Villanueva, J.L.; Vita, A.A.; Zwickey, H.; Fitzgerald, K.; Hodges, R.; Zimmerman, B.; Bradley, R. Dietary associations with reduced epigenetic age: A secondary data analysis of the methylation diet and lifestyle study. Aging 2025, 17, 994–1010. [Google Scholar] [CrossRef]
- Vaz, C.; Burton, M.; Kermack, A.J.; Tan, P.F.; Huan, J.; Yoo, T.P.X.; Donnelly, K.; Wellstead, S.J.; Wang, D.; Fisk, H.L.; et al. Short-term diet intervention comprising of olive oil, vitamin D, and omega-3 fatty acids alters the small non-coding RNA (sncRNA) landscape of human sperm. Sci. Rep. 2025, 15, 7790. [Google Scholar] [CrossRef]
- Thomas, A.; Ryan, C.P.; Caspi, A.; Liu, Z.; Moffitt, T.E.; Sugden, K.; Zhou, J.; Belsky, D.W.; Gu, Y. Diet, Pace of Biological Aging, and Risk of Dementia in the Framingham Heart Study. Ann. Neurol. 2024, 95, 1069–1079. [Google Scholar] [CrossRef]
- Reynolds, L.M.; Houston, D.K.; Skiba, M.B.; Whitsel, E.A.; Stewart, J.D.; Li, Y.; Zannas, A.S.; Assimes, T.L.; Horvath, S.; Bhatti, P.; et al. Diet Quality and Epigenetic Aging in the Women’s Health Initiative. J. Acad. Nutr. Diet. 2024, 124, 1419–1430.e3. [Google Scholar] [CrossRef]
- Izquierdo, A.G.; Lorenzo, P.M.; Costa-Fraga, N.; Primo-Martin, D.; Rodriguez-Carnero, G.; Nicoletti, C.F.; Martinez, J.A.; Casanueva, F.F.; de Luis, D.; Diaz-Lagares, A.; et al. Epigenetic Aging Acceleration in Obesity Is Slowed Down by Nutritional Ketosis Following Very Low-Calorie Ketogenic Diet (VLCKD): A New Perspective to Reverse Biological Age. Nutrients 2025, 17, 1060. [Google Scholar] [CrossRef]
- Bordoni, L.; Agostinho de Sousa, J.; Zhuo, J.; von Meyenn, F. Evaluating the connection between diet quality, EpiNutrient intake and epigenetic age: An observational study. Am. J. Clin. Nutr. 2024, 120, 1143–1155. [Google Scholar] [CrossRef]
- Kawamura, T.; Radak, Z.; Tabata, H.; Akiyama, H.; Nakamura, N.; Kawakami, R.; Ito, T.; Usui, C.; Jokai, M.; Torma, F.; et al. Associations between cardiorespiratory fitness and lifestyle-related factors with DNA methylation-based ageing clocks in older men: WASEDA’S Health Study. Aging Cell 2024, 23, e13960. [Google Scholar] [CrossRef]
- Saarinen, A.; Marttila, S.; Mishra, P.P.; Lyytikainen, L.P.; Hamal Mishra, B.; Raitoharju, E.; Mononen, N.; Kahonen, M.; Raitakari, O.; Lehtimaki, T.; et al. Early resilience and epigenetic ageing: Results from the prospective Young Finns Study with a 31-year follow-up. Aging Cell 2025, 24, e14394. [Google Scholar] [CrossRef]
- Edirisinghe, I.; Burton-Freeman, B.M. Age associated endothelial dysfunction: Role of oxidative stress, inflammation and Western Diet. Nutr. Aging 2014, 2, 197–211. [Google Scholar] [CrossRef]
- Bettiga, A.; Fiorio, F.; Di Marco, F.; Trevisani, F.; Romani, A.; Porrini, E.; Salonia, A.; Montorsi, F.; Vago, R. The modern western diet rich in advanced glycation end-products (AGEs): An overview of its impact on obesity and early progression of renal pathology. Nutrients 2019, 11, 1748. [Google Scholar] [CrossRef]
- Everitt, A.V.; Hilmer, S.N.; Brand-Miller, J.C.; Jamieson, H.A.; Truswell, A.S.; Sharma, A.P.; Mason, R.S.; Morris, B.J.; Le Couteur, D.G. Dietary approaches that delay age-related diseases. Clin. Interv. Aging 2006, 1, 11–31. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Barbagallo, M. Dietary patterns and healthy or unhealthy aging. Gerontology 2024, 70, 15–36. [Google Scholar] [CrossRef]
- Kopp, W. Aging and “age-related” diseases-what is the relation? Aging Dis. 2024, 16, 1316. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Kiss, T.; Gulej, R.; Nyul Toth, A.; Tarantini, S.; Yabluchanskiy, A.; Ungvari, Z.; Csiszar, A. Accelerated aging induced by an unhealthy high-fat diet: Initial evidence for the role of Nrf2 deficiency and impaired stress resilience in cellular senescence. Nutrients 2024, 16, 952. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern. Med. 2020, 180, 283–291. [Google Scholar] [CrossRef]
- Adolph, T.E.; Tilg, H. Western diets and chronic diseases. Nat. Med. 2024, 30, 2133–2147. [Google Scholar] [CrossRef]
- Klurfeld, D.; Kritchevsky, D. The Western diet: An examination of its relationship with chronic disease. J. Am. Coll. Nutr. 1986, 5, 477–485. [Google Scholar] [CrossRef]
- Tittikpina, N.K.; Issa, A.-r.; Yerima, M.; Dermane, A.; Dossim, S.; Salou, M.; Bakoma, B.; Diallo, A.; Potchoo, Y.; Diop, Y.M. Aging and nutrition: Theories, consequences, and impact of nutrients. Curr. Pharmacol. Rep. 2019, 5, 232–243. [Google Scholar] [CrossRef]
- Wiȩckowska-Gacek, A.; Mietelska-Porowska, A.; Chutorański, D.; Wydrych, M.; Długosz, J.; Wojda, U. Western diet induces impairment of liver-brain axis accelerating neuroinflammation and amyloid pathology in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 654509. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on the Public Health Response to Dementia; World Health Organization: Geneva, Switzerland, 2021.
- Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and management of dementia. Jama 2019, 322, 1589–1599. [Google Scholar] [CrossRef]
- Association, A.s.; Thies, W.; Bleiler, L. 2013 Alzheimer’s disease facts and figures. Alzheimer’s Dement 2013, 9, 208–245. [Google Scholar] [CrossRef]
- Shin, J.-H. Dementia epidemiology fact sheet 2022. Ann. Rehabil. Med. 2022, 46, 53. [Google Scholar] [CrossRef]
- Balázs, N.; Ajtay, A.; Oberfrank, F.; Bereczki, D.; Kovács, T. Dementia epidemiology in Hungary based on data from neurological and psychiatric specialty services. Sci. Rep. 2021, 11, 10333. [Google Scholar] [CrossRef]
- Mehrabian, S.; Schwarzkopf, L.; Auer, S.; Holmerova, I.; Kramberger, M.G.; Boban, M.; Stefanova, E.; Tudose, C.; Bachinskaya, N.; Kovács, T. Dementia care in the Danube Region. A multi-national expert survey. Neuropsychiatr. Dis. Treat. 2019, 15, 2503–2511. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef]
- Goodhart, C.; Pradhan, M.; Goodhart, C.; Pradhan, M. Dependency, dementia and the coming crisis of caring. In The Great Demographic Reversal: Ageing Societies, Waning Inequality, and an Inflation Revival; Palgrave Macmillan: Hampshire, UK, 2020; pp. 53–68. [Google Scholar]
- Knapp, M.; Funk, M.; Curran, C.; Prince, M.; Grigg, M.; McDaid, D. Economic barriers to better mental health practice and policy. Health Policy Plan 2006, 21, 157–170. [Google Scholar] [CrossRef]
- Rossor, M.; Collinge, J.; Fox, N.; Mead, S.; Mummery, C.; Rohrer, J.; Schott, J.; Warren, J. Dementia and cognitive impairment. Neurol. A Queen Sq. Textb. 2016, 289–336. [Google Scholar]
- Liverman, C.T.; Yaffe, K.; Blazer, D.G. Cognitive aging: Progress in understanding and opportunities for action. Mil. Med. 2015, 180, 1111–1113. [Google Scholar] [CrossRef]
- Yellowitz, J.A. Cognitive function, aging, and ethical decisions: Recognizing change. Dent. Clin. 2005, 49, 389–410. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Kemp, S.; Benito-León, J.; Reuber, M. The influence of cognitive impairment on health-related quality of life in neurological disease. Acta Neuropsychiatr. 2010, 22, 2–13. [Google Scholar] [CrossRef]
- Burke, R.J.; Cooper, C.L.; Field, J. The aging workforce: Individual, organizational and societal opportunities and challenges. The SAGE Handbook of Aging, Work and Society; Field, J., Burke, R.J., Cooper, C.L., Eds.; SAGE Publications Ltd: Thousand Oaks, CA, USA, 2013; pp. 1–20. [Google Scholar]
- Robledo, L.M.G.; Guimarães, R.M. Ageing in developing countries. Pathy’s Princ. Pract. Geriatr. Med. 2022, 2, 1620–1628. [Google Scholar]
- Rajan, K.B.; Weuve, J.; Barnes, L.L.; McAninch, E.A.; Wilson, R.S.; Evans, D.A. Population estimate of people with clinical Alzheimer’s disease and mild cognitive impairment in the United States (2020–2060). Alzheimer’s Dement. 2021, 17, 1966–1975. [Google Scholar] [CrossRef]
- Courish, M.K.; O’Brien, M.W.; Maxwell, S.P.; Mekari, S.; Kimmerly, D.S.; Theou, O. Relationship between frailty and executive function by age and sex in the Canadian Longitudinal Study on Aging. Geroscience 2024. [Google Scholar] [CrossRef]
- Chen, S.; Chen, T.; Honda, T.; Kishimoto, H.; Nofuji, Y.; Narazaki, K. Cognitive frailty and functional disability in older adults: A 10-year prospective cohort study in Japan. Geroscience 2024. [Google Scholar] [CrossRef]
- O’Brien, M.W.; Bray, N.W.; Quirion, I.; Ahmadi, S.; Faivre, P.; Senechal, M.; Dupuy, O.; Belanger, M.; Mekari, S. Frailty is associated with worse executive function and higher cerebral blood velocity in cognitively healthy older adults: A cross-sectional study. Geroscience 2024, 46, 597–607. [Google Scholar] [CrossRef]
- Alcazar, J.; Munoz-Munoz, M.; Baltasar-Fernandez, I.; Leal-Martin, J.; Garcia-Aguirre, M.; Sanchez-Martin, C.; Gutierrez-Reguero, H.; Sierra-Ramon, M.; Alfaro-Acha, A.; Losa-Reyna, J.; et al. Impact of Frailty, Early Vascular Decline, and Subclinical Cognitive Impairment in Midlife Adults: Study Protocol of the Toledo Study for Healthy Ageing in Middle Age. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 80, glae183. [Google Scholar] [CrossRef]
- Panza, F.; Solfrizzi, V.; Barulli, M.R.; Santamato, A.; Seripa, D.; Pilotto, A.; Logroscino, G. Cognitive frailty: A systematic review of epidemiological and neurobiological evidence of an age-related clinical condition. Rejuvenation Res. 2015, 18, 389–412. [Google Scholar] [CrossRef]
- Sugimoto, T.; Arai, H.; Sakurai, T. An update on cognitive frailty: Its definition, impact, associated factors and underlying mechanisms, and interventions. Geriatr. Gerontol. Int. 2022, 22, 99–109. [Google Scholar] [CrossRef]
- Rashidi Pour Fard, N.; Amirabdollahian, F.; Haghighatdoost, F. Dietary patterns and frailty: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 498–513. [Google Scholar] [CrossRef]
- Shatenstein, B.; Barberger-Gateau, P. Prevention of Age-Related Cognitive Decline: Which Strategies, When, and forWhom? J. Alzheimer’s Dis. 2015, 48, 35–53. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Vernuccio, L.; Catanese, G.; Inzerillo, F.; Salemi, G.; Barbagallo, M. Nutrition, physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia. Nutrients 2021, 13, 4080. [Google Scholar] [CrossRef]
- Kiefer, R.A. An integrative review of the concept of well-being. Holist. Nurs. Pract. 2008, 22, 244–252. [Google Scholar] [CrossRef]
- Cohen, L.; Chavez, V.; Chehimi, S. Prevention Is Primary: Strategies for Community Well Being; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Campbell, N.L.; Unverzagt, F.; LaMantia, M.A.; Khan, B.A.; Boustani, M.A. Risk factors for the progression of mild cognitive impairment to dementia. Clin. Geriatr. Med. 2013, 29, 873. [Google Scholar] [CrossRef]
- Levine, D.A.; Springer, M.V.; Brodtmann, A. Blood Pressure and Vascular Cognitive Impairment. Stroke 2022, 53, 1104–1113. [Google Scholar] [CrossRef]
- van Soest, A.P.; Beers, S.; van de Rest, O.; de Groot, L.C. The Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) Diet for the Aging Brain: A Systematic Review. Adv. Nutr. 2024, 15, 100184. [Google Scholar] [CrossRef]
- Hainsworth, A.H.; Markus, H.S.; Schneider, J.A. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension 2024, 81, 75–86. [Google Scholar] [CrossRef]
- Ungvari, Z.; Toth, P.; Tarantini, S.; Prodan, C.I.; Sorond, F.; Merkely, B.; Csiszar, A. Hypertension-induced cognitive impairment: From pathophysiology to public health. Nat. Rev. Nephrol. 2021, 17, 639–654. [Google Scholar] [CrossRef]
- Elias, M.F.; Elias, P.K.; Sullivan, L.M.; Wolf, P.A.; D’Agostino, R.B. Obesity, diabetes and cognitive deficit: The Framingham Heart Study. Neurobiol. Aging 2005, 26 (Suppl. S1), 11–16. [Google Scholar] [CrossRef]
- Ganguli, M.; Beer, J.C.; Zmuda, J.M.; Ryan, C.M.; Sullivan, K.J.; Chang, C.H.; Rao, R.H. Aging, Diabetes, Obesity, and Cognitive Decline: A Population-Based Study. J. Am. Geriatr. Soc. 2020, 68, 991–998. [Google Scholar] [CrossRef]
- Ryan, C.M.; van Duinkerken, E.; Rosano, C. Neurocognitive consequences of diabetes. Am. Psychol. 2016, 71, 563–576. [Google Scholar] [CrossRef]
- Rawlings, A.M.; Sharrett, A.R.; Schneider, A.L.; Coresh, J.; Albert, M.; Couper, D.; Griswold, M.; Gottesman, R.F.; Wagenknecht, L.E.; Windham, B.G.; et al. Diabetes in midlife and cognitive change over 20 years: A cohort study. Ann. Intern. Med. 2014, 161, 785–793. [Google Scholar] [CrossRef]
- Xu, R.; Tian, Q.; Marron, M.M.; Ferrucci, L.; Yao, S.; Kim, S.; Shah, R.V.; Murthy, V.L.; Newman, A.B.; Miljkovic, I.; et al. Metabolomic insight into the link of intermuscular fat with cognitive performance: The Health ABC Study. Geroscience 2025. [Google Scholar] [CrossRef]
- Aiken-Morgan, A.T.; Capuano, A.W.; Wilson, R.S.; Barnes, L.L. Changes in Body Mass Index and Incident Mild Cognitive Impairment Among African American Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad263. [Google Scholar] [CrossRef]
- Crane, B.M.; Nichols, E.; Carlson, M.C.; Deal, J.A.; Gross, A.L. Body Mass Index and Cognition: Associations Across Mid- to Late Life and Gender Differences. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 988–996. [Google Scholar] [CrossRef]
- Ha, J.; Kwak, S.; Kim, K.Y.; Kim, H.; Cho, S.Y.; Kim, M.; Lee, J.Y.; Kim, E. Relationship Between Adipokines, Cognition, and Brain Structures in Old Age Depending on Obesity. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 120–128. [Google Scholar] [CrossRef]
- Hong, C.; Liu, Z.; Liu, Y.; Jin, Y.; Luo, Y. The Role of Smoking, Obesity, and Physical Inactivity in Cognitive Performance and Decline: A Multicohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad232. [Google Scholar] [CrossRef]
- Moorman, S.M.; Kobielski, S. Body Mass Index and Memory Across 18 Years in the Wisconsin Longitudinal Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 129–133. [Google Scholar] [CrossRef]
- Nazmus Sakib, M.; Best, J.R.; Ramezan, R.; Thompson, M.E.; Hall, P.A. Bidirectional Associations Between Adiposity and Cognitive Function: A Prospective Analysis of the Canadian Longitudinal Study on Aging (CLSA). J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 314–325. [Google Scholar] [CrossRef]
- Lynch, D.H.; Howard, A.G.; Tien, H.C.; Du, S.; Zhang, B.; Wang, H.; Gordon-Larsen, P.; Batsis, J.A. Association Between Weight Status and Rate of Cognitive Decline: China Health and Nutrition Survey 1997-2018. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 958–965. [Google Scholar] [CrossRef]
- Eroglu, B.; Isales, C.; Eroglu, A. Age and duration of obesity modulate the inflammatory response and expression of neuroprotective factors in mammalian female brain. Aging Cell 2024, 23, e14313. [Google Scholar] [CrossRef]
- Yao, S.; Colangelo, L.A.; Perry, A.S.; Marron, M.M.; Yaffe, K.; Sedaghat, S.; Lima, J.A.C.; Tian, Q.; Clish, C.B.; Newman, A.B.; et al. Implications of metabolism on multi-systems healthy aging across the lifespan. Aging Cell 2024, 23, e14090. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, R.; Shi, D.; Zhang, X.; Su, T.; Wang, Y.; Hu, Y.; He, M.; Yu, H.; Shang, X. Association of metabolomic aging acceleration and body mass index phenotypes with mortality and obesity-related morbidities. Aging Cell 2025, 24, e14435. [Google Scholar] [CrossRef]
- Anstey, K.J.; Lipnicki, D.M.; Low, L.-F. Cholesterol as a risk factor for dementia and cognitive decline: A systematic review of prospective studies with meta-analysis. Am. J. Geriatr. Psychiatry 2008, 16, 343–354. [Google Scholar] [CrossRef]
- Wallin, A.; Roman, G.C.; Esiri, M.; Kettunen, P.; Svensson, J.; Paraskevas, G.P.; Kapaki, E. Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease. J. Alzheimers Dis. 2018, 62, 1417–1441. [Google Scholar] [CrossRef]
- van der Flier, W.M.; Skoog, I.; Schneider, J.A.; Pantoni, L.; Mok, V.; Chen, C.L.H.; Scheltens, P. Vascular cognitive impairment. Nat. Rev. Dis. Primers 2018, 4, 18003. [Google Scholar] [CrossRef]
- Dichgans, M.; Leys, D. Vascular Cognitive Impairment. Circ. Res. 2017, 120, 573–591. [Google Scholar] [CrossRef]
- Stone, K.L.; Zhong, J.; Lyu, C.; Chodosh, J.; Blachman, N.L.; Dodson, J.A. Does Incident Cardiovascular Disease Lead to Greater Odds of Functional and Cognitive Impairment? Insights From the Health and Retirement Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1179–1188. [Google Scholar] [CrossRef]
- Wan, Z.; Chibnik, L.B.; Valeri, L.; Hughes, T.M.; Blacker, D.; Ma, Y. DNA Methylation Mediates the Association Between Cardiometabolic Risk Factors and Cognition: Findings From the Health and Retirement Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae167. [Google Scholar] [CrossRef]
- Mamalaki, E.; Charisis, S.; Anastasiou, C.A.; Ntanasi, E.; Georgiadi, K.; Balomenos, V.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; et al. The Longitudinal Association of Lifestyle with Cognitive Health and Dementia Risk: Findings from the HELIAD Study. Nutrients 2022, 14, 2818. [Google Scholar] [CrossRef]
- Espeland, M.A.; Luchsinger, J.A.; Neiberg, R.H.; Carmichael, O.; Laurienti, P.J.; Pi-Sunyer, X.; Wing, R.R.; Cook, D.; Horton, E.; Casanova, R.; et al. Long Term Effect of Intensive Lifestyle Intervention on Cerebral Blood Flow. J. Am. Geriatr. Soc. 2018, 66, 120–126. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Major, L.; Simonsick, E.M.; Napolitano, M.A.; DiPietro, L. Domains of Sedentary Behavior and Cognitive Function: The Health, Aging, and Body Composition Study, 1999/2000 to 2006/2007. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 2035–2041. [Google Scholar] [CrossRef]
- Marino, F.R.; Deal, J.A.; Dougherty, R.J.; Bilgel, M.; Tian, Q.; An, Y.; Simonsick, E.M.; Resnick, S.M.; Ferrucci, L.; Spira, A.P.; et al. Differences in Daily Physical Activity by Alzheimer’s Risk Markers Among Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae119. [Google Scholar] [CrossRef]
- Hu, C.; Jiang, K.; Sun, X.; He, Y.; Li, R.; Chen, Y.; Zhang, Y.; Tao, Y.; Jin, L. Change in Healthy Lifestyle and Subsequent Risk of Cognitive Impairment Among Chinese Older Adults: A National Community-Based Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae148. [Google Scholar] [CrossRef]
- Lange-Maia, B.S.; Wagner, M.; Rogers, C.A.; Mehta, R.I.; Bennett, D.A.; Tangney, C.; Schoeny, M.E.; Halloway, S.; Arvanitakis, Z. Profiles of Lifestyle Health Behaviors and Postmortem Dementia-Related Neuropathology. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae100. [Google Scholar] [CrossRef]
- Toda, N.; Okamura, T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer’s disease. J. Pharmacol. Sci. 2016, 131, 223–232. [Google Scholar] [CrossRef]
- Fox, F.A.U.; Liu, D.; Breteler, M.M.B.; Aziz, N.A. Physical activity is associated with slower epigenetic ageing-Findings from the Rhineland study. Aging Cell 2023, 22, e13828. [Google Scholar] [CrossRef]
- Lohman, T.; Bains, G.; Cole, S.; Gharibvand, L.; Berk, L.; Lohman, E. High-Intensity interval training reduces transcriptomic age: A randomized controlled trial. Aging Cell 2023, 22, e13841. [Google Scholar] [CrossRef]
- Rosenberg, D.E.; Wu, Y.; Idu, A.; Greenwood-Hickman, M.A.; McCurry, S.M.; LaCroix, A.Z.; Shaw, P.A. Historic Cognitive Function Trajectories as Predictors of Sedentary Behavior and Physical Activity in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae125. [Google Scholar] [CrossRef]
- Zheng, P.; Pleuss, J.D.; Turner, D.S.; Ducharme, S.W.; Aguiar, E.J. Dose-Response Association Between Physical Activity (Daily MIMS, Peak 30-Minute MIMS) and Cognitive Function Among Older Adults: NHANES 2011-2014. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 286–291. [Google Scholar] [CrossRef]
- Ungvari, Z.; Fazekas-Pongor, V.; Csiszar, A.; Kunutsor, S.K. The multifaceted benefits of walking for healthy aging: From Blue Zones to molecular mechanisms. Geroscience 2023, 45, 3211–3239. [Google Scholar] [CrossRef]
- Bray, N.W.; Pieruccini-Faria, F.; Witt, S.T.; Bartha, R.; Doherty, T.J.; Nagamatsu, L.S.; Almeida, Q.J.; Liu-Ambrose, T.; Middleton, L.E.; Bherer, L.; et al. Combining exercise with cognitive training and vitamin D(3) to improve functional brain connectivity (FBC) in older adults with mild cognitive impairment (MCI). Results from the SYNERGIC trial. Geroscience 2023, 45, 1967–1985. [Google Scholar] [CrossRef]
- Pellegrini-Laplagne, M.; Dupuy, O.; Sosner, P.; Bosquet, L. Effect of simultaneous exercise and cognitive training on executive functions, baroreflex sensitivity, and pre-frontal cortex oxygenation in healthy older adults: A pilot study. Geroscience 2023, 45, 119–140. [Google Scholar] [CrossRef]
- Reitlo, L.S.; Mihailovic, J.M.; Stensvold, D.; Wisloff, U.; Hyder, F.; Haberg, A.K. Hippocampal neurochemicals are associated with exercise group and intensity, psychological health, and general cognition in older adults. Geroscience 2023, 45, 1667–1685. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, C.; Chen, A. A systematic review and meta-analysis of the effects of physical exercise on white matter integrity and cognitive function in older adults. Geroscience 2024, 46, 2641–2651. [Google Scholar] [CrossRef]
- Boa Sorte Silva, N.C.; Dao, E.; Liang Hsu, C.; Tam, R.C.; Lam, K.; Alkeridy, W.; Laule, C.; Vavasour, I.M.; Stein, R.G.; Liu-Ambrose, T. Myelin and Physical Activity in Older Adults With Cerebral Small Vessel Disease and Mild Cognitive Impairment. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 545–553. [Google Scholar] [CrossRef]
- Campbell, E.B.; Delgadillo, M.; Lazzeroni, L.C.; Louras, P.N.; Myers, J.; Yesavage, J.; Fairchild, J.K. Cognitive Improvement Following Physical Exercise and Cognitive Training Intervention for Older Adults With MCI. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 554–560. [Google Scholar] [CrossRef]
- Intzandt, B.; Sanami, S.; Huck, J.; group, P.-A.R.; Villeneuve, S.; Bherer, L.; Gauthier, C.J. Sex-specific relationships between obesity, physical activity, and gray and white matter volume in cognitively unimpaired older adults. Geroscience 2023, 45, 1869–1888. [Google Scholar] [CrossRef]
- Carlson, E.J.; Wilckens, K.A.; Wheeler, M.E. The Interactive Role of Sleep and Circadian Rhythms in Episodic Memory in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1844–1852. [Google Scholar] [CrossRef]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, Q.; Zhang, Q.; Li, S.; Zhao, J.; Chen, W.; Yang, J.; Xia, M.; Liu, Y. Association of adherence to the EAT-Lancet diet with risk of dementia according to social economic status: A prospective cohort in UK Biobank. Geroscience 2024. [Google Scholar] [CrossRef]
- Trabado-Fernandez, A.; Garcia-Colomo, A.; Cuadrado-Soto, E.; Peral-Suarez, A.; Salas-Gonzalez, M.D.; Lorenzo-Mora, A.M.; Aparicio, A.; Delgado-Losada, M.L.; Maestu-Unturbe, F.; Lopez-Sobaler, A.M. Association of a DASH diet and magnetoencephalography in dementia-free adults with different risk levels of Alzheimer’s disease. Geroscience 2024. [Google Scholar] [CrossRef]
- Zupo, R.; Donghia, R.; Castellana, F.; Bortone, I.; De Nucci, S.; Sila, A.; Tatoli, R.; Lampignano, L.; Sborgia, G.; Panza, F.; et al. Ultra-processed food consumption and nutritional frailty in older age. Geroscience 2023, 45, 2229–2243. [Google Scholar] [CrossRef]
- Radd-Vagenas, S.; Duffy, S.L.; Naismith, S.L.; Brew, B.J.; Flood, V.M.; Singh, M.A.F. Effect of the Mediterranean diet on cognition and brain morphology and function: A systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2018, 107, 389–404. [Google Scholar] [CrossRef]
- Aslan, B. Western Diet and Cognitive Impairment: Links to Potential Mechanisms: A Review. Int. J. Nutr. Sci. 2023, 8, 131–143. [Google Scholar]
- Henderson, Y.O.; Bithi, N.; Yang, J.; Link, C.; Zhang, A.; Baron, B.; Maina, E.; Hine, C. A long-term obesogenic high-fat diet in mice partially dampens the anti-frailty benefits of late-life intermittent fasting. Geroscience 2023, 45, 1247–1262. [Google Scholar] [CrossRef]
- Dibello, V.; Custodero, C.; Cavalcanti, R.; Lafornara, D.; Dibello, A.; Lozupone, M.; Daniele, A.; Pilotto, A.; Panza, F.; Solfrizzi, V. Impact of periodontal disease on cognitive disorders, dementia, and depression: A systematic review and meta-analysis. Geroscience 2024, 46, 5133–5169. [Google Scholar] [CrossRef]
- Escalante, J.; Artaiz, O.; Diwakarla, S.; McQuade, R.M. Leaky gut in systemic inflammation: Exploring the link between gastrointestinal disorders and age-related diseases. Geroscience 2024. [Google Scholar] [CrossRef]
- Koblinsky, N.D.; Power, K.A.; Middleton, L.; Ferland, G.; Anderson, N.D. The Role of the Gut Microbiome in Diet and Exercise Effects on Cognition: A Review of the Intervention Literature. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 195–205. [Google Scholar] [CrossRef]
- Newsome, R.; Yang, Y.; Jobin, C. Western diet influences on microbiome and carcinogenesis. Semin. Immunol. 2023, 67, 101756. [Google Scholar] [CrossRef]
- Crain, E.; Minaya, D.M.; de La Serre, C.B. Microbiota-induced inflammation mediates the impacts of a Western diet on hippocampal-dependent memory. Nutr. Res. 2025, 138, 89–106. [Google Scholar] [CrossRef]
- Chaudhari, D.S.; Jain, S.; Yata, V.K.; Mishra, S.P.; Kumar, A.; Fraser, A.; Kociolek, J.; Dangiolo, M.; Smith, A.; Golden, A.; et al. Unique trans-kingdom microbiome structural and functional signatures predict cognitive decline in older adults. Geroscience 2023, 45, 2819–2834. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Shah, R.; Alford, N.; Mishra, S.P.; Jain, S.; Hansen, B.; Sanberg, P.; Molina, A.J.A.; Yadav, H. The Triple Alliance: Microbiome, Mitochondria, and Metabolites in the Context of Age-Related Cognitive Decline and Alzheimer’s Disease. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 2187–2202. [Google Scholar] [CrossRef]
- Zhao, W.; Smith, J.A.; Wang, Y.Z.; Chintalapati, M.; Ammous, F.; Yu, M.; Moorjani, P.; Ganna, A.; Gross, A.; Dey, S.; et al. Polygenic Risk Scores for Alzheimer’s Disease and General Cognitive Function Are Associated With Measures of Cognition in Older South Asians. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 743–752. [Google Scholar] [CrossRef]
- Morrison, C.; Oliver, M.D.; Berry, V.; Kamal, F.; Dadar, M. The influence of APOE status on rate of cognitive decline. Geroscience 2024, 46, 3263–3274. [Google Scholar] [CrossRef]
- Aravena, J.M.; Lee, J.; Schwartz, A.E.; Nyhan, K.; Wang, S.Y.; Levy, B.R. Beneficial Effect of Societal Factors on APOE-epsilon2 and epsilon4 Carriers’ Brain Health: A Systematic Review. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad237. [Google Scholar] [CrossRef]
- Dato, S.; De Rango, F.; Crocco, P.; Pallotti, S.; Belloy, M.E.; Le Guen, Y.; Greicius, M.D.; Passarino, G.; Rose, G.; Napolioni, V. Sex- and APOE-specific genetic risk factors for late-onset Alzheimer’s disease: Evidence from gene-gene interaction of longevity-related loci. Aging Cell 2023, 22, e13938. [Google Scholar] [CrossRef]
- Logan, I.S. Humanin P3S, haplogroup N1b and the risk of Alzheimer’s disease. Aging Cell 2024, 23, e14207. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Lin, Y.; Fang, W.; Wang, Y.; Li, Z.; Lin, A.; Dai, X.; Ye, Q.; Zhang, J.; et al. ApoE4 exacerbates the senescence of hippocampal neurons and spatial cognitive impairment by downregulating acetyl-CoA level. Aging Cell 2023, 22, e13932. [Google Scholar] [CrossRef]
- Santamaria-Garcia, H.; Moguilner, S.; Rodriguez-Villagra, O.A.; Botero-Rodriguez, F.; Pina-Escudero, S.D.; O’Donovan, G.; Albala, C.; Matallana, D.; Schulte, M.; Slachevsky, A.; et al. The impacts of social determinants of health and cardiometabolic factors on cognitive and functional aging in Colombian underserved populations. Geroscience 2023, 45, 2405–2423. [Google Scholar] [CrossRef]
- Valsdottir, V.; Magnusdottir, B.B.; Gylfason, H.F.; Chang, M.; Aspelund, T.; Gudnason, V.; Launer, L.J.; Jonsdottir, M.K. Exposure factors associated with dementia among older adults in Iceland: The AGES-Reykjavik study. Geroscience 2023, 45, 1953–1965. [Google Scholar] [CrossRef]
- Huang, L.Y.; Ge, Y.J.; Fu, Y.; Zhao, Y.L.; Ou, Y.N.; Zhang, Y.; Ma, L.Z.; Chen, S.D.; Guo, Z.X.; Feng, J.F.; et al. Identifying modifiable factors and their joint effect on brain health: An exposome-wide association study. Geroscience 2024, 46, 6257–6268. [Google Scholar] [CrossRef]
- Lin, F.; Wang, L.; Shi, Y.; Chen, X.; Lin, Y.; Zheng, J.; Chen, K.; Ye, Q.; Cai, G. Association of Exposure to Ambient Air Pollutants With Cognitive Performance and Dementia Risk and the Mediating Role of Pulmonary Function: Evidence From the UK Biobank. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae139. [Google Scholar] [CrossRef]
- Pandics, T.; Major, D.; Fazekas-Pongor, V.; Szarvas, Z.; Peterfi, A.; Mukli, P.; Gulej, R.; Ungvari, A.; Fekete, M.; Tompa, A.; et al. Exposome and unhealthy aging: Environmental drivers from air pollution to occupational exposures. Geroscience 2023, 45, 3381–3408. [Google Scholar] [CrossRef]
- Mehdipour Ghazi, M.; Urdanibia-Centelles, O.; Bakhtiari, A.; Fagerlund, B.; Vestergaard, M.B.; Larsson, H.B.W.; Mortensen, E.L.; Osler, M.; Nielsen, M.; Benedek, K.; et al. Cognitive aging and reserve factors in the Metropolit 1953 Danish male cohort. Geroscience 2024. [Google Scholar] [CrossRef]
- Tan, C.H.; Tan, J.J.X. Low neighborhood deprivation buffers against hippocampal neurodegeneration, white matter hyperintensities, and poorer cognition. Geroscience 2023, 45, 2027–2036. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Fanelli-Kuczmarski, M.T.; Hu, Y.H.; Shaked, D.; Weiss, J.; Waldstein, S.R.; Launer, L.J.; Evans, M.K.; Zonderman, A.B. Uncovering mediational pathways behind racial and socioeconomic disparities in brain volumes: Insights from the UK Biobank study. Geroscience 2024. [Google Scholar] [CrossRef]
- da Silva, S.P.; de Castro, C.C.M.; Rabelo, L.N.; Engelberth, R.C.; Fernandez-Calvo, B.; Fiuza, F.P. Neuropathological and sociodemographic factors associated with the cortical amyloid load in aging and Alzheimer’s disease. Geroscience 2024, 46, 621–643. [Google Scholar] [CrossRef]
- Kovacs, N.; Biro, E.; Piko, P.; Ungvari, Z.; Adany, R. Age-related shifts in mental health determinants from a deprived area in the European Union: Informing the national healthy aging program of Hungary. Geroscience 2024, 46, 4793–4807. [Google Scholar] [CrossRef]
- De Looze, C.; Demnitz, N.; Knight, S.; Carey, D.; Meaney, J.; Kenny, R.A.; McCrory, C. Examining the Impact of Socioeconomic Position Across the Life Course on Cognitive Function and Brain Structure in Healthy Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 890–901. [Google Scholar] [CrossRef]
- Beraud-Peigne, N.; Maillot, P.; Perrot, A. The effects of a new immersive multidomain training on cognitive, dual-task and physical functions in older adults. Geroscience 2024, 46, 1825–1841. [Google Scholar] [CrossRef]
- Jin, J.; Sommerlad, A.; Mukadam, N. Association between adult education, brain volume and dementia risk: Longitudinal cohort study of UK Biobank participants. Geroscience 2024. [Google Scholar] [CrossRef]
- Carvalho, C.M.; Poltronieri, B.C.; Reuwsaat, K.; Reis, M.E.A.; Panizzutti, R. Digital cognitive training for functionality in mild cognitive impairment: A randomized controlled clinical trial. Geroscience 2025. [Google Scholar] [CrossRef]
- Dai, X.; Liu, S.; Li, Y.; Long, S.; Li, X.; Chen, C.; Yang, C.; Zhang, J.; Han, Z.R.; Li, H.; et al. White Matter Plasticity Underpins Cognitive Gains After Multidomain Adaptive Computerized Cognitive Training. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae046. [Google Scholar] [CrossRef]
- Stern, C.; Munn, Z. Cognitive leisure activities and their role in preventing dementia: A systematic review. Int. J. Evid. Based Healthc. 2010, 8, 2–17. [Google Scholar] [CrossRef]
- Beech, B.M.; Bruce, M.A.; Siddhanta, A.; Marshall, G.L.; Whitfield, K.E.; Thorpe, R.J., Jr. Racial Differences in the Association Between Loneliness and Cognitive Impairment Among Older Black and White Men. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae227. [Google Scholar] [CrossRef]
- Kallianpur, K.J.; Masaki, K.H.; Chen, R.; Willcox, B.J.; Allsopp, R.C.; Davy, P.; Dodge, H.H. Weak Social Networks in Late Life Predict Incident Alzheimer’s Disease: The Kuakini Honolulu-Asia Aging Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 663–672. [Google Scholar] [CrossRef]
- Zhang, Y.; Tatewaki, Y.; Liu, Y.; Tomita, N.; Nagasaka, T.; Muranaka, M.; Yamamoto, S.; Takano, Y.; Nakase, T.; Mutoh, T.; et al. Perceived social isolation is correlated with brain structure and cognitive trajectory in Alzheimer’s disease. Geroscience 2022, 44, 1563–1574. [Google Scholar] [CrossRef]
- Karakose, S.; Luchetti, M.; Stephan, Y.; Sutin, A.R.; Terracciano, A. Life satisfaction and risk of dementia over 18 years: An analysis of the National Alzheimer’s Coordinating Center dataset. Geroscience 2024. [Google Scholar] [CrossRef]
- Zabo, V.; Lehoczki, A.; Fekete, M.; Szappanos, A.; Varga, P.; Moizs, M.; Giovannetti, G.; Loscalzo, Y.; Giannini, M.; Polidori, M.C.; et al. The role of purpose in life in healthy aging: Implications for the Semmelweis Study and the Semmelweis-EUniWell Workplace Health Promotion Model Program. Geroscience 2025. [Google Scholar] [CrossRef]
- Yu, K.; Siang Ng, T.K. Investigating Biological Pathways Underpinning the Longitudinal Association Between Loneliness and Cognitive Impairment. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1417–1426. [Google Scholar] [CrossRef]
- Salwierz, P.; Thapa, S.; Taghdiri, F.; Vasilevskaya, A.; Anastassiadis, C.; Tang-Wai, D.F.; Golas, A.C.; Tartaglia, M.C. Investigating the association between a history of depression and biomarkers of Alzheimer’s disease, cerebrovascular disease, and neurodegeneration in patients with dementia. Geroscience 2024, 46, 783–793. [Google Scholar] [CrossRef]
- Lu, K.; Wang, W.; Wang, J.; Du, Q.; Li, C.; Wei, Y.; Yao, M.; Zhang, T.; Yin, F.; Ma, Y. Depressive intensity, duration, and their associations with cognitive decline: A population-based study in Korea. Geroscience 2025. [Google Scholar] [CrossRef]
- Desai, P.; Krueger, K.R.; Mendes de Leon, C.; Wilson, R.S.; Evans, D.A.; Rajan, K.B. Depressive Symptoms, Glial Fibrillary Acid Protein Concentrations, and Cognitive Decline in a Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad129. [Google Scholar] [CrossRef]
- Zang, E.; Zhang, Y.; Wang, Y.; Wu, B.; Fried, T.R.; Becher, R.D.; Gill, T.M. Association Between Cognitive Trajectories and Subsequent Health Status, Depressive Symptoms, and Mortality Among Older Adults in the United States: Findings From a Nationally Representative Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae143. [Google Scholar] [CrossRef]
- Bombois, S.; Derambure, P.; Pasquier, F.; Monaca, C. Sleep disorders in aging and dementia. J. Nutr. Health Aging 2010, 14, 212–217. [Google Scholar] [CrossRef]
- Peracino, A. Hearing loss and dementia in the aging population. Audiol. Neurotol. 2015, 19 (Suppl. S1), 6–9. [Google Scholar] [CrossRef]
- Owusu, J.T.; Rabinowitz, J.A.; Tzuang, M.; An, Y.; Kitner-Triolo, M.; Zipunnikov, V.; Wu, M.N.; Wanigatunga, S.K.; Schrack, J.A.; Thorpe, R.J.; et al. Associations Between Objectively Measured Sleep and Cognition: Main Effects and Interactions With Race in Adults Aged >/=50 Years. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 454–462. [Google Scholar] [CrossRef]
- Arevalo, S.P.; Nguyen-Rodriguez, S.T.; Scott, T.M.; Gao, X.; Falcon, L.M.; Tucker, K.L. Longitudinal Associations Between Sleep and Cognitive Function in a Cohort of Older Puerto Rican Adults: Sex and Age Interactions. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1816–1825. [Google Scholar] [CrossRef]
- Falck, R.S.; Stein, R.G.; Davis, J.C.; Eng, J.J.; Middleton, L.E.; Hall, P.A.; Liu-Ambrose, T. Does Sleep Moderate the Effects of Exercise Training or Complex Mental and Social Activities on Cognitive Function in Adults With Chronic Stroke? Secondary Analysis of a Randomized Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 80, glae264. [Google Scholar] [CrossRef]
- Li, J.; McPhillips, M.V.; Deng, Z.; Fan, F.; Spira, A. Daytime Napping and Cognitive Health in Older Adults: A Systematic Review. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1853–1860. [Google Scholar] [CrossRef]
- Cai, Y.; Martinez-Amezcua, P.; Betz, J.F.; Zhang, T.; Huang, A.R.; Wanigatunga, A.A.; Glynn, N.W.; Burgard, S.; Chisolm, T.H.; Coresh, J.; et al. Hearing Impairment and Physical Activity and Physical Functioning in Older Adults: Baseline Results From the ACHIEVE Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae117. [Google Scholar] [CrossRef]
- Deal, J.A.; Jiang, K.; Rawlings, A.; Sharrett, A.R.; Reed, N.S.; Knopman, D.; Mosley, T.; Wong, D.; Zhou, Y.; Lin, F.R.; et al. Hearing, beta-Amyloid Deposition and Cognitive Test Performance in Black and White Older Adults: The ARIC-PET Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 2105–2110. [Google Scholar] [CrossRef]
- Huang, A.R.; Reed, N.S.; Deal, J.A.; Arnold, M.; Burgard, S.; Chisolm, T.; Couper, D.; Glynn, N.W.; Gmelin, T.; Goman, A.M.; et al. Loneliness and Social Network Characteristics Among Older Adults With Hearing Loss in the ACHIEVE Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad196. [Google Scholar] [CrossRef]
- Smith, J.R.; Huang, A.R.; Lin, F.R.; Reed, N.S.; Deal, J.A. The Population Attributable Fraction of Dementia From Audiometric Hearing Loss Among a Nationally Representative Sample of Community-Dwelling Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1300–1306. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, Z.; Wu, Z.; Wang, X.; Li, Y.; Gao, Y.; Han, K.; Yu, Q.; Wu, C.; Chen, J.; et al. Joint Association of Combined Healthy Lifestyle Factors and Hearing Loss With Cognitive Impairment in China. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae226. [Google Scholar] [CrossRef]
- Qi, X.; Pei, Y.; Malone, S.K.; Wu, B. Social Isolation, Sleep Disturbance, and Cognitive Functioning (HRS): A Longitudinal Mediation Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1826–1833. [Google Scholar] [CrossRef]
- Tan, X.; Lebedeva, A.; Akerstedt, T.; Wang, H.X. Sleep Mediates the Association Between Stress at Work and Incident Dementia: Study From the Survey of Health, Ageing and Retirement in Europe. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 447–453. [Google Scholar] [CrossRef]
- Davidson, T.L.; Sample, C.H.; Kanoski, S.E. Western diet and cognitive impairment. In Diet and Nutrition in Dementia and Cognitive Decline; Elsevier: Amsterdam, The Netherlands, 2015; pp. 295–305. [Google Scholar]
- Opie, R.S.; Ralston, R.A.; Walker, K.Z. Adherence to a M editerranean-style diet can slow the rate of cognitive decline and decrease the risk of dementia: A systematic review. Nutr. Diet. 2013, 70, 206–217. [Google Scholar] [CrossRef]
- Shakersain, B.; Santoni, G.; Larsson, S.C.; Faxén-Irving, G.; Fastbom, J.; Fratiglioni, L.; Xu, W. Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimer’s Dement. 2016, 12, 100–109. [Google Scholar] [CrossRef]
- Harriden, B.; D’Cunha, N.M.; Kellett, J.; Isbel, S.; Panagiotakos, D.B.; Naumovski, N. Are dietary patterns becoming more processed? The effects of different dietary patterns on cognition: A review. Nutr. Health 2022, 28, 341–356. [Google Scholar] [CrossRef]
- Chen, X.; Maguire, B.; Brodaty, H.; O’Leary, F. Dietary patterns and cognitive health in older adults: A systematic review. J. Alzheimer’s Dis. 2019, 67, 583–619. [Google Scholar] [CrossRef]
- Aridi, Y.S.; Walker, J.L.; Wright, O.R. The association between the Mediterranean dietary pattern and cognitive health: A systematic review. Nutrients 2017, 9, 674. [Google Scholar] [CrossRef]
- Gu, Y.; Scarmeas, N. Dietary patterns in Alzheimer’s disease and cognitive aging. Curr. Alzheimer Res. 2011, 8, 510–519. [Google Scholar] [CrossRef]
- García-Casares, N.; Gallego Fuentes, P.; Barbancho, M.Á.; López-Gigosos, R.; García-Rodríguez, A.; Gutiérrez-Bedmar, M. Alzheimer’s disease, mild cognitive impairment and Mediterranean diet. A systematic review and dose-response meta-analysis. J. Clin. Med. 2021, 10, 4642. [Google Scholar] [CrossRef]
- Cao, L.; Tan, L.; Wang, H.-F.; Jiang, T.; Zhu, X.-C.; Lu, H.; Tan, M.-S.; Yu, J.-T. Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Mol. Neurobiol. 2016, 53, 6144–6154. [Google Scholar] [CrossRef]
- Quan, W.; Xu, Y.; Luo, J.; Zeng, M.; He, Z.; Shen, Q.; Chen, J. Association of dietary meat consumption habits with neurodegenerative cognitive impairment: An updated systematic review and dose–response meta-analysis of 24 prospective cohort studies. Food Funct. 2022, 13, 12590–12601. [Google Scholar] [CrossRef]
- Maroto-Rodriguez, J.; Delgado-Velandia, M.; Ortola, R.; Carballo-Casla, A.; Garcia-Esquinas, E.; Rodriguez-Artalejo, F.; Sotos-Prieto, M. Plant-based diets and risk of frailty in community-dwelling older adults: The Seniors-ENRICA-1 cohort. Geroscience 2023, 45, 221–232. [Google Scholar] [CrossRef]
- Lee, J.; Purello, C.; Booth, S.L.; Bennett, B.; Wiley, C.D.; Korstanje, R. Chow diet in mouse aging studies: Nothing regular about it. Geroscience 2023, 45, 2079–2084. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheikh, A.M.; Tabassum, S.; Iwasa, K.; Shibly, A.Z.; Zhou, X.; Wang, R.; Bhuiya, J.; Abdullah, F.B.; Yano, S.; et al. Effect of high-fat diet on cerebral pathological changes of cerebral small vessel disease in SHR/SP rats. Geroscience 2024, 46, 3779–3800. [Google Scholar] [CrossRef]
- Sonsalla, M.M.; Babygirija, R.; Johnson, M.; Cai, S.; Cole, M.; Yeh, C.Y.; Grunow, I.; Liu, Y.; Vertein, D.; Calubag, M.F.; et al. Acarbose ameliorates Western diet-induced metabolic and cognitive impairments in the 3xTg mouse model of Alzheimer’s disease. Geroscience 2024. [Google Scholar] [CrossRef]
- Selvarani, R.; Nguyen, H.M.; Pazhanivel, N.; Raman, M.; Lee, S.; Wolf, R.F.; Deepa, S.S.; Richardson, A. The role of inflammation induced by necroptosis in the development of fibrosis and liver cancer in novel knockin mouse models fed a western diet. Geroscience 2024. [Google Scholar] [CrossRef]
- Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef]
- Tucsek, Z.; Toth, P.; Sosnowska, D.; Gautam, T.; Mitschelen, M.; Koller, A.; Szalai, G.; Sonntag, W.E.; Ungvari, Z.; Csiszar, A. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: Effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1212–1226. [Google Scholar] [CrossRef]
- Tarantini, S.; Valcarcel-Ares, M.N.; Yabluchanskiy, A.; Tucsek, Z.; Hertelendy, P.; Kiss, T.; Gautam, T.; Zhang, X.A.; Sonntag, W.E.; de Cabo, R.; et al. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood brain barrier disruption, neuroinflammation, amyloidogenic gene expression and cognitive decline in mice, mimicking the aging phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2018, in press. [Google Scholar] [CrossRef]
- Bruce-Keller, A.J.; White, C.L.; Gupta, S.; Knight, A.G.; Pistell, P.J.; Ingram, D.K.; Morrison, C.D.; Keller, J.N. NOX activity in brain aging: Exacerbation by high fat diet. Free Radic. Biol. Med. 2010, 49, 22–30. [Google Scholar] [CrossRef]
- Tucsek, Z.; Toth, P.; Tarantini, S.; Sosnowska, D.; Gautam, T.; Warrington, J.P.; Giles, C.B.; Wren, J.D.; Koller, A.; Ballabh, P.; et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1339–1352. [Google Scholar] [CrossRef]
- Valcarcel-Ares, M.N.; Tucsek, Z.; Kiss, T.; Giles, C.B.; Tarantini, S.; Yabluchanskiy, A.; Balasubramanian, P.; Gautam, T.; Galvan, V.; Ballabh, P.; et al. Obesity in Aging Exacerbates Neuroinflammation, Dysregulating Synaptic Function-related Genes and Altering Eicosanoid Synthesis in the Mouse Hippocampus: Potential Role in Impaired Synaptic Plasticity and Cognitive Decline. J. Gerontol. A Biol. Sci. Med. Sci. 2018. [Google Scholar] [CrossRef]
- Altamirano, F.G.; Castro-Pascual, I.; Ponce, I.T.; Coria-Lucero, C.D.; Cargnelutti, E.; Ferramola, M.L.; Delgado, M.S.; Anzulovich, A.C.; Lacoste, M.G. Late-Onset Caloric Restriction Improves Cognitive Performance and Restores Circadian Patterns of Neurotrophic, Clock, and Epigenetic Factors in the Hippocampus of Old Male Rats. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 80, glae252. [Google Scholar] [CrossRef]
- Fiorito, G.; Tosti, V.; Polidoro, S.; Bertozzi, B.; Veronese, N.; Cava, E.; Spelta, F.; Piccio, L.; Early, D.S.; Raftery, D.; et al. Multi-omic analysis of biological aging biomarkers in long-term calorie restriction and endurance exercise practitioners: A cross-sectional study. Aging Cell 2025, 24, e14442. [Google Scholar] [CrossRef]
- Aversa, Z.; White, T.A.; Heeren, A.A.; Hulshizer, C.A.; Saul, D.; Zhang, X.; Molina, A.J.A.; Redman, L.M.; Martin, C.K.; Racette, S.B.; et al. Calorie restriction reduces biomarkers of cellular senescence in humans. Aging Cell 2024, 23, e14038. [Google Scholar] [CrossRef]
- Das, J.K.; Banskota, N.; Candia, J.; Griswold, M.E.; Orenduff, M.; de Cabo, R.; Corcoran, D.L.; Das, S.K.; De, S.; Huffman, K.M.; et al. Calorie restriction modulates the transcription of genes related to stress response and longevity in human muscle: The CALERIE study. Aging Cell 2023, 22, e13963. [Google Scholar] [CrossRef]
- Hastings, W.J.; Ye, Q.; Wolf, S.E.; Ryan, C.P.; Das, S.K.; Huffman, K.M.; Kobor, M.S.; Kraus, W.E.; MacIsaac, J.L.; Martin, C.K.; et al. Effect of long-term caloric restriction on telomere length in healthy adults: CALERIE 2 trial analysis. Aging Cell 2024, 23, e14149. [Google Scholar] [CrossRef]
- Han, W.; Zhang, B.; Zhao, W.; Zhao, W.; He, J.; Qiu, X.; Zhang, L.; Wang, X.; Wang, Y.; Lu, H.; et al. Ketogenic beta-hydroxybutyrate regulates beta-hydroxybutyrylation of TCA cycle-associated enzymes and attenuates disease-associated pathologies in Alzheimer’s mice. Aging Cell 2025, 24, e14368. [Google Scholar] [CrossRef]
- Tomita, I.; Tsuruta, H.; Yasuda-Yamahara, M.; Yamahara, K.; Kuwagata, S.; Tanaka-Sasaki, Y.; Chin-Kanasaki, M.; Fujita, Y.; Nishi, E.; Katagiri, H.; et al. Ketone bodies: A double-edged sword for mammalian life span. Aging Cell 2023, 22, e13833. [Google Scholar] [CrossRef]
- Wang, Q.; Lan, X.; Ke, H.; Xu, S.; Huang, C.; Wang, J.; Wang, X.; Huang, T.; Wu, X.; Chen, M.; et al. Histone beta-hydroxybutyrylation is critical in reversal of sarcopenia. Aging Cell 2024, 23, e14284. [Google Scholar] [CrossRef]
- Zhuang, H.; Ren, X.; Zhang, Y.; Li, H.; Zhou, P. beta-Hydroxybutyrate enhances chondrocyte mitophagy and reduces cartilage degeneration in osteoarthritis via the HCAR2/AMPK/PINK1/Parkin pathway. Aging Cell 2024, 23, e14294. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, T.; Sharma, A.; Manchanda, S.; Singh, H.; Kalotra, S.; Bajaj, P. Intermittent Fasting-Dietary Restriction as a Geroprotector. In Molecular Basis and Emerging Strategies for Anti-aging Interventions; Springer Nature: Berlin, Germany, 2018; pp. 195–215. [Google Scholar]
- Hwangbo, D.-S.; Lee, H.-Y.; Abozaid, L.S.; Min, K.-J. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients 2020, 12, 1194. [Google Scholar] [CrossRef]
- Stayer-Wilburn, O.; Brown, D.I.; Woltjer, R.L.; Srinivasan, S.; Park, B.S.; Shultz, P.; Vitantonio, A.; Dimovasili, C.; Vaughan, K.L.; Starost, M.F.; et al. Dysregulation of astrocytic Aquaporin-1 in the brains of oldest-old rhesus macaques: The NIA caloric restriction study. Geroscience 2024. [Google Scholar] [CrossRef]
- Smith, D.L., Jr.; Mitchell, S.E.; Johnson, M.S.; Gibbs, V.K.; Dickinson, S.; Henschel, B.; Li, R.; Kaiser, K.A.; Chusyd, D.E.; Brown, A.W.; et al. Benefits of calorie restriction in mice are mediated via energy imbalance, not absolute energy or protein intake. Geroscience 2024, 46, 4809–4826. [Google Scholar] [CrossRef]
- Roslund, K.J.; Ramsey, J.J.; Rutkowsky, J.M.; Zhou, Z.; Slupsky, C.M. Two-month ketogenic diet alters systemic and brain metabolism in middle-aged female mice. Geroscience 2024. [Google Scholar] [CrossRef]
- Zhou, Z.; Kim, K.; Ramsey, J.J.; Rutkowsky, J.M. Ketogenic diets initiated in late mid-life improved measures of spatial memory in male mice. Geroscience 2023, 45, 2481–2494. [Google Scholar] [CrossRef]
- Duan, H.; Pan, J.; Guo, M.; Li, J.; Yu, L.; Fan, L. Dietary strategies with anti-aging potential: Dietary patterns and supplements. Food Res. Int. 2022, 158, 111501. [Google Scholar] [CrossRef]
- Key, M.N.; Szabo-Reed, A.N. Impact of diet and exercise interventions on cognition and brain health in older adults: A narrative review. Nutrients 2023, 15, 2495. [Google Scholar] [CrossRef]
- Smith, L.; Lopez Sanchez, G.F.; Veronese, N.; Soysal, P.; Oh, H.; Kostev, K.; Rahmati, M.; Butler, L.; Gibson, P.; Keyes, H.; et al. Association of Fruit and Vegetable Consumption With Mild Cognitive Impairment in Low- and Middle-Income Countries. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1410–1416. [Google Scholar] [CrossRef]
- Godos, J.; Micek, A.; Currenti, W.; Franchi, C.; Poli, A.; Battino, M.; Dolci, A.; Ricci, C.; Ungvari, Z.; Grosso, G. Fish consumption, cognitive impairment and dementia: An updated dose-response meta-analysis of observational studies. Aging Clin. Exp. Res. 2024, 36, 171. [Google Scholar] [CrossRef]
- Roman, G.C.; Jackson, R.E.; Gadhia, R.; Roman, A.N.; Reis, J. Mediterranean diet: The role of long-chain omega-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. 2019, 175, 724–741. [Google Scholar] [CrossRef]
- Das, U.N. Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer’s disease—But how and why? Prostaglandins Leukot. Essent. Fat. Acids 2008, 78, 11–19. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Maggi, S.; Ticinesi, A.; Limongi, F.; Noale, M.; Ecarnot, F. The role of nutrition and the Mediterranean diet on the trajectories of cognitive decline. Exp. Gerontol. 2023, 173, 112110. [Google Scholar] [CrossRef]
- Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019, 47, 529–542. [Google Scholar] [CrossRef]
- Hosking, D.E.; Eramudugolla, R.; Cherbuin, N.; Anstey, K.J. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement. 2019, 15, 581–589. [Google Scholar] [CrossRef]
- Berti, V.; Walters, M.; Sterling, J.; Quinn, C.G.; Logue, M.; Andrews, R.; Matthews, D.C.; Osorio, R.S.; Pupi, A.; Vallabhajosula, S.; et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 2018, 90, e1789–e1798. [Google Scholar] [CrossRef]
- Anastasiou, C.A.; Yannakoulia, M.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Arampatzi, X.; Bougea, A.; Labropoulos, I.; Scarmeas, N. Mediterranean diet and cognitive health: Initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PLoS ONE 2017, 12, e0182048. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Kyrozis, A.; Rossi, M.; Katsoulis, M.; Trichopoulos, D.; La Vecchia, C.; Lagiou, P. Mediterranean diet and cognitive decline over time in an elderly Mediterranean population. Eur. J. Nutr. 2015, 54, 1311–1321. [Google Scholar] [CrossRef]
- Gu, Y.; Luchsinger, J.A.; Stern, Y.; Scarmeas, N. Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer’s disease. J. Alzheimers Dis. 2010, 22, 483–492. [Google Scholar] [CrossRef]
- Cohen, J.F.; Gorski, M.T.; Gruber, S.A.; Kurdziel, L.; Rimm, E.B. The effect of healthy dietary consumption on executive cognitive functioning in children and adolescents: A systematic review. Br. J. Nutr. 2016, 116, 989–1000. [Google Scholar] [CrossRef]
- Beilharz, J.E.; Maniam, J.; Morris, M.J. Diet-induced cognitive deficits: The role of fat and sugar, potential mechanisms and nutritional interventions. Nutrients 2015, 7, 6719–6738. [Google Scholar] [CrossRef]
- Noble, E.E.; Hsu, T.M.; Kanoski, S.E. Gut to brain dysbiosis: Mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front. Behav. Neurosci. 2017, 11, 9. [Google Scholar] [CrossRef]
- van de Rest, O.; Berendsen, A.A.; Haveman-Nies, A.; de Groot, L.C. Dietary patterns, cognitive decline, and dementia: A systematic review. Adv. Nutr. 2015, 6, 154–168. [Google Scholar] [CrossRef]
- Smith, G.E. Healthy cognitive aging and dementia prevention. Am. Psychol. 2016, 71, 268. [Google Scholar] [CrossRef]
- Imboden, M. Maintaining Brain Health: An Imperative for Successful Aging and Business Performance. Am. J. Health Promot. 2024, 38, 576–589. [Google Scholar] [CrossRef]
- Kromhout, D.; Menotti, A.; Bloemberg, B.; Aravanis, C.; Blackburn, H.; Buzina, R.; Dontas, A.S.; Fidanza, F.; Giaipaoli, S.; Jansen, A. Dietary saturated and transfatty acids and cholesterol and 25-year mortality from coronary heart disease: The seven countries study. Prev. Med. 1995, 24, 308–315. [Google Scholar] [CrossRef]
- Yngve, A. A Historical Perspective of the Understanding of the Link between Diet and Coronary Heart Disease. Am. J. Lifestyle Med. 2009, 3, 35s–38s. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. Bmj 2014, 348. [Google Scholar] [CrossRef]
- Kris-Etherton, P.; Eckel, R.H.; Howard, B.V.; St. Jeor, S.; Bazzarre, T.L. Lyon diet heart study: Benefits of a Mediterranean-Style, National Cholesterol Education Program/American Heart Association Step I dietary pattern on cardiovascular disease. Circulation 2001, 103, 1823–1825. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.A.; MacGregor, G.A. Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies. Lancet 2006, 367, 320–326. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Lehoczki, A.; Tarantini, S.; Varga, J.T. Effects of omega-3 supplementation on quality of life, nutritional status, inflammatory parameters, lipid profile, exercise tolerance and inhaled medications in chronic obstructive pulmonary disease. Ann. Palliat. Med. 2022, 11, 2819–2829. [Google Scholar] [CrossRef]
- Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of Fruits and Vegetables with Major Cardiometabolic Risk Factors, Markers of Oxidation, and Inflammation. Nutrients 2019, 11, 2381. [Google Scholar] [CrossRef]
- Attuquayefio, T.; Stevenson, R.J.; Oaten, M.J.; Francis, H.M. A four-day Western-style dietary intervention causes reductions in hippocampal-dependent learning and memory and interoceptive sensitivity. PLoS ONE 2017, 12, e0172645. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Francis, H.M.; Attuquayefio, T.; Gupta, D.; Yeomans, M.R.; Oaten, M.J.; Davidson, T. Hippocampal-dependent appetitive control is impaired by experimental exposure to a Western-style diet. R. Soc. Open Sci. 2020, 7, 191338. [Google Scholar] [CrossRef]
- Dye, L.; Boyle, N.B.; Champ, C.; Lawton, C. The relationship between obesity and cognitive health and decline. Proc. Nutr. Soc. 2017, 76, 443–454. [Google Scholar] [CrossRef]
- Ehtewish, H.; Arredouani, A.; El-Agnaf, O. Diagnostic, Prognostic, and Mechanistic Biomarkers of Diabetes Mellitus-Associated Cognitive Decline. Int. J. Mol. Sci. 2022, 23, 6144. [Google Scholar] [CrossRef]
- Bellia, C.; Lombardo, M.; Meloni, M.; Della-Morte, D.; Bellia, A.; Lauro, D. Diabetes and cognitive decline. Adv. Clin. Chem. 2022, 108, 37–71. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Farooqui, T. Effects of Extra-Virgin Olive Oil in Neurological Disorders. Neuroprotective Eff. Phytochem. Neurol. Disord. 2017, 133–148. [Google Scholar]
- Casas, R.; Estruch, R.; Sacanella, E. The protective effects of extra virgin olive oil on immune-mediated inflammatory responses. Endocr. Metab. Immune Disord. Drug Targets (Former. Curr. Drug Targets-Immune Endocr. Metab. Disord.) 2018, 18, 23–35. [Google Scholar] [CrossRef]
- Khandouzi, N.; Zahedmehr, A.; Nasrollahzadeh, J. Effect of polyphenol-rich extra-virgin olive oil on lipid profile and inflammatory biomarkers in patients undergoing coronary angiography: A randomised, controlled, clinical trial. Int. J. Food Sci. Nutr. 2021, 72, 548–558. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products N, Allergies. Scientific opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781),”anti-inflammatory properties”(ID 1882),”contributes to the upper respiratory tract health”(ID 3468),”can help to maintain a normal function of gastrointestinal tract”(3779), and “contributes to body defences against external agents”(ID 3467) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2033. [Google Scholar]
- Santos-Buelga, C.; Gonzalez-Manzano, S.; Gonzalez-Paramas, A.M. Wine, polyphenols, and Mediterranean diets. What else is there to say? Molecules 2021, 26, 5537. [Google Scholar] [CrossRef]
- Sharma, A.; Rani, J.; Kaur, P.; Dwivedi, S.K.; Sharma, M. Potential Food Nutraceutical Ingredients. In Handbook of Nutraceuticals: Science, Technology and Engineering; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–44. [Google Scholar]
- Chuang, S.-C.; Lee, Y.-C.A.; Wu, G.-J.; Straif, K.; Hashibe, M. Alcohol consumption and liver cancer risk: A meta-analysis. Cancer Causes Control 2015, 26, 1205–1231. [Google Scholar] [CrossRef]
- Farooqui, T.; Farooqui, A.A. Role of the Mediterranean Diet in the Brain and Neurodegenerative Diseases, Academic Press: Cambridge, MA, USA, 2017.
- Azman, K.F.; Zakaria, R. Recent advances on the role of brain-derived neurotrophic factor (BDNF) in neurodegenerative diseases. Int. J. Mol. Sci. 2022, 23, 6827. [Google Scholar] [CrossRef]
- Sampaio, T.B.; Savall, A.S.; Gutierrez, M.E.Z.; Pinton, S. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: Implications for pathogenesis and therapy. Neural Regen. Res. 2017, 12, 549–557. [Google Scholar]
- Alkhalifa, A.E.; Al-Ghraiybah, N.F.; Kaddoumi, A. Extra-virgin olive oil in alzheimer’s disease: A comprehensive review of cellular, animal, and clinical studies. Int. J. Mol. Sci. 2024, 25, 1914. [Google Scholar] [CrossRef]
- Díaz, G.; Lengele, L.; Sourdet, S.; Soriano, G.; de Souto Barreto, P. Nutrients and amyloid β status in the brain: A narrative review. Ageing Res. Rev. 2022, 81, 101728. [Google Scholar] [CrossRef]
- Ma, X.; Nan, F.; Liang, H.; Shu, P.; Fan, X.; Song, X.; Hou, Y.; Zhang, D. Excessive intake of sugar: An accomplice of inflammation. Front. Immunol. 2022, 13, 988481. [Google Scholar] [CrossRef]
- Francis, H.; Stevenson, R. The longer-term impacts of Western diet on human cognition and the brain. Appetite 2013, 63, 119–128. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients 2019, 11, 2579. [Google Scholar] [CrossRef]
- Wafula, W.G.; Arnold, O.; Calvin, O.; Moses, M. Reactive oxygen species (ROS) generation, impacts on tissue oxidation and dietary management of non-communicable diseases: A review. Afr. J. Biochem. Res. 2017, 11, 79–90. [Google Scholar] [CrossRef]
- Ruiz-Núñez, B.; Pruimboom, L.; Dijck-Brouwer, D.J.; Muskiet, F.A. Lifestyle and nutritional imbalances associated with Western diseases: Causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J. Nutr. Biochem. 2013, 24, 1183–1201. [Google Scholar] [CrossRef]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr. 2015, 114, 999–1012. [Google Scholar] [CrossRef]
- Weijs, R.W.J.; Oudegeest-Sander, M.H.; Vloet, J.I.A.; Hopman, M.T.E.; Claassen, J.; Thijssen, D.H.J. A decade of aging in healthy older adults: Longitudinal findings on cerebrovascular and cognitive health. Geroscience 2023, 45, 2629–2641. [Google Scholar] [CrossRef]
- Gulej, R.; Nyul-Toth, A.; Csik, B.; Patai, R.; Petersen, B.; Negri, S.; Chandragiri, S.S.; Shanmugarama, S.; Mukli, P.; Yabluchanskiy, A.; et al. Young blood-mediated cerebromicrovascular rejuvenation through heterochronic parabiosis: Enhancing blood-brain barrier integrity and capillarization in the aged mouse brain. Geroscience 2024, 46, 4415–4442. [Google Scholar] [CrossRef]
- Gulej, R.; Nyul-Toth, A.; Csik, B.; Petersen, B.; Faakye, J.; Negri, S.; Chandragiri, S.S.; Mukli, P.; Yabluchanskiy, A.; Conley, S.; et al. Rejuvenation of cerebromicrovascular function in aged mice through heterochronic parabiosis: Insights into neurovascular coupling and the impact of young blood factors. Geroscience 2024, 46, 327–347. [Google Scholar] [CrossRef]
- van Dinther, M.; Voorter, P.H.M.; Zhang, E.; van Kuijk, S.M.J.; Jansen, J.F.A.; van Oostenbrugge, R.J.; Backes, W.H.; Staals, J. The neurovascular unit and its correlation with cognitive performance in patients with cerebral small vessel disease: A canonical correlation analysis approach. Geroscience 2024, 46, 5061–5073. [Google Scholar] [CrossRef]
- Zavala, D.V.; Dzikowski, N.; Gopalan, S.; Harrington, K.D.; Pasquini, G.; Mogle, J.; Reid, K.; Sliwinski, M.; Graham-Engeland, J.E.; Engeland, C.G.; et al. Epigenetic Age Acceleration and Chronological Age: Associations With Cognitive Performance in Daily Life. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad242. [Google Scholar] [CrossRef]
- Van Skike, C.E.; DeRosa, N.; Galvan, V.; Hussong, S.A. Rapamycin restores peripheral blood flow in aged mice and in mouse models of atherosclerosis and Alzheimer’s disease. Geroscience 2023, 45, 1987–1996. [Google Scholar] [CrossRef]
- Zimmerman, B.; Kundu, P.; Rooney, W.D.; Raber, J. The effect of high fat diet on cerebrovascular health and pathology: A species comparative review. Molecules 2021, 26, 3406. [Google Scholar] [CrossRef]
- Ungvari, A.; Gulej, R.; Csik, B.; Mukli, P.; Negri, S.; Tarantini, S.; Yabluchanskiy, A.; Benyo, Z.; Csiszar, A.; Ungvari, Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023, 15, 4662. [Google Scholar] [CrossRef]
- Fang, Y.; Peck, M.R.; Quinn, K.; Chapman, J.E.; Medina, D.; McFadden, S.A.; Bartke, A.; Hascup, E.R.; Hascup, K.N. Senolytic intervention improves cognition, metabolism, and adiposity in female APP(NL)(-F/NL-F) mice. Geroscience 2024. [Google Scholar] [CrossRef]
- Lopez, F.V.; O’Shea, A.; Huo, Z.; DeKosky, S.T.; Trouard, T.P.; Alexander, G.E.; Woods, A.J.; Bowers, D. Neurocognitive correlates of cerebral mitochondrial function and energy metabolism using phosphorus magnetic resonance spectroscopy in older adults. Geroscience 2024. [Google Scholar] [CrossRef]
- Ahire, C.; Nyul-Toth, A.; DelFavero, J.; Gulej, R.; Faakye, J.A.; Tarantini, S.; Kiss, T.; Kuan-Celarier, A.; Balasubramanian, P.; Ungvari, A.; et al. Accelerated cerebromicrovascular senescence contributes to cognitive decline in a mouse model of paclitaxel (Taxol)-induced chemobrain. Aging Cell 2023, 22, e13832. [Google Scholar] [CrossRef]
- Budamagunta, V.; Kumar, A.; Rani, A.; Bean, L.; Manohar-Sindhu, S.; Yang, Y.; Zhou, D.; Foster, T.C. Effect of peripheral cellular senescence on brain aging and cognitive decline. Aging Cell 2023, 22, e13817. [Google Scholar] [CrossRef]
- Budamagunta, V.; Kumar, A.; Rani, A.; Manohar Sindhu, S.; Yang, Y.; Zhou, D.; Foster, T.C. Senolytic treatment alleviates doxorubicin-induced chemobrain. Aging Cell 2024, 23, e14037. [Google Scholar] [CrossRef]
- Lambert, M.; Miquel, G.; Villeneuve, L.; Thorin-Trescases, N.; Thorin, E. The senolytic ABT-263 improves cognitive functions in middle-aged male, but not female, atherosclerotic LDLr(-/-);hApoB(100)(+/+) mice. Geroscience 2025. [Google Scholar] [CrossRef]
- Chen, J.; Doyle, M.F.; Fang, Y.; Mez, J.; Crane, P.K.; Scollard, P.; Core, A.D.H.C.C.H.; Satizabal, C.L.; Alosco, M.L.; Qiu, W.Q.; et al. Peripheral inflammatory biomarkers are associated with cognitive function and dementia: Framingham Heart Study Offspring cohort. Aging Cell 2023, 22, e13955. [Google Scholar] [CrossRef]
- Hsu, T.M.; Kanoski, S.E. Blood-brain barrier disruption: Mechanistic links between Western diet consumption and dementia. Front. Aging Neurosci. 2014, 6, 88. [Google Scholar] [CrossRef]
- Faakye, J.; Nyul-Toth, A.; Muranyi, M.; Gulej, R.; Csik, B.; Shanmugarama, S.; Tarantini, S.; Negri, S.; Prodan, C.; Mukli, P.; et al. Preventing spontaneous cerebral microhemorrhages in aging mice: A novel approach targeting cellular senescence with ABT263/navitoclax. Geroscience 2024, 46, 21–37. [Google Scholar] [CrossRef]
- Jurcău, M.C.; Andronie-Cioara, F.L.; Jurcău, A.; Marcu, F.; Ţiț, D.M.; Pașcalău, N.; Nistor-Cseppentö, D.C. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: Therapeutic implications and future perspectives. Antioxidants 2022, 11, 2167. [Google Scholar] [CrossRef]
- Massemin, A.; Goehrig, D.; Flaman, J.M.; Jaber, S.; Griveau, A.; Djebali, S.; Marcos, E.; Payen, L.; Marvel, J.; Parent, R.; et al. Loss of Pla2r1 decreases cellular senescence and age-related alterations caused by aging and Western diets. Aging Cell 2023, 22, e13971. [Google Scholar] [CrossRef]
- Valencia, A.P.; Nagaraj, N.; Osman, D.H.; Rabinovitch, P.S.; Marcinek, D.J. Are fat and sugar just as detrimental in old age? Geroscience 2021, 43, 1615–1625. [Google Scholar] [CrossRef]
- de Roos, B.; Duthie, G.G. Role of dietary pro-oxidants in the maintenance of health and resilience to oxidative stress. Mol. Nutr. Food Res. 2015, 59, 1229–1248. [Google Scholar] [CrossRef]
- Spindler, M.; Thiel, C.M. Hypothalamic microstructure and function are related to body mass, but not mental or cognitive abilities across the adult lifespan. Geroscience 2023, 45, 277–291. [Google Scholar] [CrossRef]
- Farooqui, A.A. Insulin Resistance as a Risk Factor in Visceral and Neurological Disorders; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Neto, A.; Fernandes, A.; Barateiro, A. The complex relationship between obesity and neurodegenerative diseases: An updated review. Front. Cell. Neurosci. 2023, 17, 1294420. [Google Scholar] [CrossRef]
- Lineback, C.M.; Stamm, B.; Sorond, F.; Caprio, F.Z. Carotid disease, cognition, and aging: Time to redefine asymptomatic disease? Geroscience 2023, 45, 719–725. [Google Scholar] [CrossRef]
- Csipo, T.; Lipecz, A.; Mukli, P.; Peterfi, A.; Szarvas, Z.; Ungvari, A.; Alaoui, L.E.; Sandor, M.; Kallai, A.; Fekete, M.; et al. Advancing prediction of age-related vascular cognitive impairment based on peripheral and retinal vascular health in a pilot study: A novel comprehensive assessment developed for a prospective workplace-based cohort (The Semmelweis Study). Geroscience 2024. [Google Scholar] [CrossRef]
- Csiszar, A.; Ungvari, A.; Patai, R.; Gulej, R.; Yabluchanskiy, A.; Benyo, Z.; Kovacs, I.; Sotonyi, P.; Kirkpartrick, A.C.; Prodan, C.I.; et al. Atherosclerotic burden and cerebral small vessel disease: Exploring the link through microvascular aging and cerebral microhemorrhages. Geroscience 2024, 46, 5103–5132. [Google Scholar] [CrossRef]
- Magyar-Stang, R.; Pal, H.; Csanyi, B.; Gaal, A.; Mihaly, Z.; Czinege, Z.; Csipo, T.; Ungvari, Z.; Sotonyi, P.; Varga, A.; et al. Assessment of cerebral autoregulatory function and inter-hemispheric blood flow in older adults with internal carotid artery stenosis using transcranial Doppler sonography-based measurement of transient hyperemic response after carotid artery compression. Geroscience 2023, 45, 3333–3357. [Google Scholar] [CrossRef]
- Nyul-Toth, A.; Patai, R.; Csiszar, A.; Ungvari, A.; Gulej, R.; Mukli, P.; Yabluchanskiy, A.; Benyo, Z.; Sotonyi, P.; Prodan, C.I.; et al. Linking peripheral atherosclerosis to blood-brain barrier disruption: Elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. Geroscience 2024, 46, 6511–6536. [Google Scholar] [CrossRef]
- Ducca, E.L.; Gomez, G.T.; Palta, P.; Sullivan, K.J.; Jack, C.R.; Knopman, D.S.; Gottesman, R.F.; Walston, J.; Windham, B.G.; Walker, K.A. Physical Frailty and Brain White Matter Abnormalities: The Atherosclerosis Risk in Communities Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 357–364. [Google Scholar] [CrossRef]
- Morrison, C.; Dadar, M.; Villeneuve, S.; Ducharme, S.; Collins, D.L. White matter hyperintensity load varies depending on subjective cognitive decline criteria. Geroscience 2023, 45, 17–28. [Google Scholar] [CrossRef]
- Ani, J. Impact of the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diet on Cerebral Arteriosclerosis and Neurodegenerative Diseases. Boston University, 2024.
- Llaurador-Coll, M.; Rios, S.; Garcia-Gavilan, J.F.; Babio, N.; Vilella, E.; Salas-Salvado, J. Plasma levels of neurology-related proteins are associated with cognitive performance in an older population with overweight/obesity and metabolic syndrome. Geroscience 2023, 45, 2457–2470. [Google Scholar] [CrossRef]
- Cao, X.; Peng, H.; Hu, Z.; Xu, C.; Ning, M.; Zhou, M.; Mi, Y.; Yu, P.; Fazekas-Pongor, V.; Major, D.; et al. Exploring the global impact of obesity and diet on dementia burden: The role of national policies and sex differences. Geroscience 2024. [Google Scholar] [CrossRef]
- Gosalia, J.; Spicuzza, J.M.D.; Bowlus, C.K.; Pawelczyk, J.A.; Proctor, D.N. Linking metabolic syndrome, cerebral small vessel disease, and cognitive health: Insights from a subclinical population study using TriNetX. Geroscience 2024. [Google Scholar] [CrossRef]
- Wu, Q.; Ailshire, J.A.; Kim, J.K.; Crimmins, E.M. The Association Between Cardiometabolic Risk and Cognitive Function Among Older Americans and Chinese. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae116. [Google Scholar] [CrossRef]
- Sartorius, K.; Sartorius, B.; Madiba, T.E.; Stefan, C. Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. BMJ Open 2018, 8, e018449. [Google Scholar] [CrossRef]
- Bessesen, D.H. The role of carbohydrates in insulin resistance. J. Nutr. 2001, 131, 2782S–2786S. [Google Scholar] [CrossRef]
- Kothari, V.; Luo, Y.; Tornabene, T.; O’Neill, A.M.; Greene, M.W.; Geetha, T.; Babu, J.R. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 499–508. [Google Scholar] [CrossRef]
- Bosco, D.; Fava, A.; Plastino, M.; Montalcini, T.; Pujia, A. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J. Cell. Mol. Med. 2011, 15, 1807–1821. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Hughes, T.M.; Craft, S. The role of insulin in the vascular contributions to age-related dementia. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2016, 1862, 983–991. [Google Scholar] [CrossRef]
- Guo, S. Insulin signaling, resistance, and the metabolic syndrome: Insights from mouse models to disease mechanisms. J. Endocrinol. 2014, 220, T1. [Google Scholar] [CrossRef]
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef]
- Roriz-Filho, J.S.; Sá-Roriz, T.M.; Rosset, I.; Camozzato, A.L.; Santos, A.C.; Chaves, M.L.; Moriguti, J.C.; Roriz-Cruz, M. (Pre) diabetes, brain aging, and cognition. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2009, 1792, 432–443. [Google Scholar] [CrossRef]
- Kodl, C.T.; Seaquist, E.R. Cognitive dysfunction and diabetes mellitus. Endocr. Rev. 2008, 29, 494–511. [Google Scholar] [CrossRef]
- Kim, B.; Feldman, E.L. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp. Mol. Med. 2015, 47, e149. [Google Scholar] [CrossRef]
- Rebelos, E.; Rinne, J.O.; Nuutila, P.; Ekblad, L.L. Brain glucose metabolism in health, obesity, and cognitive decline—Does insulin have anything to do with it? A narrative review. J. Clin. Med. 2021, 10, 1532. [Google Scholar] [CrossRef]
- Sripetchwandee, J.; Chattipakorn, N.; Chattipakorn, S.C. Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia. Front. Endocrinol. 2018, 9, 496. [Google Scholar] [CrossRef]
- Taylor, V.; MacQueen, G. Cognitive dysfunction associated with metabolic syndrome. Obes. Rev. 2007, 8, 409–418. [Google Scholar] [CrossRef]
- Zheng, F.; Yan, L.; Yang, Z.; Zhong, B.; Xie, W. HbA1c, diabetes and cognitive decline: The English Longitudinal Study of Ageing. Diabetologia 2018, 61, 839–848. [Google Scholar] [CrossRef]
- Liu, Z.; Zaid, M.; Hisamatsu, T.; Tanaka, S.; Fujiyoshi, A.; Miyagawa, N.; Ito, T.; Kadota, A.; Tooyama, I.; Miura, K. Elevated fasting blood glucose levels are associated with lower cognitive function, with a threshold in non-diabetic individuals: A population-based study. J. Epidemiol. 2020, 30, 121–127. [Google Scholar] [CrossRef]
- Spinelli, M.; Fusco, S.; Grassi, C. Brain insulin resistance and hippocampal plasticity: Mechanisms and biomarkers of cognitive decline. Front. Neurosci. 2019, 13, 788. [Google Scholar] [CrossRef]
- Cholerton, B.; Baker, L.D.; Craft, S. Insulin, cognition, and dementia. Eur. J. Pharmacol. 2013, 719, 170–179. [Google Scholar] [CrossRef]
- Martinez, K.B.; Leone, V.; Chang, E.B. Western diets, gut dysbiosis, and metabolic diseases: Are they linked? Gut Microbes 2017, 8, 130–142. [Google Scholar] [CrossRef]
- Proctor, C.; Thiennimitr, P.; Chattipakorn, N.; Chattipakorn, S.C. Diet, gut microbiota and cognition. Metab. Brain Dis. 2017, 32, 1–17. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Wang, Y.; Ren, Y.; Low, V.; Cho, S.; Ping, L.; Peng, K.; Li, X.; Qiu, Y.; et al. Decreased Enterobacteriaceae translocation due to gut microbiota remodeling mediates the alleviation of premature aging by a high-fat diet. Aging Cell 2023, 22, e13760. [Google Scholar] [CrossRef]
- Leo, E.E.M.; Campos, M.R.S. Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition 2020, 71, 110609. [Google Scholar] [CrossRef]
- Rondinella, D.; Raoul, P.C.; Valeriani, E.; Venturini, I.; Cintoni, M.; Severino, A.; Galli, F.S.; Mora, V.; Mele, M.C.; Cammarota, G. The detrimental impact of ultra-processed foods on the human gut microbiome and gut barrier. Nutrients 2025, 17, 859. [Google Scholar] [CrossRef]
- Almeida, C.; Oliveira, R.; Soares, R.; Barata, P. Influence of gut microbiota dysbiosis on brain function: A systematic review. Porto Biomed. J. 2020, 5, 1. [Google Scholar] [CrossRef]
- Ahmed, H.; Leyrolle, Q.; Koistinen, V.; Kärkkäinen, O.; Layé, S.; Delzenne, N.; Hanhineva, K. Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes 2022, 14, 2102878. [Google Scholar] [CrossRef]
- Bienenstock, J.; Kunze, W.A.; Forsythe, P. Disruptive physiology: Olfaction and the microbiome–gut–brain axis. Biol. Rev. 2018, 93, 390–403. [Google Scholar] [CrossRef]
- Bistoletti, M.; Bosi, A.; Banfi, D.; Giaroni, C.; Baj, A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. Progress. Mol. Biol. Transl. Sci. 2020, 176, 43–110. [Google Scholar]
- Dicks, L.M.; Hurn, D.; Hermanus, D. Gut bacteria and neuropsychiatric disorders. Microorganisms 2021, 9, 2583. [Google Scholar] [CrossRef]
- Davis, S.C.; Yadav, J.S.; Barrow, S.D.; Robertson, B.K. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic. Microbiologyopen 2017, 6. [Google Scholar] [CrossRef]
- Hills, R.D., Jr.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef]
- Sanz, Y.; Santacruz, A.; Gauffin, P. Gut microbiota in obesity and metabolic disorders. Proc. Nutr. Soc. 2010, 69, 434–441. [Google Scholar] [CrossRef]
- Seganfredo, F.; Blume, C.; Moehlecke, M.; Giongo, A.; Casagrande, D.; Spolidoro, J.; Padoin, A.; Schaan, B.; Mottin, C. Weight-loss interventions and gut microbiota changes in overweight and obese patients: A systematic review. Obes. Rev. 2017, 18, 832–851. [Google Scholar] [CrossRef]
- Cornejo-Pareja, I.; Munoz-Garach, A.; Clemente-Postigo, M.; Tinahones, F.J. Importance of gut microbiota in obesity. Eur. J. Clin. Nutr. 2019, 72, 26–37. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, L.; Yang, L.; Chu, H. The critical role of gut microbiota in obesity. Front. Endocrinol. 2022, 13, 1025706. [Google Scholar] [CrossRef]
- Sanmiguel, C.; Gupta, A.; Mayer, E.A. Gut microbiome and obesity: A plausible explanation for obesity. Curr. Obes. Rep. 2015, 4, 250–261. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Bhatia, U.; Roach, J.; Gunstad, J.; Azcarate Peril, M.A. The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults. Clin. Nutr. 2022, 41, 2565–2576. [Google Scholar] [CrossRef]
- Takesh, S.; Parvani, M.; Banitalebi, E. The Impact of Gut Microbiome Changes on Health and Disease in Older Adults. Life Sci. Stud. J. 2025, 3, 13–32. [Google Scholar]
- Mundula, T.; Russo, E.; Curini, L.; Giudici, F.; Piccioni, A.; Franceschi, F.; Amedei, A. Chronic systemic low-grade inflammation and modern lifestyle: The dark role of gut microbiota on related diseases with a focus on COVID-19 pandemic. Curr. Med. Chem. 2022, 29, 5370–5396. [Google Scholar] [CrossRef]
- Wang, Y. The role of the gut microbiota and microbial metabolites in the pathogenesis of Alzheimer’s disease. CNS Neurol. Disord.-Drug Targets-CNS Neurol. Disord. 2023, 22, 577–598. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- Varesi, A.; Pierella, E.; Romeo, M.; Piccini, G.B.; Alfano, C.; Bjørklund, G.; Oppong, A.; Ricevuti, G.; Esposito, C.; Chirumbolo, S. The potential role of gut microbiota in Alzheimer’s disease: From diagnosis to treatment. Nutrients 2022, 14, 668. [Google Scholar] [CrossRef]
- Haran, J.P.; Bhattarai, S.K.; Foley, S.E.; Dutta, P.; Ward, D.V.; Bucci, V.; McCormick, B.A. Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. mBio 2019, 10. [Google Scholar] [CrossRef]
- Malin, S.K.; Battillo, D.J.; Beeri, M.S.; Mustapic, M.; Delgado-Peraza, F.; Kapogiannis, D. Two weeks of exercise alters neuronal extracellular vesicle insulin signaling proteins and pro-BDNF in older adults with prediabetes. Aging Cell 2025, 24, e14369. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A. The Effects of Ultra-Processed Food Consumption-Is There Any Action Needed? Nutrients 2020, 12, 2556. [Google Scholar] [CrossRef]
- Popkin, B.M.; Barquera, S.; Corvalan, C.; Hofman, K.J.; Monteiro, C.; Ng, S.W.; Swart, E.C.; Taillie, L.S. Towards unified and impactful policies to reduce ultra-processed food consumption and promote healthier eating. Lancet Diabetes Endocrinol. 2021, 9, 462–470. [Google Scholar] [CrossRef]
- Fekete, M.; Pákó, J.; Szőllősi, G.; Tóth, K.; Szabó, M.; Horváth, D.; Varga, J.T. Significance of nutritional status in chronic obstructive pulmonary disease: A survey. Orvosi Hetil. 2020, 161, 1711–1719. [Google Scholar] [CrossRef]
- Dicken, S.J.; Batterham, R.L. Ultra-processed food: A global problem requiring a global solution. Lancet Diabetes Endocrinol. 2022, 10, 691–694. [Google Scholar] [CrossRef]
- Varga, J.; Boda, K.; Somfay, A. The effect of controlled and uncontrolled dynamic lower extremity training in the rehabilitation of patients with chronic obstructive pulmonary disease. Orvosi Hetil. 2005, 146, 2249–2255. [Google Scholar]
- Valavanidis, A. Processed and Ultra-Processed Food: Directly Linked to 32 Harmful Effects to Health, Higher Risk of Obesity, Heart Disease, Cancer, Type 2 Diabetes. ResearchGate. 2024. Available online: https://www.researchgate.net/publication/378866997_Processed_and_Ultra_Processed_Food_Directly_Linked_to_32_harmful_effects_to_health_higher_risk_of_obesity_heart_disease_cancer_type_2_diabetes (accessed on 12 May 2025).
- Lane, M.M.; Gamage, E.; Travica, N.; Dissanayaka, T.; Ashtree, D.N.; Gauci, S.; Lotfaliany, M.; O’neil, A.; Jacka, F.N.; Marx, W. Ultra-processed food consumption and mental health: A systematic review and meta-analysis of observational studies. Nutrients 2022, 14, 2568. [Google Scholar] [CrossRef]
- Weinstein, G.; Vered, S.; Ivancovsky-Wajcman, D.; Ravona-Springer, R.; Heymann, A.; Zelber-Sagi, S.; Shahar, D.R.; Beeri, M.S. Consumption of Ultra-Processed Food and Cognitive Decline among Older Adults With Type-2 Diabetes. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 134–142. [Google Scholar] [CrossRef]
- Mercola, J.; D’Adamo, C.R. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients 2023, 15, 3129. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol. Neurobiol. 2011, 44, 203–215. [Google Scholar] [CrossRef]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-processed foods and health outcomes: A narrative review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Monda, A.; de Stefano, M.I.; Villano, I.; Allocca, S.; Casillo, M.; Messina, A.; Monda, V.; Moscatelli, F.; Dipace, A.; Limone, P. Ultra-Processed Food Intake and Increased Risk of Obesity: A Narrative Review. Foods 2024, 13, 2627. [Google Scholar] [CrossRef]
- Gonçalves, N.G.; Ferreira, N.V.; Khandpur, N.; Steele, E.M.; Levy, R.B.; Lotufo, P.A.; Bensenor, I.M.; Caramelli, P.; de Matos, S.M.A.; Marchioni, D.M. Association between consumption of ultraprocessed foods and cognitive decline. JAMA Neurol. 2023, 80, 142–150. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e63. [Google Scholar] [CrossRef]
- Krzysztoszek, J.; Laudanska-Krzeminska, I.; Bronikowski, M. Assessment of epidemiological obesity among adults in EU countries. Ann. Agric. Environ. Med. 2019, 26. [Google Scholar] [CrossRef]
- Boros, J.; Kovács, K. Health status. Demogr. Portrait Hung. 2018, 107–130. [Google Scholar]
- Ungvari, Z.; Fekete, M.; Varga, P.; Lehoczki, A.; Fekete, J.T.; Ungvari, A.; Győrffy, B. Overweight and obesity significantly increase colorectal cancer risk: A meta-analysis of 66 studies revealing a 25–57% elevation in risk. GeroScience 2024, 1–22. [Google Scholar] [CrossRef]
- Báti, A. Past and Present in Hungarian Food Culture. Food Cent. Europe. Past-Present-Mem. 2018, 17–28. [Google Scholar]
- Valicente, V.M.; Peng, C.-H.; Pacheco, K.N.; Lin, L.; Kielb, E.I.; Dawoodani, E.; Abdollahi, A.; Mattes, R.D. Ultra-Processed Foods and Obesity Risk: A Critical Review of Reported Mechanisms. Adv. Nutr. 2023. [Google Scholar] [CrossRef]
- Song, Z.; Song, R.; Liu, Y.; Wu, Z.; Zhang, X. Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Res. Int. 2023, 167, 112730. [Google Scholar] [CrossRef]
- Weinstein, G.; Kojis, D.; Banerjee, A.; Seshadri, S.; Walker, M.; Beiser, A.S. Ultra-processed food consumption and risk of dementia and Alzheimer’s disease: The Framingham Heart Study. J. Prev. Alzheimer’s Dis. 2025, 12, 100042. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Fekete, M.; Balazs, P.; Lehoczki, A.; Forrai, J.; Dosa, N.; Fazekas-Pongor, V.; Feher, A.; Madarasz, B.; Varga, J.T. The role of gut microbiome and its modification while regulating the defence mechanisms, particularly in severe COVID-19 cases. Med. Int. Rev. 2023, 30, 154–166. [Google Scholar]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Dosa, N.; Lehoczki, A.; Tarantini, S.; Varga, J.T. COVID-19 infection in patients with chronic obstructive pulmonary disease: From pathophysiology to therapy. Mini-review. Physiol. Int. 2022, 109, 9–19. [Google Scholar] [CrossRef]
- Nagy, K.; Iacob, B.-C.; Bodoki, E.; Oprean, R. Investigating the thermal stability of omega fatty acid-enriched vegetable oils. Foods 2024, 13, 2961. [Google Scholar] [CrossRef]
- Jaganjac, M.; Zarkovic, N. Lipid peroxidation linking diabetes and cancer: The importance of 4-hydroxynonenal. Antioxid. Redox Signal. 2022, 37, 1222–1233. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, T.; Li, J.; Xia, M.; Li, Y.; Wang, X.; Liu, C.; Zheng, T.; Chen, R.; Kan, D. Oxidative stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the pathogenesis and treatment of aging-related diseases. J. Immunol. Res. 2022, 2022, 2233906. [Google Scholar] [CrossRef]
- McCracken, E.; Valeriani, V.; Simpson, C.; Jover, T.; McCulloch, J.; Dewar, D. The lipid peroxidation by-product 4-hydroxynonenal is toxic to axons and oligodendrocytes. J. Cereb. Blood Flow. Metab. 2000, 20, 1529–1536. [Google Scholar] [CrossRef]
- Wang, R.; Malter, J.S.; Wang, D.-S. N-acetylcysteine prevents 4-hydroxynonenal-and amyloid-β-induced modification and inactivation of neprilysin in SH-SY5Y cells. J. Alzheimer’s Dis. 2010, 19, 179–189. [Google Scholar] [CrossRef]
- Yamashima, T. 4-Hydroxynonenal from Mitochondrial and Dietary Sources Causes Lysosomal Cell Death for Lifestyle-Related Diseases. Nutrients 2024, 16, 4171. [Google Scholar] [CrossRef]
- Yamashima, T.; Seike, T.; Oikawa, S.; Kobayashi, H.; Kido, H.; Yanagi, M.; Yamamiya, D.; Li, S.; Boontem, P.; Mizukoshi, E. Hsp70. 1 carbonylation induces lysosomal cell death for lifestyle-related diseases. Front. Mol. Biosci. 2023, 9, 1063632. [Google Scholar] [CrossRef]
- Zábó, V.; Lehoczki, A.; Buda, A.; Varga, P.; Fekete, M.; Fazekas-Pongor, V.; Moizs, M.; Giovannetti, G.; Loscalzo, Y.; Giannini, M.; et al. The role of burnout prevention in promoting healthy aging: Frameworks for the Semmelweis Study and Semmelweis-EUniWell Workplace Health Promotion Program. Geroscience 2025. [Google Scholar] [CrossRef]
- Bizzozero-Peroni, B.; Diaz-Goni, V.; Beneit, N.; Oliveira, A.; Jimenez-Lopez, E.; Martinez-Vizcaino, V.; Mesas, A.E. Nut consumption is associated with a lower risk of all-cause dementia in adults: A community-based cohort study from the UK Biobank. Geroscience 2024. [Google Scholar] [CrossRef]
- Ahmadi, S.; Quirion, I.; Faivre, P.; Registe, P.P.W.; O’Brien, M.W.; Bray, N.W.; Dupuy, O.; Senechal, M.; Belanger, M.; Mekari, S. Association between physical fitness and executive functions in cognitively healthy female older adults: A cross-sectional study. Geroscience 2024, 46, 5701–5710. [Google Scholar] [CrossRef]
- Balbim, G.M.; Boa Sorte Silva, N.C.; Ten Brinke, L.; Falck, R.S.; Hortobagyi, T.; Granacher, U.; Erickson, K.I.; Hernandez-Gamboa, R.; Liu-Ambrose, T. Aerobic exercise training effects on hippocampal volume in healthy older individuals: A meta-analysis of randomized controlled trials. Geroscience 2024, 46, 2755–2764. [Google Scholar] [CrossRef]
- Frohlich, S.; Kutz, D.F.; Muller, K.; Voelcker-Rehage, C. Cardiorespiratory fitness is associated with cognitive performance in 80 + -year-olds: Detangling processing levels. Geroscience 2024, 46, 3297–3310. [Google Scholar] [CrossRef]
- Snigdha, A.; Majumdar, V.; Manjunath, N.K.; Jose, A. Yoga-based lifestyle intervention for healthy ageing in older adults: A two-armed, waitlist randomized controlled trial with multiple primary outcomes. Geroscience 2024, 46, 6039–6054. [Google Scholar] [CrossRef]
- Tait, J.L.; Duckham, R.L.; Rantalainen, T.; Milte, C.M.; Main, L.C.; Nowson, C.A.; Sanders, K.M.; Taaffe, D.R.; Hill, K.D.; Abbott, G.; et al. Effects of a 6-month dual-task, power-based exercise program on cognitive function, neurological and inflammatory markers in older adults: Secondary analysis of a cluster randomised controlled trial. Geroscience 2024. [Google Scholar] [CrossRef]
- Barha, C.K.; Best, J.R.; Rosano, C.; Yaffe, K.; Catov, J.M.; Liu-Ambrose, T. Walking for Cognitive Health: Previous Parity Moderates the Relationship Between Self-Reported Walking and Cognition. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 486–493. [Google Scholar] [CrossRef]
- Boda, F.-A.; Kovács, B.; Molnar, B.; Kovács-Deák, B.; Berța, L. Dietary habits and their correlation with socio-demographic variables among the ethnic Hungarian population of Romania. Nutrients 2025, 17, 756. [Google Scholar] [CrossRef]
- HealAll Project. Healthy Nutrition [PDF]. November 2023. Available online: https://healall.eu/home/wp-content/uploads/2023/11/J04_HealthyNutrition_EN_10.31.pdf (accessed on 2 June 2025).
- Martos, É.; Bakacs, M.; Sarkadi-Nagy, E.; Ráczkevy, T.; Zentai, A.; Baldauf, Z.; Illés, É.; Lugasi, A. Hungarian Diet and Nutritional Status Survey–the OTAP2009 study. IV. Macroelement intake of the Hungarian population. Orvosi Hetil. 2012, 153, 1132–1141. [Google Scholar] [CrossRef]
- Guiné, R.; Florença, S.; Leal, M.; Rumbak, I.; Komes, D.; Saric, M.; Tarcea, M.; Fazalas, Z.; Szucs, V.; Klava, D. Comparative study about some eating habits in six countries: Eating out and fast food consumption. Egitania Sci. 2020, 1, 109–122. [Google Scholar] [CrossRef]
- Bácsné Bába, É.; Müller, A.; Pfau, C.; Balogh, R.; Bartha, É.; Szabados, G.; Bács, Z.; Ráthonyi-Ódor, K.; Ráthonyi, G. Sedentary behavior patterns of the Hungarian adult population. Int. J. Environ. Res. Public Health 2023, 20, 2702. [Google Scholar] [CrossRef]
- Fekete, M.; Liotta, E.M.; Molnar, T.; Fülöp, G.A.; Lehoczki, A. The role of atrial fibrillation in vascular cognitive impairment and dementia: Epidemiology, pathophysiology, and preventive strategies. Geroscience 2025, 47, 287–300. [Google Scholar] [CrossRef]
- Stankovics, L.; Ungvari, A.; Fekete, M.; Nyul-Toth, A.; Mukli, P.; Patai, R.; Csik, B.; Gulej, R.; Conley, S.; Csiszar, A.; et al. The vasoprotective role of IGF-1 signaling in the cerebral microcirculation: Prevention of cerebral microhemorrhages in aging. Geroscience 2025, 47, 445–455. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Szappanos, Á.; Toth, A.; Mahdi, M.; Sótonyi, P.; Benyó, Z.; Yabluchanskiy, A.; Tarantini, S.; Ungvari, Z. Cerebromicrovascular mechanisms contributing to long COVID: Implications for neurocognitive health. Geroscience 2025, 47, 745–779. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Szappanos, Á.; Zábó, V.; Kaposvári, C.; Horváth, A.; Farkas, Á.; Fazekas-Pongor, V.; Major, D.; Lipécz, Á.; et al. Vitamin D and Colorectal Cancer Prevention: Immunological Mechanisms, Inflammatory Pathways, and Nutritional Implications. Nutrients 2025, 17, 1351. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Kryczyk-Poprawa, A.; Zábó, V.; Varga, J.T.; Bálint, M.; Fazekas-Pongor, V.; Csípő, T.; Rząsa-Duran, E.; Varga, P. Functional Foods in Modern Nutrition Science: Mechanisms, Evidence, and Public Health Implications. Nutrients 2025, 17, 2153. [Google Scholar] [CrossRef]
- Mukli, P.; Muranyi, M.; Lipecz, Á.; Szarvas, Z.; Csípő, T.; Ungvari, A.; Fekete, M.; Fazekas-Pongor, V.; Peterfi, A.; Fehér, Á.; et al. Age-related and dual task-induced gait alterations and asymmetry: Optimizing the Semmelweis Study gait assessment protocol. Geroscience 2025. [Google Scholar] [CrossRef]
Mediterranean Diet | Western Diet |
---|---|
Extra virgin olive oil | Refined vegetable oils and trans fats |
Fish and seafood | Processed meats and excessive red meat consumption |
High intake of vegetables and legumes | Low vegetable consumption |
Whole grains | Refined grains and white flour |
Moderate wine consumption (source of resveratrol) | Sugary beverages and excessive alcohol intake |
Nuts and seeds | High-sugar snacks and desserts |
Rich in antioxidants and polyphenols | Pro-inflammatory, low in essential micronutrients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehoczki, A.; Csípő, T.; Lipécz, Á.; Major, D.; Fazekas-Pongor, V.; Csík, B.; Mózes, N.; Fehér, Á.; Dósa, N.; Árva, D.; et al. Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study. Nutrients 2025, 17, 2446. https://doi.org/10.3390/nu17152446
Lehoczki A, Csípő T, Lipécz Á, Major D, Fazekas-Pongor V, Csík B, Mózes N, Fehér Á, Dósa N, Árva D, et al. Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study. Nutrients. 2025; 17(15):2446. https://doi.org/10.3390/nu17152446
Chicago/Turabian StyleLehoczki, Andrea, Tamás Csípő, Ágnes Lipécz, Dávid Major, Vince Fazekas-Pongor, Boglárka Csík, Noémi Mózes, Ágnes Fehér, Norbert Dósa, Dorottya Árva, and et al. 2025. "Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study" Nutrients 17, no. 15: 2446. https://doi.org/10.3390/nu17152446
APA StyleLehoczki, A., Csípő, T., Lipécz, Á., Major, D., Fazekas-Pongor, V., Csík, B., Mózes, N., Fehér, Á., Dósa, N., Árva, D., Pártos, K., Kaposvári, C., Horváth, K., Varga, P., & Fekete, M. (2025). Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study. Nutrients, 17(15), 2446. https://doi.org/10.3390/nu17152446